

1 Design and Implementation of Information Retrieval using 2 Ontology

3 Dr. V S Dhaka¹ and Aditi Sharma²

4 ¹ Jaipur National University

5 *Received: 7 December 2013 Accepted: 31 December 2013 Published: 15 January 2014*

6

7 **Abstract**

8 An approach is proposed that can be used to make these arch adaptive according to each
9 user?s need using ontology .Our approach is distinct because it allows each user to perform
10 more fine-grained search by capturing changes of each user?s preferences without any user
11 effort. Such a method is not performed in typical search engines.

12

13 **Index terms**— ontology, fine-grained, user?s preferences, search engines.

14 **1 Introduction**

15 ver the past few years, the World Wide Web (WWW) has become the largest and most admired means of
16 communication and dissemination of information. Users often feel disoriented and lost in this information overload
17 which continues to develop. Therefore, the ultimate need nowaday is that of predicting the user needs in order to
18 improve the usability and approaches to make the search adapting to satisfy the user requirement user retention
19 of a web site. We propose. The approaches conversed here are derived from ontology and active user profile.
20 The presented approach aims to effectively personalize search results according to each user's information need
21 by accurately identifying the user context, updating user profile timely, recommending documents according to
22 similar users and by reorganizing the information satisfying the needs. The Web pages are customized according
23 to the characteristics (interests, the social category, the context) of an individual. Personalization technology
24 enables the lively insertion, customization or hint of content in any format that is pertinent to the individual
25 user, based on the user's implicit actions and inclinations.

26 **2 a) Dynamic User Profile and Ontology**

27 Author ? ? : Department of Computer Science Jaipur National University , Jaipur. e-mail: vijay-
28 pal.dhaka@gmail.com, ksaditi2@gmail.com interests may keep altering over time. Hence, the user needs to
29 update the profile. Implicit profile building based on observations of the user's actions describes model considers
30 the frequency of visits to a page, the amount of time spent on the page, how recently a page was visited and
31 whether or not the page was book marked. A set of m finite number of users is termed as U. An ith user(ui)is
32 indicated as a person who poses the question /query to search engine through web browser.

33 NewUserisauserwhoposesthequeryfirsttimeusingtheemployedsearchengine. Newuserset NU?U; OldUseris-
34 theuserwhohascreatedthequeryprevioulsyonthesearchengine.

35 Hence OU?U;

36 ActiveUser(denotedas)istheuserwhoiscurrently working;solivelyuser,attime,iseitherafreshuseroroldusr
37 ui?U{ui:1?i?m} and U= OU?NU Query Topic (denoted as QT) is a search query that comprises of one or more
38 keywords/ terms. extent/ dimension of query are number of terms present in it. New Query is a query created
39 by the user firstly. Old Query is a query that has previously been searched by a user. W(u,j)is weight given to
40 the jthquery topic for the user u.

41 Context is the description of a user's aim / need for information reclamation. In this chapter, context is
42 implicitly defined which are update do over time to reproduce changes in user interests/requirements. Contexts
43 are extracted from Word Net in terms of concepts.

44 **3 II.**

45 **4 The Proposed Approach**

46 In this information age, it is a deplorable state that, despite the information overload, we fail regularly to
47 identify relevant information. In particular, in the field of education, several terabytes of content related to
48 various educational institutions such as universities, colleges are downloaded from the Internet every week, and
49 the demand for these resources is still rising. But this is not satisfactory in terms of access to information that
50 the generic search engine in terms of overtime on bad links and relevance links. There can be many reasons, the
51 most important in terms of lack of Personalization needs user profile and to construct a user profile, some basis
52 of information concerning the user required to be collected. This information may be collected explicitly and
53 implicitly. Explicit profile creation is not preferred as it puts an additional saddle on the user. Additional issues
54 related to explicit profile creation are the user may not accurately report their interests; the profile, so created,
55 remains inert while the user's interests may keep altering recognition of context and semantics of the user query
56 to get the required results.

57 To address these critical issues of information retrieval, the proposed system is designed. The proposed system
58 retrieves semantically relevant results for the user account application semantics and context of the request. The
59 semantics of the query is analyzed using the following procedures:

60 ? The user's request is first analyzed and syntactically by the analysis. ? The synsets related to key words in
61 the query are retrieved .

62 ? The keywords of the ontology of domain are collected to form the refined query.

63 The results obtained in the proposed approach are more relevant by adopting the following procedure:

64 ? "The refined queries which are entries in the search engine are formed on the basis of the semantic analysis
65 on user request. ? "The Web links retrieved for all the refined queries newly formed are again classified according
66 to the information specific to a domain.

