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¢ Abstract

7 Supervised learning techniques require large number of labeled examples to build a classifier

s which is often difficult and expensive to collect. Unsupervised learning techniques, even

o though do not require labeled examples often form clusters regardless of the intended purpose
10 or context. The authors proposes a semi supervised learning framework that leverages the

1 large number of unlabeled examples in addition to limited number of labeled examples to form
12 clusters as per the context. This framework also supports the development of semi supervised
13 classifier based on the proximity of unknown example to the clusters so formed. The authors
1 proposes a new algorithm namely ?Semi Supervised Relevance Feature Estimation?, (SFRE),
15 to identify the relevant features along with their significance weightages which is integrated

16 with the proposed framework. Experiments conducted on the benchmark datasets from UCI
17 gave results which are very promising and consistent even with lesser number of labeled

18 examples.

19

20 Index terms— context 477”7 aware, semi supervised learning, feature relevance, subspace clustering,
21 discriminant analysis.

» 1 Introduction

23 achine learning techniques are being adopted by various applications from different domains to build predictive
24  models. These techniques are broadly classified as supervised learning and unsupervised learning based on the
25 availability of class labels to build the model. Supervised learning methods require labeled data to build a
26 classifier model that predicts the class labels of unknown examples based on the information available in the
27 form of class labels. However, it is usually very expensive and timeconsuming process to collect the labeled data
28 ?7Han et al., 2011). Even in domains with abundance of unlabeled data, labeled data are usually scarce and
29 would require some effort to collect such data. However, to build classifier with better generalized accuracy, large
30 number of labeled data is required, more so for datasets with high dimensionality -one of the problems associated
31 with curse of dimensionality (Ramona et. Al.,2012).

32 Accordingly, it is believed that with fixed number of labeled examples, the predictive power of the classifier
33 decreases with the increase in number of dimensions thus requiring larger number of labeled examples for building
34 classifier (Advani, 2011).

35 In unsupervised learning methods such as clustering, unlabeled data, if available in abundance, suffice to
36 extract hidden patterns of knowledge from a given dataset. Traditional clustering algorithms take into account
37 the entire feature space to partition the datasets into clusters such that there is homogeneity among the instances
38 within a cluster. The proximity between the instances in the cluster is measured in terms of distance function.
39 However, with the increase in dimensions, the distance measures employed in the clustering algorithm becomes
40 insignificant and clusters so produced will be meaningless. Hence clustering will full feature space, especially
41 when the number of dimensions are large, may not produce good clusters.

42 Finding the subset of feature space to produce meaningful clusters comes under the purview of subspace
43 clustering. Subspace clustering focuses on finding a subset of features or a smaller set of transformed features
42 with an aim to define cluster-able object spaces ??Han et al., 2011;Sim et al., 2013). In high dimensional
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3 RELATED WORK

datasets due to exponentially large number of subsets of the feature set, subspace clustering techniques have
to eliminate enormous possibilities before identifying the appropriate feature space that contain intrinsically
significant clusters ??Han et al., 2011). The basic research in subspace clustering falls into unsupervised learning
as it tries to identify clusters based on the distribution of objects in various feature sub-spaces irrespective of
the class labels of the objects. The clusters thus formed may be meaningful but may not be relevant to the
intended purpose or context. For instance, the census data is described in terms of different features like social,
economic, education, health, etc.,. However, it needs to be clustered in groups depending on the purpose of the
data analysis. Features corresponding to social backwardness and eco-nomic status is used to identify the welfare
schemes to be adopted, whereas features corr-espo-nding to place of living, commutability, etc., are used to decide
the location of new amenities centers. In both the cases, features used and their relative significance will vary with
the context or purpose thus requiring the clustering algorithm to give proper emphasis to appropriate features
in accordance with the context for which the Context-aware-subspace clustering aims to find appropriate feature
subspace for a given context represented in the form of class labels of a few labeled examples which are consistent
with a large collection of unlabeled examples belonging to the same dataset. To the best of our knowledge, not
much research was published in support of feature selection algorithms making use of combination of labeled
as well as unlabeled examples. Hence semi supervised feature selection algorithms are needed to be developed
for formation of context-aware clusters in domains having only limited examples labeled and the rest being left
unlabeled.

