

1 Effects of Mining Operations on Local Area Networks in Large 2 Scale Gold Mining Environments in the Western Region of 3 Ghana

4 Christian Kwaku Amuzuvi¹, Emmanuel Effah² and Christian Kwaku Amuzuvi³

5 ¹ University of Mines and Technology, Tarkwa, Ghana

6 *Received: 13 December 2013 Accepted: 3 January 2014 Published: 15 January 2014*

7 **Abstract**

8 We investigate the impacts mining operations have on established Wired/Wireless Local Area
9 Networks (WLANs) in mining environments in the Western Region of Ghana. Mining
10 activities have certain immutable negative impacts on the topography of the land with
11 consequent effects on LAN Networks. Notable are undulating landscape with pronounced
12 physical obstructions, LAN infrastructural relocations and reconstruction, higher atmospheric
13 dust concentration, severe ground vibrations due to blasting and the motion of heavy mine
14 machineries. The mobile nature of mining operations/ practices often results in relocations of
15 established network infrastructure such as fibre cables, repeater base stations, and mask
16 towers (i.e. cell sites). The main reason for LAN infrastructural relocations is to ensure
17 effective LAN/WLAN communication especially during mine expansions. However, this
18 results into lengthy network downtimes. Employees? redundancies or idleness during network
19 downtimes reduce mine productivity by about GHc2, 577, 860.64 (USD 1,288,930.32)
20 annually. We recommend preventive maintenance schedule for all existing LAN infrastructure;
21 basic Information Communication Technology (ICT) Training into the regular training
22 module; technically qualified Information Technology (IT) experts be part of management and
23 finally; IT projects be planned and integrated into the annual business plan. Netronics
24 Wireless Broadband (NWB) communication technology solutions were also recommended to
25 management and IT policy makers in the mining companies for consideration due to its good
26 performance in mining environments.

27
28
29 **Index terms**— information communication technology, information technology, local area network,
30 wired/wireless local area networks, intranets/extranets, infrastruct

31 **1 Introduction**

32 Enterprises depend on information which must be communicated accurately, securely, and quickly. This information
33 is often created on a myriad of hardware and software platforms, thereby increasing the difficulty for its effective
34 and efficient exchange [1]. These rapid developments in computer technology have resulted in a greater reliance
35 on distributed computing, typified by "client/server" [2]. Again, the increasing reliance on networks driven by the
36 growing use of sophisticated applications has created the desire for more faster and uninterrupted network or
37 "backbone" -WLAN/LAN. Additionally, the influx of Intranets/Extranets and the Internet technologies coerce
38 companies to building more resilience and guaranteed networks with much reduced downtimes so they can
39 effectively survive competition. Earlier, Network failures were much routine and unplanned for which reason
40 downtimes were measured in days. Today, networks unavailability for even a relatively short period of time cause
41 substantial loss to the business.

6 A) DEMOGRAPHIC PROFILE OF RESPONDENTS

42 Mining companies now keenly rely on LAN for sharing information, data, and technology resources, and
43 completely show zero tolerance for network downtimes. Thus, the long held belief that 80% of traffic remains
44 local to the network, while 20% traverses the backbone is no longer true. In fact, there has been nearly a total
45 reversal in LAN traffic patterns now being called "20/80 rule" [1]. The prevalence of higher intensities of dust,
46 severe noise and vibrations due to the use of various degrees of explosives, movement of heavy mine machineries
47 and physical obstructions at most mining environments are detrimental to the effectiveness of LANs [3][4][5][6].
48 The nomadic nature of mining itself also create greater hindrance to LANs' efficiency (be it wired or wireless)
49 [7]. Normal mining practice is that, as the ore at a place gets exhausted, mining activities must relocate and
50 hence communication infrastructure must be moved. Consequently, laid fibre optic cables, transmitting/repeaters
51 stations must be abandoned or relocated. Line-of-sight wireless signals is obliterated due to the abrupt topological
52 changes in landscape and "kinking" of laid fibre optic cable create sustained network downtimes. The mobility
53 of mining operations and the subsequent relocations of the installed LAN infrastructure and the peripheral
54 devices, and even the cost of network reconstruction create a lot of inconveniences. The extent to which these
55 impede the Intranets' services demands attention, because the resulting accrued network downtime cost could
56 be too huge. The reason being that, relocation of LAN infrastructure comes with its own demerits especially if
57 unplanned [7][8]. Relocation technicalities are always impeded; thus, getting the required expertise, resources to
58 do it and getting the desired material. Under-utilization of LAN due to frequent downtimes is more expensive
59 to organizations than when efficiently utilized [9]. Mining operations are dynamic in nature. Lowlands are
60 stockpiled to become highlands overnight and vice versa. Relocation of mine administrators' offices/workshops,
61 mineral (gold) processing plants, fibre optic cables, repeater/transmission stations and human settlements or
62 human communities are classic mining practices. Figure 1 presents the structure of the problem. Peculiar to
63 this study is the way the mobile nature of mining itself and its consequent LAN infrastructural relocations affect
64 network functionality and employee productivity. This research addresses this gap.