67 The low-level design of our proposed system is demonstrated as follows: Elementary knowledge that the main
68 body of this component description forms, institutional construction of suggestion. Other spheres of learning and
69 organizations of related concept, gathered from various websites and other origins, such as Word only. These
70 concepts centralized in a stratified form in the foundation territory related keyword of ontology. These key words
71 are used to train the purification inquiry.

72 ii. Refined Query Formation Improvement, to provide better search result, uses this module the inquiry that
73 is assigned by the user. In this part, the inquiry analysis that is assigned by the user, the speech recognition
74 part of inquiry words and expressions. Then, about in keyword the retrieval of synonym collection in the inquiry
75 contains. The key words territory, the semantic query related extract completes from the main body. This
76 step will cause the more semantic related words the restoration of quantity. Then is used in the open country
77 training purification inquiry these key words. These inquiry fine inquiries, the key words expand, have the related
78 semantics of involving.

79 iii. Modules Collaborative filtering is a technology utilized chiefly to predict individuals' inclinations. The
80 initiative of collaborative filtering has its basis in information filtering, which leads a reader's pick by filtering
81 a large amount of information and obtaining inclinations collaboratively based on inclinations shared by like
82 readers.

83 Collaborative filtering works by first sifting through an individual's inclinations or purchase history to find
84 a group of individuals, or a 'neighborhood', with similar inclinations or purchase histories, and then envisaging
85 what else the individual will like, based on the collective inclinations or purchase histories of other individuals in
86 the neighborhood. The predicted inclinations can then be used to make product or service recommendations to
87 the individual. The query given by the user is parsed by m n sea of query parser and the output is: The query
88 'Python' will be expanded with" programming language ",for the users fascinated in computer programming
89 language, and with" snake ',for the users fascinated in "wild life". To get the appropriate context of query topic,
90 the Word Net is used to retrieve appropriate context using the following algorithm and the user profile is updated
91 accordingly. d) Web Links Retrieved: i. User Query:

92 **5 Summary and Conclusion**

93 The design and implementation of the proposed approach using Dynamic User profile and Ontology.

94 The experiments designed are first discussed, followed by the experiment frame work and environment. The
95 overview of the proposed system. In addition ,it gives details of the query parser tool and implemented for query
96 expansion using ontology and re-ranking of documents with using user profile. Evaluation of Context aware
97 applications is quite difficult as they depend on context. The contexts or situations of interest depends on user
98 to user and can't be generalized.

99 **6 Global Journal of Computer Science and Technology**

100 Volume XIV Issue II Version I Year 2014 ^{1 2}

¹© 2014 Global Journals Inc. (US)Design and Implementation of Information Retrieval using Ontology

²© 2014 Global Journals Inc. (US)

Figure 1: O

1

Figure 2: Figure 1 :

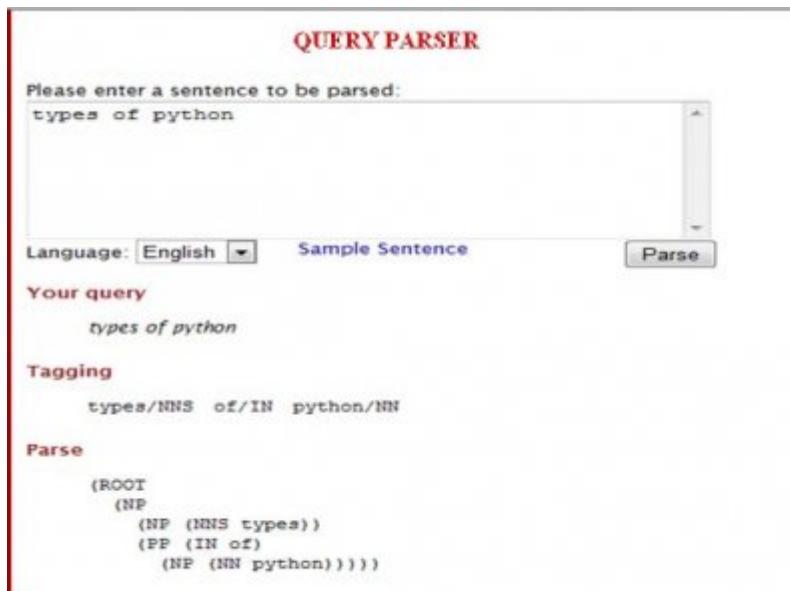


Figure 3: ?

