

1 Survey on Techniques for Ontology Interoperability in Semantic 2 Web

3 R.Lakshmi Tulasi¹ and R.Lakshmi Tulasi²

4 1

5 *Received: 16 December 2013 Accepted: 31 December 2013 Published: 15 January 2014*

6

7 **Abstract**

8 Ontology is a shared conceptualization of knowledge representation of particular
9 domain. These are used for the enhancement of semantic information explicitly. It is
10 considered as a key element in semantic web development. Creation of global web data sources
11 is impossible because of the dynamic nature of the web. Ontology Interoperability provides
12 the reusability of ontologies. Different domain experts and ontology engineers create different
13 ontologies for the same or similar domain depending on their data modeling requirements.
14 These cause ontology heterogeneity and inconsistency problems. For more better and precise
15 results ontology mapping is the solution. As their use has increased, providing means of
16 resolving semantic differences has also become very important. Papers on ontology
17 interoperability report the results on different frameworks and this makes their comparison
18 almost impossible. Therefore, the main focus of this paper will be on providing some basics of
19 ontology interoperability and briefly introducing its different approaches. In this paper we
20 survey the approaches that have been proposed for providing interoperability among domain
21 ontologies and its related techniques and tools.

22

23 **Index terms**— ontology mapping; ontology alignment; ontology merging; semantic heterogeneity; semantic
24 web.

25 **1 Introduction**

26 The WWW has become a vast resource of information. It is growing rapidly from last few decades. The problem
27 is that finding the information, and the individual desires are often quite difficult, because of complexity in
28 organization and quantity of the information stored. In traditional search engines, Information Retrieval (IR) is
29 keyword based or with a natural language. Query entered by the users is not understandable, so it retrieves the
30 large number of documents in the ranked order which have poor semantic relationships among the documents.
31 This keyword based approach results poor precision -List of retrieved documents contain a high percentage of
32 irrelevant documents, and poor recall-List of relevant retrieved among possible relevant. To avoid the above
33 problems semantic search engines are required.

34 Ontology is used to model knowledge representation of a particular domain (E-learning, sports, medical,
35 etc). Ontologies are explicit specifications of the conceptualization and corresponding vocabulary and (Gruber
36 1993). Ontology is the fundamental factor for semantic web. We can perform different techniques for ontology
37 reusability called ontology interoperability techniques. Different interoperability techniques like Transformation
38 & translation, merging, Integration, Alignment, mapping have their own significance.

39 Translation and transformation are the basic operations on ontology. Ontology alignment process takes two
40 or more input ontologies and produces a set of relationships between concepts that match semantically with each
41 other. These matches are also called mappings. Ontology merging, as its name implies merges two ontologies
42 of same or similar domain in to one based on semantic similarity of concepts and produces unique ontology.
43 Ontology integration is the one which creates new ontology by merging two different domains.

7 SAMPLE DEFINITIONS INCLUDE THE FOLLOWING :-

44 Ontology mapping is one of the interoperability techniques to avoid heterogeneity and inconsistency problems
45 caused by ontology engineers of similar or same domain. Ontology mapping operation interprets the sets of
46 correspondences between similar concepts and among two or more ontologies of same or similar domains. This
47 is prominent research area in the field of AI (Artificial Intelligence). These mappings support two other related
48 operations ontology alignment and ontology merging.

49 Three important mismatches may exist between ontologies syntactic, semantic and lexical mismatches. Our
50 recent researchers developed several methods and techniques to identify these mismatches.

51 The rest of the paper organized as follows. Section II discusses about different types of ontology interoperability,
52 Section III discusses about types of ontology mapping. Section IV discusses about challenges in ontology mapping.
53 Section V discusses about types of mismatches. Section VI discusses about tools and techniques used for ontology
54 interoperability.

55 2 II.

56 3 Ontology Interoperability

57 This section describes several operations on ontologies like Transformation and translation, merging, mapping,
58 Integration. These can be considered as an ontology reuse process. [16,21] Ontology Transformation and
59 Translation Ontology Transformation [2,4] is the process used to develop a new ontology to cope with new
60 requirements made by an existing one for a new purpose, by using a transformation function't'. Many changes
61 are possible in this operation, including changes in the semantics of the ontology and changes in the representation
62 formalism. Ontology Translation is the function of translating the representation formalism of ontology while
63 keeping the same semantic. In other words, it is the process of change or modification of the structure of ontology
64 in order to make it suitable for purposes other than the original one. There are two types of translation. The first
65 is translation from one formal language to another, for example from RDFS to OWL, called syntactic translation.
66 The second is translation of vocabularies, called semantic translation [2]. The translation problem arises when
67 two Webbased agents attempt to exchange information, describing it using different ontologies.