65 2 II.

66 3 Materials and Methods

67 This study deployed the descriptive research method involving observations and surveys ??10]. Information about
68 the existing condition was gathered using interviews, questionnaires and observations [11]. First hand data from
69 the respondents was collected and analysed to form the basis for the conclusions and recommendations.

70 The research was limited to large scale gold mining companies within the western Region of Ghana and did not
71 test any hypothesis or quantifiable data to generalize the results. Rather, this work sought thorough information
72 and a deep understanding [12], of the stipulated research problem [13][14]. The qualitative research approach
73 was therefore used.

74 4 III.

75 5 Results

76 The analysis and presentation of results were done in the order of the questionnaires viz: respondents' profile,
77 Random LAN infrastructural relocations and LAN network effectiveness due to the mobility of mining operations,
78 employees experience and response to network issues. The Statistical Package for the Social Sciences (SPSS) v16
79 and Microsoft Office Excel-2013 application software, were used in the analysis.

80 6 a) Demographic Profile of Respondents

81 This part of the questionnaire looked at gender, departments, and work experience with their respective
82 companies, rank and educational background. From the survey, it was found out that 39.3% of the respondents
83 were females and 69.7% males which are typical of gold mining companies. Figure 2 below illustrates the graphical
84 distribution of employees in their various departments. Respondents solely relied on the installed LAN and
85 its accessories to execute their daily duties as employees. It is known that, "increased LAN/WLAN network
86 infrastructural relocations resulting in LAN/WLAN network downtimes in mining operational environment
87 decreases mine productivity". In order to affirm this fact, questionnaires administered ascertained the lost
88 productive hours of employees as a result of network unavailability (downtimes) and employees' experience and
89 response to network challenges.

90 In order to ensure certainty and establish good grounds for results, the extent of respondents' dependency on
91 LAN link or the Intranet or the Internet in the daily basis was explored. Per this research, 93% of the employees
92 confirmed sheer dependence on the LAN network link availability and completely became redundant if the link
93 was down. Averagely, this value represents more than 900 employees for a mining company. 7% however, could
94 execute their daily duties even when the network link was down.

95 Reasons and impacts of LANs' infrastructural relocation were to cater for expansion and improvement in
96 network efficiency especially when well-planned and budgeted for. However, this study shows that the unplanned
97 relocations surpass the planned. Figure 5 summarizes the root causes of LAN infrastructural relocations. As
98 shown in Figure 6, almost half of the population (46%) believes LAN infrastructural relocations are means to

99 expanding the network. 6 displays the impacts of LAN infrastructural relocations. Improving LAN's efficiency
100 and minimizing interference due to noise, dust and stray frequencies from old sites are the intended impacts
101 as subscribed by 52% of the respondents. However, the consequent reduction in LAN's efficiency due to
102 prolonged link downtimes, increased network usability cost and maximized interference due to noise, dust and
103 stray frequencies from new sites constitute the real impacts. 48% of the respondents alleged that the negative
104 impacts surpass the positives. factored into annual budgets. In fact, LAN/WLAN relocations are done to ease
105 Internet and Intranet communication during expansion to mine new concessions. Actually, the major intended
106 impacts of LAN infrastructural relocations on network function and availability are to improve LAN/WLAN's
107 efficiency and minimize interference.