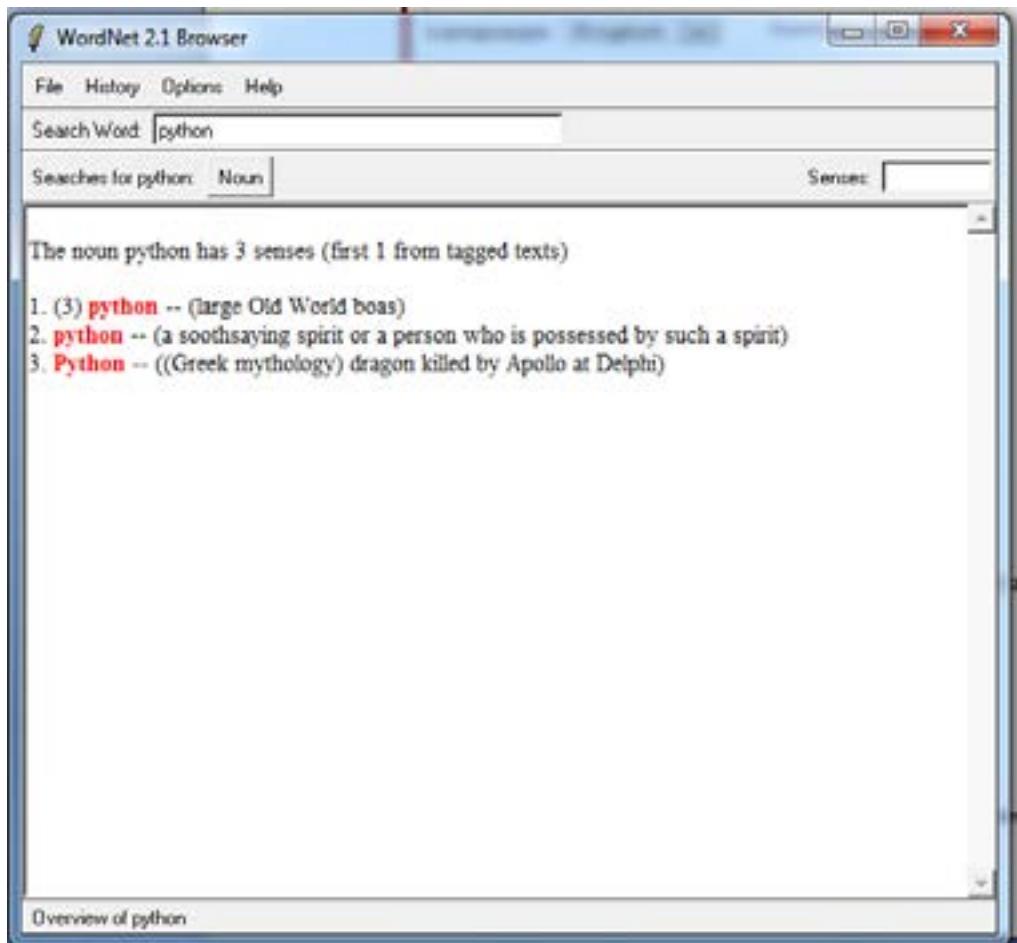


Figure 4: ??

Snake

Poisonous creatures

Programming Language

Figure 5: Figure 2 :