Semi Supervised Learning which is an integration of supervised and unsupervised learning; makes use of both
labeled and unlabeled examples to build a model (Zhu and Goldberg, 2009). Semi supervised learning has two
forms namely semi supervised classification and semi supervised clustering. Semi supervised classification uses
both labeled and unlabeled data to build the classifier. Using the limited number of labeled data, probable class
labels for the unlabeled data is derived which in turn is added to the pool of labeled data thus increasing the
number of labeled examples ??Han et al., 2011). The basic assumption in this technique is that the similar data
will have same class labels (cluster assumption) ??Chapelle et al., 2006;Wang et al., 2012). Different methods
like self training, co-training, generative probabilistic models, graph based and support vector machines are used
for semi supervised classification ??Zhu, 2008). In semi supervised clustering, a large set of unlabeled data is
accompanied by a small amount of domain knowledge in the form of either class labels or pairwise constraints
(must-link and cannot-link) (Grira et al., 2004;Ding et al., 2012). This domain knowledge is used to guide the
clustering of unlabeled data so that the intra-cluster similarities are maximized and intercluster similarities are
minimized and there exist consistency between the partition and the available knowledge (Gao et al., 2006).

Based on the above arguments, authors proposes context-aware semi supervised subspace clustering framework
which leverages the domain knowledge in terms of class labels for at least some of the examples (if labeled examples
are expensive) in order to estimate the suitability of the features to the intended cluster solution. Proper selection
of features and their relative significance is essential in producing context-aware clusters which are probably uni-
class clusters. Uni-class clusters contain all or majority of the elements belonging to same class label which
is reflected in terms of cluster purity. The clustering framework is further extended to build a classifier which
is referred to as semi supervised classifier that requires minimum information for prediction. The authors also
proposes 'Semi Supervised Feature Relevance Estimation’, (SFRE), algorithm to estimate the relevant features
and their relative significance in terms of weights that define appropriate subspaces for different targets/context.
The framework was tested on a few benchmark datasets from UCI repository which has given promising results.

2 1II.
3 Related Work

Researchers in the past came up with different methods for semi supervised learning. One popular approach is
constrained based clustering. Constraint based methods uses pairwise constraints in the form of must-link and
cannot-link that guides the clustering process to partition the data in a way that do not violate these constraints
(Wagstaff et al., 2001;Basu et al., 2004;Lu and Leen, 2004). Recently Xiong et al., (2014) proposed an iterative
based active learning approach to select pairwise constraints for semi supervised clustering. It uses the concept of
neighbourhood that contains labeled examples of different clusters based on pairwise constraints. The uncertainty
associated with each point’s neighbor is resolved through queries. However, repeated clustering is required with
growing list of constraints.

Another popular approach for semi supervised clustering is distance based techniques which is based on the
cluster assumption. Yin and Hu (2011) proposed semi supervised clustering algorithm using adaptive distance
metric learning where clustering and distance metric learning are performed simultaneously. The clustering
results are used to learn the distance metric and the data is projected into a low dimensional space such that
data seperability is maximized. Gao et al., (2006) focused on semi supervised clustering in terms of features
rather than examples. It addresses the problem where labeled and unlabeled dataset have different feature set
with few common features.

In terms of feature selection, Padmaja et al., (2010) proposed a dimensionality reduction approach that
estimates the significance of features based on the fractal dimensions and accordingly selects a subset of features
that are essential to capture the characteristics of the dataset. The algorithm detects all types of correlations
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among features to identify the essential features after eliminating the redundant and irrelevant features. Kernel
based feature selection was also explored by a few researchers (Wang, 2008;Ramona et al., 2012). Clustering
based feature selection for classification was proposed by Song et al., (2013) where features are clustered based
on graph theoretic clustering method.

Research on feature weighting and ranking concentrated more on supervised learning (Eick et al., 2006;Al-
Harbi and Rayward-Smith, 2006;Zhao and Qu, 2009). Most of these research studies initially weigh the features
by using some random guess or equal weights. These initial weights are then adjusted accordingly. Such approach
may take much time to arrive at the final optimum weights if the initial guess is not appropriate.

This paper deals with semi supervised learning methods with wrapper based feature selection method that
uses discriminant analysis results to initialize the weights. These weights are adjusted accordingly in a stepwise
refinement process using both labeled and unlabeled examples. The proposed framework is used to develop a
classifier and a pertinent cluster solution.

4 III. Context-aware Semi Supervised

Subspace Clustering Framework A dataset may be clustered in multiple ways by appropriately selecting a subset
of features /attributes depending on the purpose. Hence to produce clusters conforming to a particular purpose
or context, weights must be given to features that depict the importance of the feature. Researchers in the past
initially start with a guess/random weights or equal weights to the feature and proceeds further to determine the
more acceptable weights. Instead of starting with some arbitrary values, it is proposed to use the information
from the available labeled data to initialize the weights which can be adjusted later. Authors thus propose
usage of discriminant analysis that finds the relationship between the independent features (predictors) and the
dependent feature (class label), to initialize the feature weights.