108 The realistic and inevitable repercussions of LAN infrastructural relocations on network function and
109 availability according to 48% of the employees include:

110 ? Increased network usability cost due to reworks during relocations and non-alignment with existing
111 technology. ? Maximized interference (disturbance) due to noise, dust, space and other stray frequencies at
112 new sites.

113 ? Reduced LAN's efficiency and hence productivity due to prolong link downtimes.

114 From the analysis and the above deductions from employees, causes and reasons for LAN infrastructural
115 relocations are logical. Nevertheless, their consequent impacts on network availability, effectiveness and hence
116 mine productivity of networkusing employees is negative.

117 7 d) Productive Hours Lost through Network Downtimes

118 From Figure ??, employees experience rapid and sporadic network downtimes. 39% of the respondents see not
119 less than one network downtime per day; 36% encounter not less than one network downtimes in two days;
120 25% experience network downtimes at least once a week. Establishing blameless baseline for logic analysis, we
121 realized that, averagely, the network link goes down at least once in every two days. The lengths of downtimes
122 are illustrated in Table ???. Figure 8 shows how employees expend this time. As established from Figure 8,
123 Table ?? extrapolates the length of downtimes averagely in two days per employee. From Table ??, 4.77 hours
124 of productivity per an employee were lost every two days due to network downtimes. As broadly illustrated in
125 Figure ??, more than 60% of the absolute LAN dependents waste over four productive hours every two days as
126 a result of LAN network downtimes.

127 Figure10 shows that about 51% of the population do not channel their network challenges to IT desk, which
128 can significantly delay network restoration. From Figure10, only 49% directly report their network grievances
129 to the IT help desk. For the twelve Intranet/Internet-using departments selected for this research, 97% of the
130 respondents fully rely on the network to carry out all their daily operations while 3% can operate offline. This
131 97% represents over one thousand employees. Again, 74% of the respondents do not have any ICT training, be
132 it formal and informal including management.

133 Alarmingly, 74% of the respondents experience network failures at least once in one or two days while 26%
134 replied at least once a week. The most vital departments forming the core of production: engineering, finance
135 and procurement, recorded the maximum occurrences of network failures. IT department and management are
136 the next at risk departments as far as the rate of network downtimes are concerned whilst the other departments
137 ensue as illustrated in Figure 8.

138 The engineering departments leads the rate of downtimes because of their closeness to the gold processing
139 plant, proneness to vibrations due to the plant's operation and the movement of heavy mine machineries, LAN
140 infrastructural relocations and geography.

141 For the finance and procurement departments, LAN infrastructural relocations and physical obstructions
142 accounted for their frightening network downtime rate. Averagely, the minimum length of LAN network
143 downtimes is four (4) hours in every two days, and 54% of the respondents become idle or redundant during this
144 time.

145 8 f) Quantification of Actual Network Downtimes Losses

146 On the basis of six working days in a week, the actual average weekly network downtime according to Table 2 is
147 14.31 hours per employee (4.77 hours in every two days). Quantifying the loss due to this network downtime for
148 900 employees (the minimum number proposed by the IT staff) is shown below.

149 An average monthly salary per employee proposed by finance departments is GHc1, 000.00. The hourly labour
150 loss is: Note that, the estimated labour loss due to network downtimes of GHc2,577,860.64 excluded the cost of
151 network reconstruction and stationeries due absence of the network. This loss is too high to neglect as a company,
152 irrespective of their annual incomes.

153 The greatest want of the studied mining companies should be the want of in-house IT skills/experts who
154 can effectively handle the speciallydesigned and mining-friendly new technologies with improved and robust
155 LAN/WLAN network infrastructure.