68 4 Ontology Merging

69 Ontology merging [17,6,4] is the process of creating a new single coherent ontology from two or more existing
70 source ontologies related to the same domain. The new ontology will replace the source ontologies.

71 5 Ontology Integration

72 Integration [17,6] is the process of creating a new ontology from two or more source ontologies from different
73 domains.

74 6 Ontology Alignment

75 Ontology alignment [20,7,15,30] is the process or method of creating a consistent and coherent link between
76 two or more ontologies by bringing them into mutual agreement. This method is near to artificial intelligence
77 methods: being a logical relation, ontology alignments are used to clearly describe how the concepts in the different
78 ontologies are logically related. This means that additional axioms describe the relationship between the concepts
79 in different ontologies without changing the meaning in the original ontologies. In fact the ontology alignment
80 uses as a pre process for ontology merging and ontology integration. There are many different definitions for
81 ontology alignment depending upon its applications and its intended outcome.

82 7 Sample definitions include the following :-

83 ? Ontology alignment is used to establish correspondences among the source ontologies, and to determine the set
84 of overlapping concepts, concepts that are similar in meaning but have different names or structure, and concepts
85 that are unique to each of the sources [4]. ? Ontology alignment is the process of bringing two or more ontologies
86 into mutual agreement, making them consistent and coherent. ? Given two ontologies O1 and O2, mapping of
87 one ontology in to another means that each entity (concept c, relation R, Instance I) in ontology is trying to find
88 a corresponding entity which has the same intended meaning in ontology O2. Formally, an ontology alignment
89 function is defined as follows:

90 ? An ontology alignment function, align based on the set E of all entities e ? E and based on the set of possible
91 ontologies O, is a partial function.

92 Align: $O1 \cap O2 \text{ Align } (eO1) = fO2$ if $\text{Sim}(eO1, fO2) > \text{threshold}$. Where Oi : ontology, eOi, fOj : entities of
93 (Oi, Oj) $\text{Sim}(eO1, fO2)$: Similarities function between two entities $eO1$ and $fO2$.

94 The ontology alignment function is based on different similarity measures. A similarity measure is a real valued
95 function $\text{Sim}(ei, fj)$: $OxO \cap [0, 1]$ measuring the degree of similarity between x and y . Ontology heterogeneity is
96 shown in Fig ??.

97 8 Ontology Mapping

98 Ontology mapping [30,12,2,14,28] is a formal expression or process that defines the semantic relationships between
99 entities from different ontologies. In other words, it is an important operator in many ontology application
100 domains, such as the Semantic Web and e-commerce, which are used to describe how to connect and from
101 correspondences between entities across different ontologies. Ontology matching is the process of discovering
102 similarities between two ontologies. An entity 'e' is understood in an ontology O denoted by $e|_O$ is concept C ,
103 relation R , or instance I , i.e. $e|_O \in C \cup R \cup I$. Mapping the two ontologies, O_1 onto O_2 , means that each entity
104 in ontology O_1 is trying to find a corresponding entity which has the same intended meaning in ontology O_2 .

105 The Ontology mapping function "map" is defined based on the vocabulary, E , of all terms $e \in E$ and based on
106 the set of possible ontologies, O as a partial function: $\text{map}: E \times O \times O \rightarrow E$, with $e \in O_1 \mapsto O_2 : \text{map}(e, O_1, O_2)$
107 $= f \vee \text{map}(e, O_1, O_2) = \top$. An entity is mapped to another entity or none.

108 9 III.

109 10 Types of Ontology Mapping

110 Based on the method of ontology mapping and how ontologies are created and maintained, it is divided in to
111 three categories.

112 Ontology mapping between an integrated global ontology and local ontologies. [5,23] In this case, ontology
113 mapping is used to map a concept of one ontology into a view, or a query over other ontologies. Survey on
114 Techniques for Ontology Interoperability in Semantic Web b) Ontology mapping between local ontologies [19] In
115 this case, ontology mapping is the process that transforms the source ontology entities into the target ontology
116 entities based on semantic relation. The source and target are semantically related at a conceptual level.