Discriminant analysis is a method that is used to predict categorical value from a given set of independent
feature. It assumes the independent features to be normally distributed. The linear equation of Discriminant
analysis is (Equation ??)D=V1X1+V2X2+4+V3X3+7.+ViXital

Where D=Discriminant Score V i = the discriminant coefficient or weight of i th feature X i = Value of i
th feature a = a constant Discriminant analysis thus identifies the relevant features and its coefficients reflect
the relevancy of the feature. The outcome of the discriminant analysis in terms of coefficients is normalized
and is used as initial weights for developing binary cluster solution where as development of multi-class cluster
solution involves integration of results given through multiple discriminant functions. The proposed framework
use potency index as per the approach given in Dharmavaram and Mogalla (2013) for determining the initial
weights of various features based on the labeled examples in case of multiclass datasets.

5 b) Clustering Algorithm

The initial weight vector is used to form the initial cluster solution by using any partitional clustering algorithm.
The authors have chosen K-means algorithm for its simplicity and computational efficiency to deal with numerical
features. While dealing with datasets described in terms of numerical attributes, generally Kmeans algorithm
employs Euclidean distance to compute the distance from each data point to the cluster centroid. Euclidean
distance assumes that all the features are equally important while forming the clusters. However, as discussed
previously, weights of the feature will determine the relevancy of the feature in forming the desired cluster
solution and accordingly Weighted Euclidean Distance metric is used for distance calculation which has the
following equation (Equation ??):dw (x1i,xj) =77 72 27 (77 7277 7 77 77?7 ) 27?7 77 =1 2 where 7 77 77
=17777 =1

where w m indicates the weight of the m th feature. If the significance of the feature is more, its weight will
be more. The weight of an irrelevant feature can be set to zero.

For clustering, the number of clusters, K, is taken to be more than the number of classes. Larger values of K
results in formation of large number of small uni-class clusters and hence, multiple clusters are associated with a
single class. Each of these clusters The cluster concurrence is estimated for each cluster based on the agreement
of the members of the cluster towards a particular class label and hence reflects the uni-class property of a cluster.
In order to estimate the cluster concurrence of k th cluster, the support, S kj , available for each class, j, in that

The binary term M acts as a deciding factor to indicate whether the example contributes to the support of
class j or not. It may be noted that each example, whether labeled or unlabeled, contributes to the support of
only one class: the unlabeled example support the class with the maximum probability, while the labeled example
naturally support one and only one true class label.

P j (n) is calculated as per the equation given below (Equation 4) where d(i,n) is the weighted Euclidean

The predicted label of an unlabeled example, t, is the label for which the probability is maximum.
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9 B) PURITY THRESHOLD OF THE CLUSTER

The cluster concurrence of k th cluster is estimated as:CC k = max j {S kj }

Overall cluster purity of the cluster solution is taken as the weighted sum of individual cluster concurrences
and is given below (Equation 5) The new algorithm, SFRE is guided by cluster purity estimated in terms of
labeled as well as unlabeled examples belonging to various feature subspaces. The algorithm accepts the dataset
D that includes L and U, initial cluster purity and the outcome of discriminant analysis as initial weights for
formation of initial weight vector as input. The output of the algorithm is accurate relevance estimates of the
feature set referred to as weight vector that defines the feature subspace for the given purpose indicated through
class labels.CP = 7 |77 7?7 | |??| 77?27 77 77 ?7=15

The cluster purity obtained by the initial weights is assigned to current cluster purity as initialization step,
after which the algorithm executes the following three steps iteratively:( D D D D ) Year C

Step 1: Finding Relevant Features Step 2: Updating Weights Step 3: Check for convergence In the first step,
each feature in the feature set is checked for its relevance. Taking one feature at a time, clusters are formed
without that feature and cluster purity is estimated. If there is a decrease in cluster purity when compared to the
current cluster purity, it indicates that the absence of the feature has resulted in the loss in purity and hence it is
marked as relevant feature and its relevance increment is calculated based on the proportionate difference in the
cluster purity estimated with and without the feature. If there is increase in the cluster purity when compared
to the current cluster purity, it indicates that the absence of the feature has resulted in the gain in purity and
hence it is marked as irrelevant feature. The outcome of this step is to mark each feature either relevant or not
and to estimate the relevance increment for those relevant features.