156 9 IV. Conclusion and Recommendation a) Conclusion

157 Over four productive hours in every two days per employee for more than 1000 employees (54%) are lost
158 due to network failures/downtimes. This man-hour loss to talling GHc2, 577, 860.64 (USD 1,288,930.32)
159 annually is mutely charged against productivity. Logically, it cannot be overemphasized that the amount
160 contributes significantly to productivity loss irrespective of the company's annual profit. This affirms the fact
161 that "increased LAN/WLAN network infrastructural relocations resulting in LAN/WLAN network downtimes
162 in mining operational environment vis-à-vis some inhouse obstacles decreases mine productivity". Mining
163 operations are supported by software applications accessed through a network. Wired and Wireless media
164 network connectivity enables effective communication in the mines. Thus, profitable mining operations depend
165 on effective communication. When data network like LAN/WLAN shuts down or becomes unavailable, safety and
166 productivity are compromised due to long employee productive hour loss. In the worst case, the entire operation
must be suspended. ¹

Figure 1: E

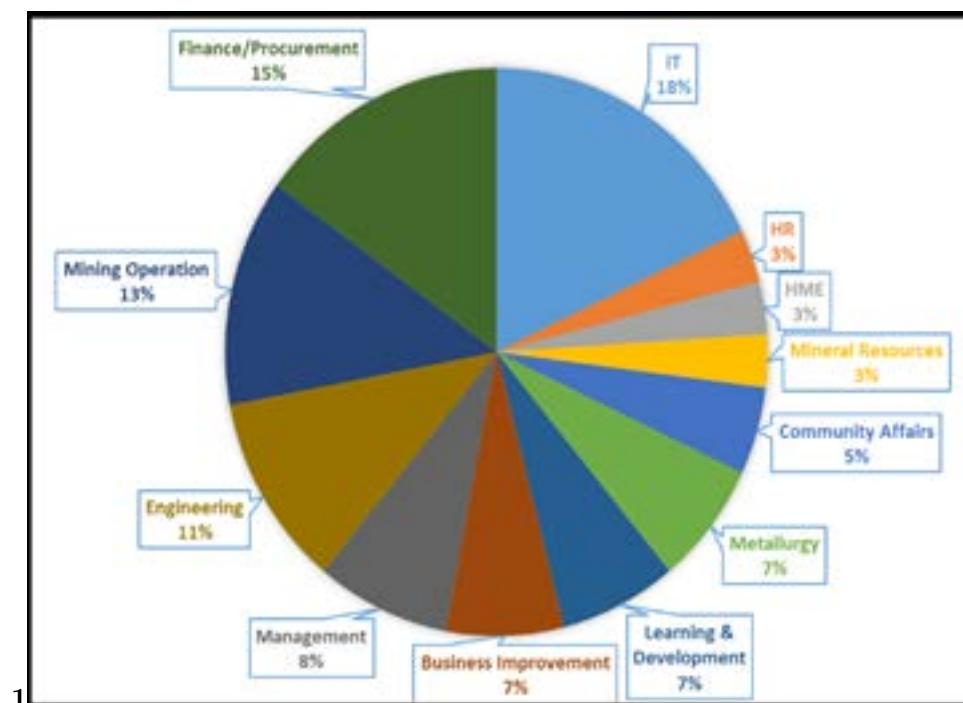


Figure 2: Figure 1 :