117 11 Global Journal of Computer

118 Figure ?? : Ontology heterogeneity among ontologies of same domain Ontology mapping in ontology merge and
119 alignment [4] In this case, ontology mapping establishes correspondence among source (local) ontologies to be
120 merged or aligned, and determines the set of overlapping concepts, synonyms, or unique concepts to that sources
121 [4]. This mapping identifies similarities and conflicts between the various source (local) ontologies to be merged
122 or aligned.

123 12 IV. Challenges of Ontology Mapping

124 In this section, we discuss challenges of ontology mapping 1. Large-scale evaluation 2. Performance of ontology-
125 matching techniques 3. Discovering missing background knowledge 4. Uncertainty in ontology matching 5.
126 Matcher selection and self-configuration 6. User involvement 7. Explanation of matching results 8. Social and
127 collaborative ontology matching 9. Alignment management: infrastructure and support 10. Reasoning with
128 alignments V.

129 13 Types of Mismatches

130 Different types of mismatches may occur between different ontologies. Indeed different ontology designers opt for
131 different representation languages and use different ontology editors to represent knowledge at different levels of
132 granularity (detail). This explains the emergence of different forms of ontology mismatches. The identification of
133 these types of mismatches is essential in order to solve them during the mapping, alignment or merging process.

134 14 Syntactic mismatches

135 Two ontologies are syntactically heterogeneous if they are represented by different representation languages, such
136 as OWL, KIF etc. To resolve this type of mismatches, simply transform the representation language of one
137 ontology to the representation language of the other ontology. Herein, we state that sometimes the translation
138 is difficult and even impossible.

139 15 Lexical mismatches

140 Describe the heterogeneities among the names of entities, instances, properties, or relations. In this type of
141 mismatches, we may find four forms of heterogeneities: Synonyms, Homonyms, Same name in different languages,
142 and same entities with the same name but with different syntactic variations.

143 16 Semantic mismatches

144 These kind of mismatches describe words belong to same synonym set. For example, ontology A has price and
145 ontology B has cost. Then both are said to be semantically equivalent or match, otherwise it is a mismatched
146 pair.

147 **17 VI.**

148 **18 Tools and Techniques for Ontology Mapping**

149 LSD [15] (Learning Source Description): LSD semi automatically creates semantic mappings with a multi strategy
150 learning approach. This approach employs multiple learner modules with base learners and the meta-learner
151 where each module exploits a different type of information in the source schemas or data. LSD uses the following
152 base learners: 1) The Name Learner: it matches an XML element using its tag name, 2) The Content Learner:
153 it matches an XML element using its data value and works well on textual elements, 3) Naive Bayes Learner: it
154 examines the data value of the instance, and doesn't work for short or numeric fields, and 4) The XML Learner:
155 it handles the hierarchical structure of input instances. Multi-strategy learning has two phases: training and
156 matching. In the training phase, a small set of data sources has been manually mapped to the mediated schema
157 and is Survey on Techniques for Ontology Interoperability in Semantic Web utilized to train the base learners
158 and the Meta learner. In the matching phase, the trained learners predict mappings for new sources and match
159 the schema of the new input source to the mediated schema. MOMIS [23] (Mediator Environment for Multiple
160 Information Sources): MOMIS creates a global virtual view (GVV) of information sources, independent of their
161 location or their data's heterogeneity. MOMIS builds an ontology through five phases as follows:

162 1. Extraction of local schema 2. Local source annotation using Word Net (online dictionary) 3. Common
163 thesaurus generation: relationships of inter schema and intra-schema knowledge about classes and attributes of
164 the source schemas 4. Generation of GVV: A global schema and mappings between the global attributes of the
165 global schema and source schema are generated. 5. GVV annotation is generated by exploiting annotated local
166 schemas and mappings between local schemas and a global schema.

167 A Framework for OIS [24] (Ontology Integration System): Mappings between an integrated global ontology
168 and local ontologies are expressed as queries and ontology as Description Logic. Two approaches for mappings
169 are proposed as follows: 1) concepts of the global ontology are mapped into queries over the local ontologies
170 (global-centric approach), and 2) concepts of the local ontologies are mapped to queries over the global ontology
171 (local centric approach). GLUE [18]: It semi-automatically creates ontology mapping using machine learning
172 techniques. It consists of Distribution Estimator, Similarity Estimator, and Relaxation Labeler. It finds the
173 most similar concepts between two ontologies and by using a multi-strategy learning approach calculates the
174 joint probability distribution of the concept for similarity measurement. It has Content Learner, Name Learner,
175 and Meta Learner. Content and Name Learners are two base learners, while Meta Learner combines the two
176 base learners' prediction. The Content Learner exploits the frequencies of words in content of an instance and
177 uses the Naive Bayes' theorem. The Name Learner uses the full name of the input instance. The Meta-Learner
178 combines the predictions of base learners and assigns weights to base learners based on how much it trusts that
179 learner's predictions.