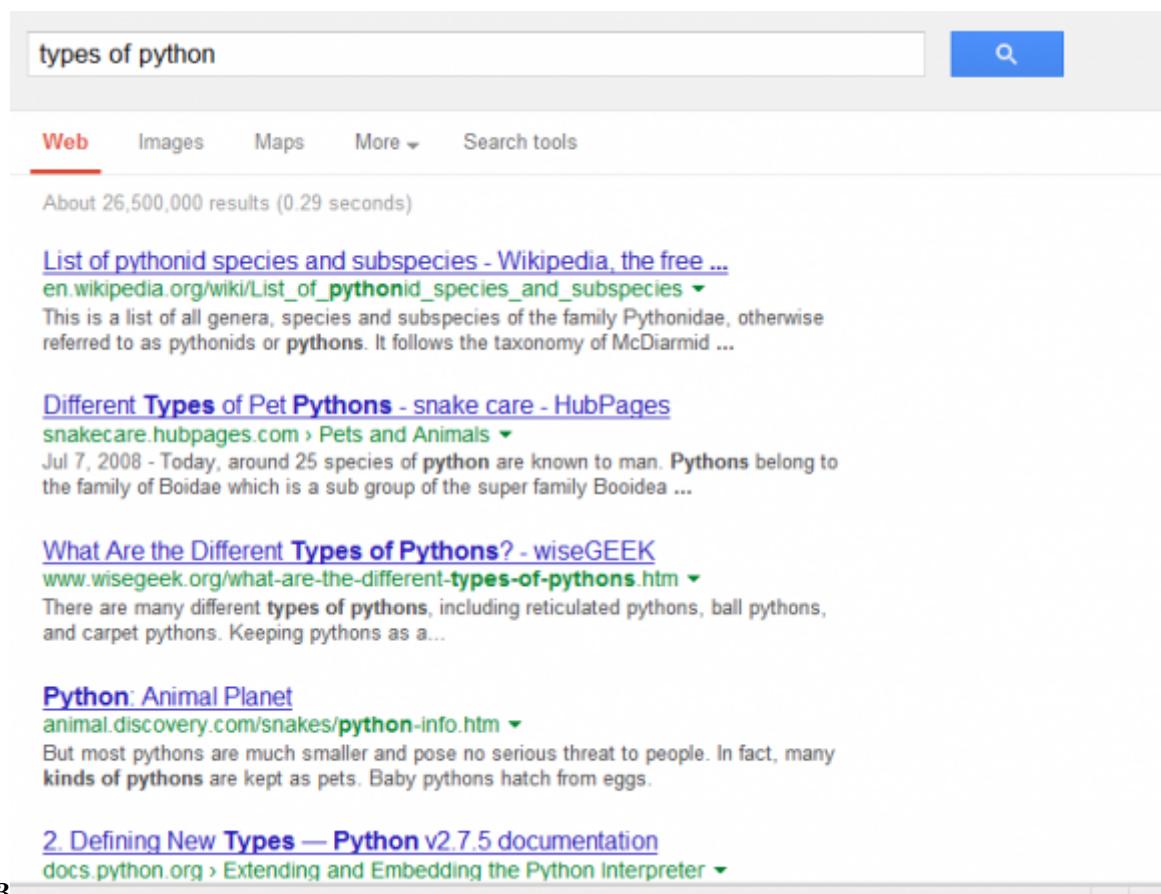


Figure 6: Figure 3 :

types of python

Web Images Maps More ▾ Search tools

About 26,500,000 results (0.29 seconds)

[List of pythonid species and subspecies - Wikipedia, the free ...](#)
en.wikipedia.org/wiki/List_of_pythonid_species_and_subspecies ▾
This is a list of all genera, species and subspecies of the family Pythonidae, otherwise referred to as pythonids or pythons. It follows the taxonomy of McDiarmid ...

[Different Types of Pet Pythons - snake care - HubPages](#)
[snakercare.hubpages.com](https://snakercare.hubpages.com/Pets-and-Animals) › Pets and Animals ▾
Jul 7, 2008 - Today, around 25 species of python are known to man. Pythons belong to the family of Boidae which is a sub group of the super family Booidea ...

[2. Defining New Types — Python v2.7.5 documentation](#)
[docs.python.org](https://docs.python.org/2/library/embedding.html) › Extending and Embedding the Python Interpreter ▾
Defining New Types¶. As mentioned in the last chapter, Python allows the writer of an extension module to define new types that can be manipulated from ...

[8. Data Types — Python v2.7.5 documentation](#)
[docs.python.org](https://docs.python.org/2/library/datatypes.html) /2/library/datatypes.html ▾
Data Types¶. The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type arrays, heap queues,

[12 Most Poisonous Snakes on Earth - Environmental Graffiti](#)
[www.environmentalgraffiti.com](https://www.environmentalgraffiti.com/news-10-most-poisonous-snakes-earth) /news-10-most-poisonous-snakes-earth ▾
Sep 15, 2011 - Russell's viper. Given the way they slither along the ground – silent predators seeking out their prey – snakes are creepy enough under the ...

101 [Newell ()] , A Newell . *The Knowledge Level. Artificial Intelligence* 1982. 18 p. .

102 [Paralic et al. ()] 'A System to support E-Democracy'. J Paralic , T Sabol , M Mach . *Proc. of the First*
103 *International Conference EGOV 2002*, R Government, K Traunmuller, Lenk (ed.) (of the First International
104 Conference EGOV 2002Aix-en-Provence, France) 2002. Springer Verlag. 2456. (LNCS 2456)

105 [Gruber (1993)] 'A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition'. T R
106 Gruber . *An International Journal of Knowledge Acquisition for Knowledge-based Systems* June 1993. 5 (2) .