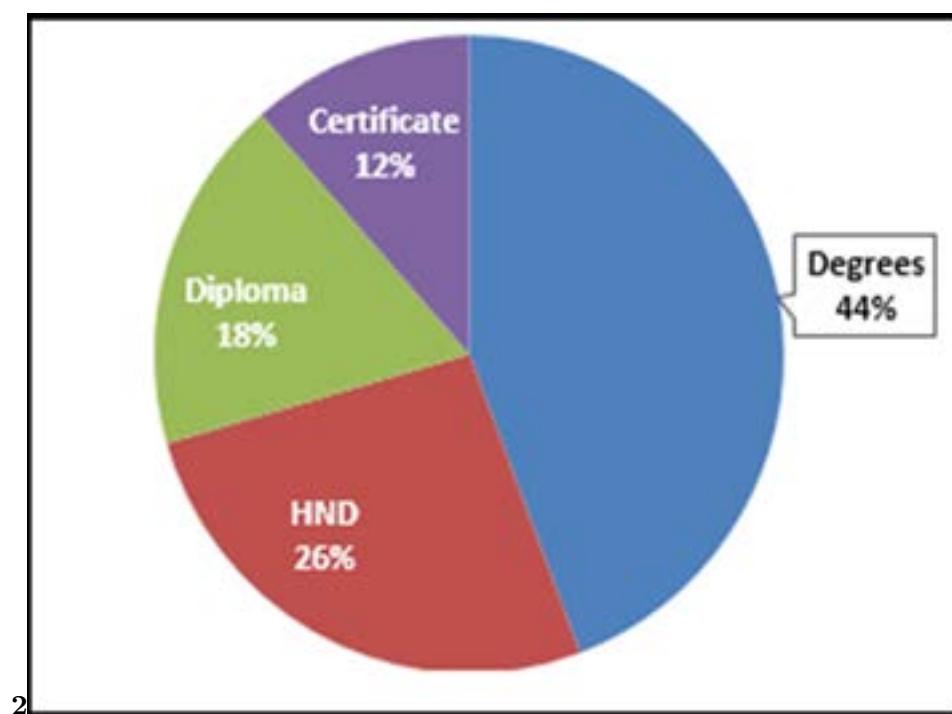
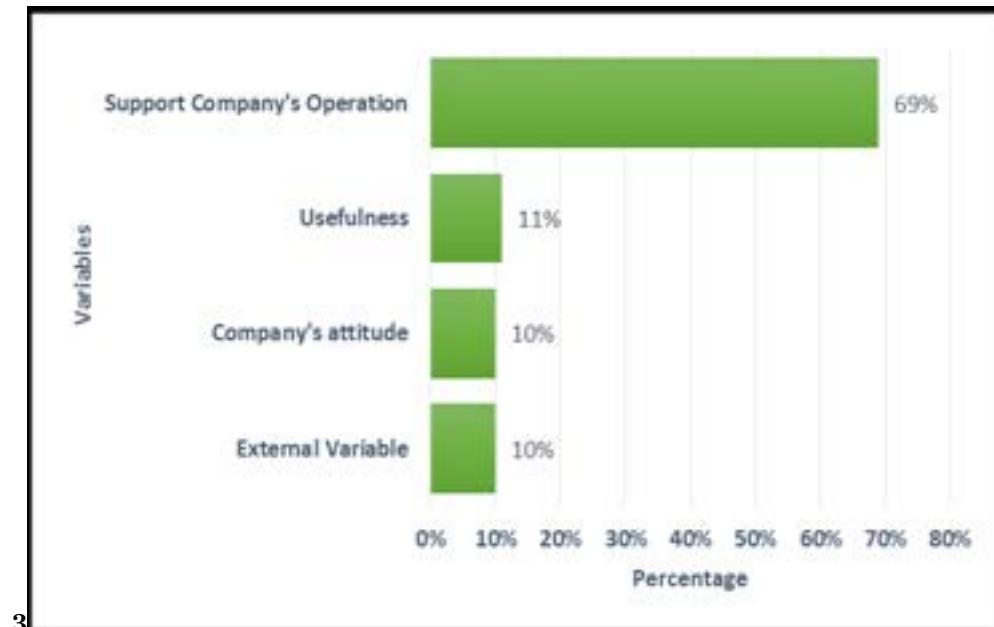
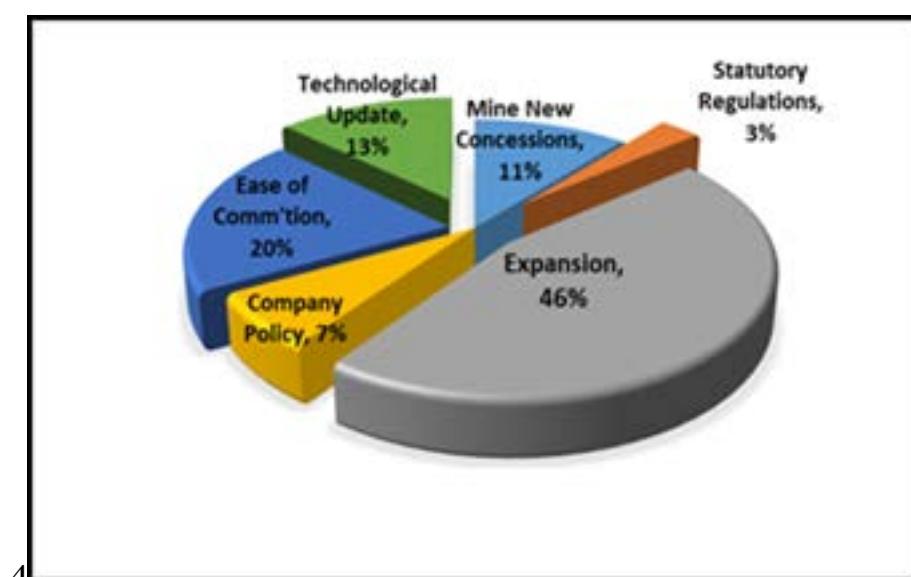