180 ONION [25] (ONtology composition system):

181 It resolves terminological heterogeneity in ontologies and produces articulation rules for mappings. The
182 linguistic matcher identifies all possible pairs of terms in ontologies and assigns a similarity score to each pair.
183 If the similarity score is above the threshold, then the match is accepted and an articulation rule is generated.
184 After the matches generated by a linguistic matcher are available, a structure-based matcher looks for further
185 matches. An inference-based matcher generates matches based on rules available with ontologies or any seed
186 rules provided by experts. Multiple iterations are required for generating semantic matches between ontologies.
187 A human expert chooses, deletes, or modifies suggested matches using a GUI tool.

188 LOM [22] (Lexicon-based Ontology Mapping):

189 LOM finds the morphism between vocabularies in order to reduce human labor in ontology mapping using
190 four methods: whole term, word constituent, synset, and type matching. LOM does not guarantee accuracy or
191 correctness in mappings and has limitations in dealing with abstract symbols or codes in chemistry, mathematics,
192 or medicine.

193 **19 QOM [11] (Quick Ontology Mapping):**

194 QOM is an efficient method for identifying mappings between two ontologies because it has lower run-time
195 complexity. In order to lower run-time complexity, light weight ontologies QOM uses a dynamic programming
196 approach. A dynamic programming approach has data structures which investigate the candidate mappings,
197 classify the candidate mappings into promising and less promising pairs, and discard some of them entirely to
198 gain efficiency. It allows for the ad-hoc mapping of large size, light-weight ontologies.

199 PROMPT [25]:

200 PROMPT is a semi-automatic ontology merging and alignment tool. It begins with the linguistic-similarity
201 matches for the initial comparison, but generates a list of suggestions for the user based on linguistic and structural
202 knowledge and then points the user to possible effects of these changes.

203 Onto Morph [13]:

204 Onto Morph provides a powerful rule language for specifying mappings, and facilitates ontology merging and
205 the rapid generation of knowledge-base translators. It combines two powerful mechanisms for knowledge-base
206 transformations such as syntactic rewriting and semantic rewriting. Syntactic rewriting is done through pattern-

207 directed rewrite rules for sentencelevel transformation based on pattern matching. Semantic rewriting is done
208 through semantic models and logical inference.

209 **20 Anchor-PROMPT [19]:**

210 Anchor-PROMPT takes a set of anchors (pairs of related terms) from the source ontologies and traverses the
211 paths between the anchors in the source ontologies. It compares the terms along these paths to identify similar
212 terms and generates a set of new pairs of semantically similar terms. CMS is an ontology alignment system. It is
213 a structure matching system on the rich semantics of the OWL constructs. Its modular architecture allows the
214 system to consult external linguistic resources and consists of feature generation, feature selection, multistrategy
215 similarity aggregator, and similarity evaluator. FCA-Merge [9]: FCA-Merge is a method for ontology merging
216 based on Ganter and Wille's formal concept analysis [28], lattice exploration, and instances of ontologies to be
217 merged. The overall process of ontology merging consists of three steps: 1) instance extraction and generation of
218 the formal context for each ontology, 2) the computation of the pruned concept lattice by algorithm TITANIC29,
219 and 3) the nonautomatic generation of the merged ontology with human interaction based on the concept lattice.

220 CHIMAERA [26]:

221 CHIMAERA is an interactive ontology merging tool based on the Ontolingual ontology editor. It makes users
222 affect merging process at any point during merge process, analyzes ontologies to be merged, and if linguistic
223 matches are found, the merge is processed automatically, otherwise, further action can be made by the user. It
224 uses subclass and super class relationship.

225 **21 ConcepTool [1]:**

226 This is an interactive and analysis tool that aims to facilitate knowledge sharing. It supports ontology alignment
227 process where the ontologies are represented in Entity Relationship model resulting from reasoning based on
228 description logic. ConcepTool is based on heuristic and linguistic inferences to compare attributes of two entities
229 belonging to the input ontologies. The analyst is then charged of identifying relevant information to resolve
230 conflicts between overlapping entities. Overlapping entities are related to each other through semantic bridges.
231 Each bridge provides a semantic transformation rule to solve the semantic mismatches between these entities.
232 Summarizing, ConcepTool begins by analyzing the input models to derive taxonomic links and overlapping
233 entities. Then, the analyst matches the common entities. The articulation ontology entities are automatically
234 generated and the analyst defines mappings between the attributes of the matched entities. Finally, the
235 articulation ontology is analyzed.

