Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System
Keywords:
software defect prediction, artificial neural network, adaptive genetic algorithm, levenberg marquardt, object oriented software metrics, cost estimat
Abstract
The earlier defect prediction and fault removal can play a vital role in ensuring software reliability and quality of service In this paper Hybrid Evolutionary computing based Neural Network HENN based software defect prediction model has been developed For HENN an adaptive genetic algorithm A-GA has been developed that alleviates the key existing limitations like local minima and convergence Furthermore the implementation of A-GA enables adaptive crossover and mutation probability selection that strengthens computational efficiency of our proposed system The proposed HENN algorithm has been used for adaptive weight estimation and learning optimization in ANN for defect prediction In addition a novel defect prediction and fault removal cost estimation model has been derived to evaluate the cost effectiveness of the proposed system The simulation results obtained for PROMISE and NASA MDP datasets exhibit the proposed model outperforms Levenberg Marquardt based ANN system LM-ANN and other systems as well And also cost analysis exhibits that the proposed HENN model is approximate 21 66 cost effective as compared to LM-ANN
Downloads
- Article PDF
- TEI XML Kaleidoscope (download in zip)* (Beta by AI)
- Lens* NISO JATS XML (Beta by AI)
- HTML Kaleidoscope* (Beta by AI)
- DBK XML Kaleidoscope (download in zip)* (Beta by AI)
- LaTeX pdf Kaleidoscope* (Beta by AI)
- EPUB Kaleidoscope* (Beta by AI)
- MD Kaleidoscope* (Beta by AI)
- FO Kaleidoscope* (Beta by AI)
- BIB Kaleidoscope* (Beta by AI)
- LaTeX Kaleidoscope* (Beta by AI)
How to Cite
References
Published
2015-05-15
Issue
Section