Figure 3: Figure 2 :

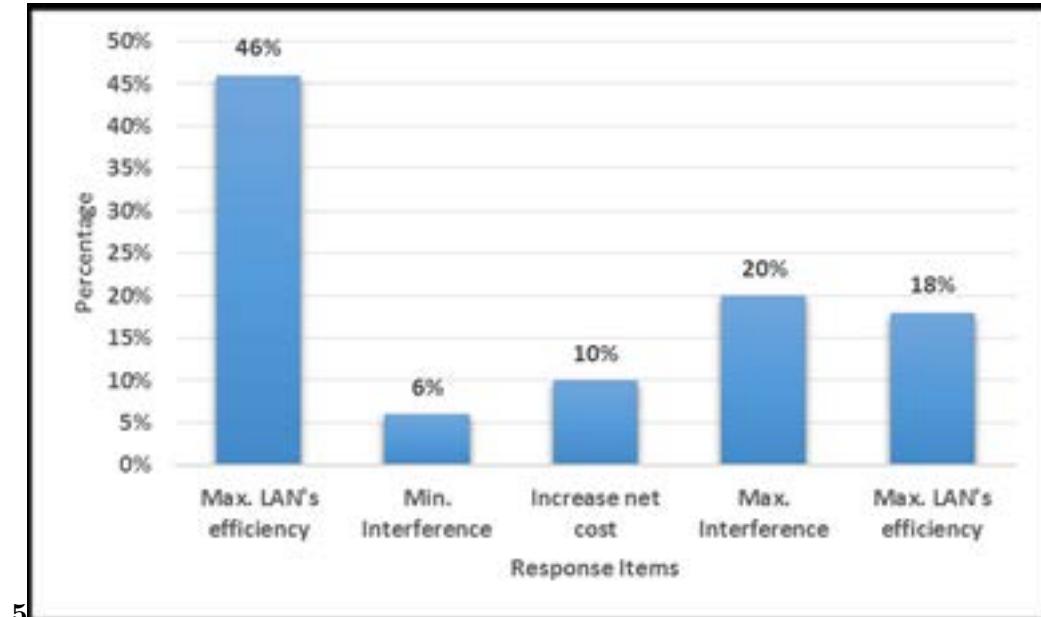

3

Figure 4: GlobalFigure 3 :

4

Figure 5: Figure 4 :

5

Figure 6: Figure 5 :