236 **22 VII.**

237 **23 Conclusion**

238 The ontology Interoperability is a prominent issue in many application domains such as semantic query processing,
239 data integration, data-warehousing, E-Commerce and E-Business. Issues of heterogeneity and inconsistency
240 among the ontologies of same or similar domains will be resolved using ontology mapping. Definitions of ontology
241 matching, ontology merging, ontology Integration are given. We have presented a general framework situating
242 ontology Mapping. Kinds of ontology mapping are proposed. Ten challenges which we face while mapping
243 ontologies are presented. We have located three forms of mismatches that are usually studied in these processes,
244 namely, lexical, syntactic and semantic mismatches.

245 Because of the wide usage of ontology Interoperability techniques there is a need to consolidate different
246 techniques and tools have been proposed to handle ontology Alignment, ontology Mapping and Merging processes.
247 In this paper, we have surveyed the literature of these techniques and described the different criteria and
248 approaches adopted by algorithms. ¹

Figure 1:

249 [Chalupsky ()] 'Ontomorph: A Translation System for Symbolic Knowledge'. H Chalupsky . *Principles of*
250 *Knowledge Representation and Reasoning*, 2000.

251 [Calvanese et al. ()] 'A Framework for Ontology Integration'. D Calvanese , De Giacomo , M Lenzerini .
252 *Proceedings of the 1 st International Semantic Web Working Symposium (SWWS)*, (the 1 st International
253 Semantic Web Working Symposium (SWWS)) 2001 a. p. .

254 [Pinto and Martins ()] 'A Methodology for Ontology Integration'. Helena Sofia Pinto , Joao P Martins .
255 *Proceedings of the International Conference on Knowledge Capture*, (the International Conference on
256 Knowledge Capture) 2001. ACM Press. p. . (Technical papers)

257 [Ghidini and Giunchiglia ()] 'A Semantics for Abstraction'. C Ghidini , F Giunchiglia . *Proceedings of ECAI*,
258 (ECAI) 2004. p. .

259 [Rahm et al. ()] 'A Survey of Approaches to Automatic Schema Matching'. E Rahm , P A Bernstein , " Survey
260 Of , E Rahm , P A Bernstein . *Presented at VLDB Journal*, 2001. p. .

261 [Shvaiko and Euzenat ()] *A survey of schema based mapping approaches*, P Shvaiko , J Euzenat . 2005. p. .
262 (presented at Journal of Data Semantics IV)

263 [Gotoh ()] 'An Improved Algorithm for Matching Biological Sequences'. O Gotoh . *Presented at Journal of*
264 *Molecular Biology* 1982. 162 p. .

265 [Noy and Musen ()] 'Anchor-PROMPT: Using Non Local Context for Semantic Matching'. N Noy , M Musen .
266 *Proceedings of the Workshop on Ontologies and Information Sharing at the International Joint Conference on*
267 *Artificial Intelligence (IJCAI)*, (the Workshop on Ontologies and Information Sharing at the International
268 Joint Conference on Artificial Intelligence (IJCAI)) 2001.

269 [Stumme and Maedche ()] 'FCA-Merge: Bottom-Up Merging of Ontologies'. Gerd Stumme , Alexander Maedche
270 . *proceeding of the International Joint Conference on Artificial Intelligence*, (eeding of the International Joint
271 Conference on Artificial IntelligenceSeattle, USA) 2001. 101.

272 [Kalfoglou and Schorlemmer ()] *IF-Map: An Ontology-Mapping Method Based on Information-Flow Theory*, Y
273 Kalfoglou , W M Schorlemmer . 2003. p. . (Presented at Journal Data Semantics)

274 [Compatangelo and Meisel ()] 'Intelligent support to knowledge sharing through the articulation of class
275 schemas'. E Compatangelo , H Meisel . *proceedings of the 6th International Conference on Knowledge-Based*
276 *Intelligent Information and Engeneering Systems*, (the 6th International Conference on Knowledge-Based
277 Intelligent Information and Engeneering SystemsItaly) 2002.