107 [Adali et al. ()] 'Advanced Video Information System: Data Structures and Query Processing'. S Adali , K S
108 Candan , S Chen , K Erol , V S Subrahmanian . *ACM-Springer Multimedia Systems Journal* 1996. 4 p. .

109 [Khan and Mcleod (2000)] 'Audio Structuring and Personalized R Retrieval Using Ontologies'. L Khan , D
110 Mcleod . *Proc. of IEEE Advances in Digital Libraries*, (of IEEE Advances in Digital LibrariesBethesda,
111 MD) May 2000. Library of Congress. p. .

112 [Baeza and Neto ()] R Baeza , B Neto . *Modern Information Retrieval*, 1999. Addison Wesley.

113 [Berthierribeiro-Neto and Baeza-Yates ()] Ricardo Berthierribeiro-Neto , Baeza-Yates . *Modern Information*
114 *Retrieval*, (New York) 1999. ACM Press.

115 [Bunge ()] M Bunge . *Treatise on basic Philosophy*, (Boston) 1977. Reidel Publishing Co. 3.

116 [Gibbs et al. ()] 'Data Modeling of Time based Media'. S Gibbs , C Breitender , D Tsichritzis . *Proc. of ACM*
117 *SIGMOD*, (of ACM SIGMODMinneapolis, USA) 1994. p. .

118 [Khan and Mcleod] *Effective Retrieval of Audio Information from Annotated Text Using*, L Khan , D Mcleod .

119 [Dumais ()] 'Improving the retrieval of information from external sources'. S Dumais . *Behavior Research Methods,*
120 *Instruments, and Computers* 1991. 23 (2) p. .

121 [Scott et al. ()] 'Indexing by latent semantic analysis'. C Scott , Susan T Deerwester , Thomas K Dumais , George
122 W Landauer , Richard A Furnas , Harshman . *Journal of the American Society of Information Science* 1990.
123 41 (6) p. .

124 [Gonzalo et al. (1998)] 'Indexing with WordNetSynsets can Improve Text Retrieval'. J Gonzalo , F Verdejo ,
125 I Chugur , J Cigarran . *Proc. of the Coling-ACL'98 Workshop: Usage of WordNet in Natural Language*
126 *Processing Systems*, (of the Coling-ACL'98 Workshop: Usage of WordNet in Natural Language essing
127 Systems) August 1998. p. .

128 [Borghoff U. M. Pareschi R (ed.) ()] *Information Technology for Knowledge Management*, Borghoff U. M.
129 &Pareschi R (ed.) 1998. Springer Verlag.

130 [Hjelvold and Midstraum ()] 'Modeling and Querying Video Data'. R Hjelvold , R Midstraum . *Proc. of the*
131 *Twentieth International Conference on Very Large Databases (VLDB'94)*, (of the Twentieth International
132 Conference on Very Large Databases (VLDB'94)Santiago, Chile) 1994. p. .

133 [Guarino et al. ()] 'OntoSeek: Content-based Access to the Web'. N Guarino , C Masolo , G Vetere . *IEEE*
134 *Intelligent Systems* 1999. 14 (3) p. .

135 [Aslan and Mcleod (1999)] 'Semantic Heterogeneity Resolution in Federated Database by Metadata Implantation
136 and Stepwise Evolution'. G Aslan , D Mcleod . *The VLDB Journal, the International Journal on Very*
137 *Large Databases* Oct 1999. 18 (2) .

138 [Hauptmann (1995)] 'Speech Recognition in the Informedia Digital Video Library: Uses and Limitations'. G
139 Hauptmann . *Proc. of the Seventh IEEE International Conference on Tools with AI*, (of the Seventh IEEE
140 International Conference on Tools with AIWashington, DC) Nov 1995.

141 [Arons (1993)] 'SpeechSkimmer: Interactively Skimming Recorded Speech'. B Arons . *Proc. of ACM Symposium*
142 *on User Interface Software and Technology*, (of ACM Symposium on User Interface Software and Technology)
143 Nov 1993. p. .

144 [Tiwana ()] *The Knowledge Management Toolkit*, A Tiwana . 2000. Prentice Hall.

145 [Abecker et al. (1998)] 'Toward a Technology for Organizational Memories'. A Abecker , A Bernardi , K
146 Hinkelmann , O Kühn , M . *IEEE Intelligent Systems* 1998. May/June. 13 p. .