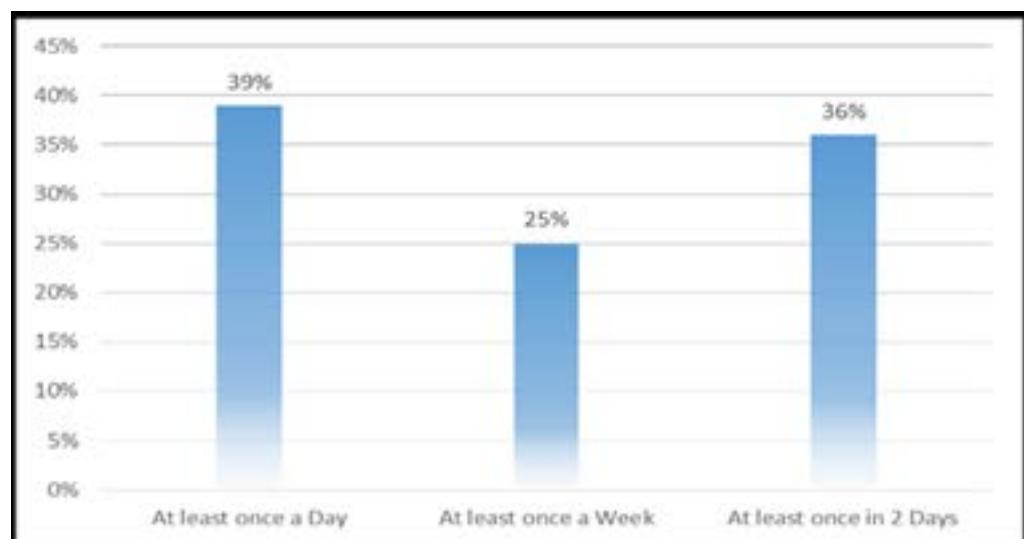


Figure 7: Figure

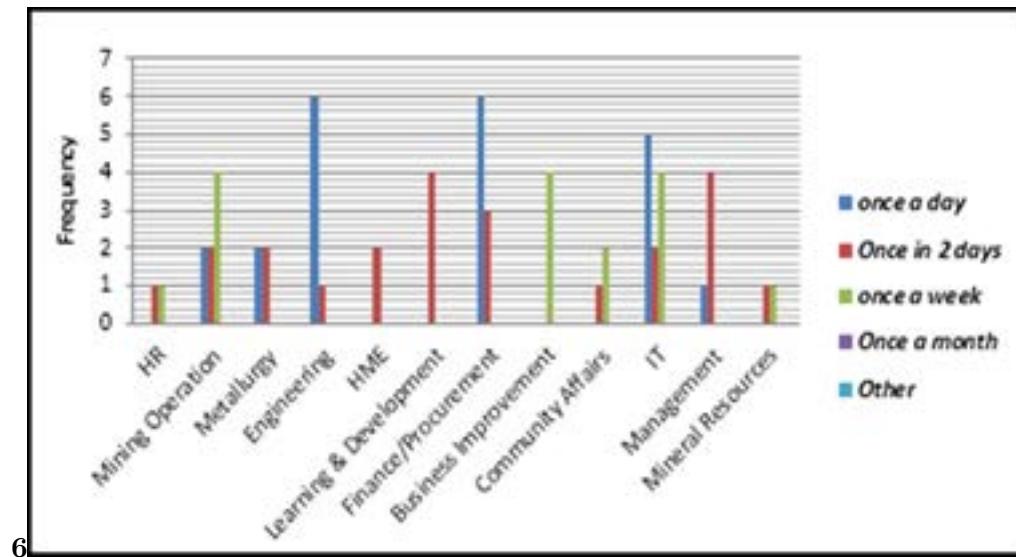
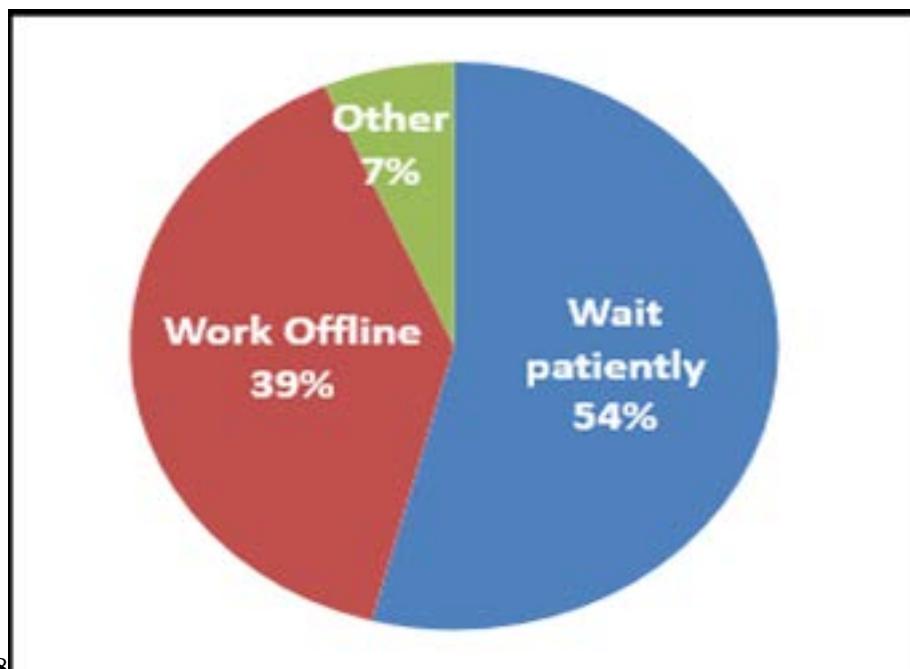