278 [Kalfoglou and Hu ()] Yannis Kalfoglou , Bo Hu . *CROSI Mapping System (CMS) Results of the 2005 Ontology*
279 *Alignment Contest*, (Banff, Alberta, Canada) 2005. 2005. (K-CAP Integrating Ontologies Workshop)

280 [Li ()] 'LOM: A Lexicon-based Ontology Mapping Tool'. John Li . *Proceedings of the Performance Metrics for*
281 *Intelligent Systems (PerMIS. '04)*, (the Performance Metrics for Intelligent Systems (PerMIS. '04)) 2004.

282 [Doan and Madhavan ()] 'Learning to Map between Ontologies on the Semantic Web'. Anhai Doan , Jayant
283 Madhavan . *Journal* 2003. (Special Issue on the Semantic Web)

284 [Doan et al. ()] 'Learning to Match the Schemas of Data Sources: A Multi strategy Approach'. Anhai Doan ,
285 Pedro Domingos , Alon Halevy . *Machine Learning*, 2003. 50 p. .

286 [Silva and Rocha ()] 'Ontology Mapping for Interoperability in Semantic Web'. Nuno Silva , Joao Rocha
287 . *Proceedings of the IADIS International Conference WWW/Internet 2003 (ICWI'2003)*, (the IADIS
288 International Conference WWW/Internet 2003 (ICWI'2003)Algarve, Portugal) 2000.

289 [Kalfoglou and Schorelmmer ()] 'Ontology Mapping: The State of the Art'. Yannis Kalfoglou , Marco Schorelm-
290 mer . *the Knowledge Engineering Review* 2003. 18 p. .

291 [Euzenat and Shvaiko ()] *Ontology Matching*, J Euzenat , P Shvaiko . 2007. Heidelberg (DE): Springer-Verlag.

292 [Dou et al. ()] 'Ontology Translation on the Semantic Web'. D Dou , D Mcdermott , P Qi . *Presented at on Data*
293 *Semantics Journal* 2005. 3360 p. .

294 [Klein and Fensel ()] 'Ontology Versioning on the Semantic Web'. M C A Klein , D Fensel . *Proceedings of*
295 *SWWS*, (SWWS) 2001. 2004. p. . (State of the Art on Ontology Alignment. Knowledge Web Deliverable
296 D2.2.3, University of Karlsruhe)

297 [Chalupsky ()] 'OntoMorph: A Translation System for Symbolic Knowledge'. H Chalupsky . *Proceedings of KR*,
298 (KR) 2000. p. .

299 [Noy and Musen ()] 'PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment'. N Noy ,
300 M Musen . *Proceedings of the National Conference on Artificial Intelligence (AAAI)*, (the National Conference
301 on Artificial Intelligence (AAAI)) 2000.

302 [Noy and Musen ()] 'PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment'. N Noy ,
303 M Musen . *Proceedings of the National Conference on Artificial Intelligence (AAAI)*, (the National Conference
304 on Artificial Intelligence (AAAI)) 2000.

23 CONCLUSION

305 [Noy and Musen ()] 'PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment' N F Noy
306 , M A Musen . *Proceedings of AAAI/IAAI*, (AAAI/IAAI) 2000. p. .

307 [Ehrig et al. ()] *QOM -Quick Ontology Mapping*, Marc Ehrig , Steffen Staab , ; Gi Jahrestagung . 2004.

308 [Mitra ()] 'Resolving Terminological Heterogeneity in Ontologies'. P Mitra , Wiederhold . *Proceedings of the*
309 *ECAI'02 workshop on Ontologies and Semantic Interoperability*, (the ECAI'02 workshop on Ontologies and
310 Semantic Interoperability) 2002.

311 [Giunchiglia et al. ()] 'Semantic Schema Matching'. F Giunchiglia , P Shvaiko , M Yatskevich . *Proceedings of*
312 *OTM Conferences (1)*, (OTM Conferences (1)) 2005. p. .

313 [Euzenat and Valtchev ()] 'Similarity-Based Ontology Alignment in OWL-Lite'. J Euzenat , P Valtchev .
314 *Proceedings of ECAI*, (ECAI) 2004. p. .

315 [Beneventano and Bergamaschi ()] *Synthesizing an Integrated Ontology*, Domenico Beneventano , Sonia Berga-
316 maschi . 2003. IEEE Internet Computing.

317 [Mc Guinness and Fikes ()] 'The Chimaera Ontology Environment'. D Mc Guinness , R Fikes . *Proceedings of*
318 *the 17th National Conference on Artificial Intelligence (AAAI)*, (the 17th National Conference on Artificial
319 Intelligence (AAAI)) 2000.