Figure 8: Figure 6 :

78

Figure 9: Figure 7 :Figure 8

Figure 10: Figure 8 :

1

Years in the Mines	Frequency	Percent	Valid Percent	Cumulative Percent
Up to 5	46	75.4	75.4	75.4
11-15	2	3.3	3.3	78.7
Over 21	2	3.3	3.3	82.0
6-10	11	18.0	18.0	100.0
Total	61	100.0	100.0	

Figure 3 presents respondents Educational levels. Regarding ICT training and qualifications 26% of the employees interviewed have formal ICT training with qualifications to that effect whereas 74% do not have.

Figure 11: Table 1 :

9 IV. CONCLUSION AND RECOMMENDATION A) CONCLUSION

168 .1 Acknowledgement

169 EE and CKA Thanks the University of Mines and Technology, Tarkwa, for their support. Also, the authors
170 acknowledge the support received from Goldfields Ghana Ltd, Tarkwa and Damang Gold Mines and Anglogold
171 Ashanti Iduapriem Mine.

172 are inevitable. Nonetheless, a better alternative must be considered. V.

173 [Collins and Smith ()] *3G Wireless Networks*, D Collins , C Smith . 2001. New York: McGraw-Hill.

174 [Yin ()] *Case Study Research: Design and Methods, applied Social Research Methods Series*, R K Yin . 1994.
175 Newbury Parl California: Sage Publishing. (2nd Ed)

176 [Tanebaum ()] *Computer Networks, Fourth Edition*, A S Tanebaum . 2003. Prentice Hall.

177 [Creswell ()] J W Creswell . *Research design: Qualitative & Quantitative Approaches*, (USA) 1994. Sage
178 Publications.

179 [Shneiderman and Plaisant (ed.) ()] *Designing the User Interface: Strategies for Effective Human-Computer
180 Interaction, Fifth Edition, addition Wesley Imprint*, B & C Shneiderman , Plaisant . 10. Zikmund, W.
181 G. (ed.) 2010. 1994. Fort Worth: Dryden Press. (Exploring Marketing Research)

182 [Ashish and Prashant ()] 'Effects of Rain on Radio Propagation in GSM'. S Ashish , J Prashant . *International
183 Journal of Advanced Engineering & Applications* 2010.

184 [Sani ()] *Empirical model for the prediction of mobile radio cellular signal attenuation in harmattan weather*,
185 Folaponmile Sani , MS . 2011.

186 [Hair et al. ()] *Essentials of business research methods*, J F Hair , Jr , B Babin , A H Money , P Samouel . 2003.
187 New York: Wiley.

188 [Breuning-Madsen and Awadzi ()] 'Harmattan dust deposition and particle size in Ghana'. H Breuning-Madsen
189 , T W Awadzi . *Journal Catena* (2005. 63 (1) p. .

190 [Holme et al. ()] I M Holme , B K Solvang , Lund . *Research Methods: Qualitative and Quantitative Methods*,
191 *About Student*, 1991.

192 [Dajab ()] 'Perspectives on the Effects of Harmattan on Radio Frequency Waves'. D Dajab . *J. Appl. Sci. Res*
193 2006. 2 (11) p. 10141018.

194 [Dimari et al. ()] 'Pollution Synergy from Particulate Matter Sources: The Harmattan, Fugitive Dust and
195 Combustion Emissions in Maiduguri Metropolis'. G A Dimari , O N Maitera , M Waziri , S S &hati .
196 *Nigeria. European Journal of Scientific Research* 1450-216X. 2008. 23 (3) p. .

197 [Anderson et al. ()] *The Application of Land Use/Land Cover (Clutter) Data to Wireless Communication System
198 Design*, H Anderson , T Hicks , J Kirtner . 2008. Eugene, Oregon USA: EDX Wireless, LLC.