In the second step, based on the relevance marking, the weights are adjusted such that weights of the relevant
features are incremented in accordance with the relevance increment calculated in step 1. The weights of those
features marked irrelevant, are made zero and finally the weight vector is normalized to sum up to 1.

In the final step, clusters are formed with the adjusted weights to judge the final solution. The new cluster
purity obtained from clusters formed with updated weights and features is compared with the current cluster
purity. If there is improvement in the cluster purity, the new weights are accepted and the new cluster purity
is taken as the current cluster purity for comparison in the next iteration. The steps are repeated till there is
not much significant improvement in the cluster purity. To change the order in which the features are selected
in the subsequent iterations; features are randomly selected without replacement. This supports in avoiding any
overlap or correlation in the features and to avoid local maxima.

6 e) Formal listing of Proposed Algorithm (SFRE)

Let CPcurr be the cluster purity estimated for the initial cluster solution then stepwise refinement in weights
proceeds as follows:

Step 1: For each feature x, randomly selected without replacement from the feature set F Perform K-means
without the feature x by appropriately normalizing the weight vector Estimate Cluster Purity CP F-x If CP F-x

7 Else x is not relevant

Step 2: Increase the weight of each relevant feature x, W x = W x (1 + Rel x ) For each irrelevant feature x, W
x=0

Normalise the weight vector

Step 3: Perform K-means with adjusted weights Estimate the cluster purity CP new If CP new > CP curr
Accept new weights CP curr = CP new Perform above steps till there is no improvement in the cluster purity.

The final cluster solution thus formed consists of context-aware clusters with final set of relevant features and
weights.

8 IV. Semi Supervised Classification Framework

The However, in the presence of overlapping examples or outliers, the examples in a cluster may not strongly
agree on a particular class and such cluster is not considered as uni-class / decisive cluster and is not labeled
as they are considered as indecisive cluster. The final cluster solution formed in the training phase contains K
clusters with each cluster containing examples belonging to one or more classes. The support of a class in a
cluster S kj , is estimated in terms of true class labels of labeled examples and the predicted (probabilistic) class
labels of unlabeled examples in the k th cluster. In a given cluster, the difference between the support available
for majority class and its competing class reflects the decisiveness of the cluster in concurrence with the majority
class. For this purpose, the authors propose a metric referred to as 'Purity Margin’ which is measured for each
cluster and is compared against purity threshold as detailed below.

9 b) Purity Threshold of the cluster

The "Purity Threshold’, PT, of a cluster, C k , PT k is set as the minimum difference or margin, to be imposed
between two competing classes in a cluster, for it to be considered as the decisive cluster. The purity threshold
is estimated as a pre-defined fraction (?) of the product of cluster concurrence CC k and the number of classes
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in the dataset. In a dataset with q classes, purity threshold PT k , for a cluster C k is calculated as (Equation
6)PTk=7.CCk. g6

Various experiments conducted on the value of ? shows that 0.1 which indicates 10% of support value, is a
good measure to get optimum purity threshold.

10 c¢) Purity Margin of the cluster

The purity margin measures the difference between the maximum support of a class in a cluster and the support
of its immediate competitor class. Larger the margin, more pure the cluster is. Intuitively it is taken that it
should be greater than or equal to the purity threshold.

For a cluster C k , the purity margin PM(C k ) is calculated as (Equation ??) PM(C k ) = CC k -S kp where p
is the competing class. 7 d) Decisive cluster A cluster C k , is considered to be a uni-class or a decisive cluster, if
PM(C k) ? PT k else it is considered as indecisive cluster. The decisive cluster is labeled with the majority class
label i.e., the class label that has maximum support of the examples in the cluster, over all classes in the cluster.
The indecisive cluster is left unlabeled and the details of the cluster including the predicted labels of unlabeled
examples are stored to apply the weighted nearest neighbour classification while classifying any unknown / test
example.

11 e) Hybrid Model for Classification

The authors propose a hybridization of modelbased classification and instance-based classification for classifying
any unknown / test example based on whether it is compatible to decisive cluster or an indecisive cluster.

Let the cluster, C k be the most compatible cluster for unknown example x: ? If the cluster, C k , is decisive
then 7 Assign the cluster label, 77 7?7 77 to the example x.

? If the cluster is indecisive then ? Apply weighted nearest neighbor classification to predict the class label of
x. f) Finding the most compatible cluster for unknown / test example Consider a set of clusters C={C 1 ,C 2
,7,C K } with centroids as c= {c 1 ,¢ 2 ,7c K }. Weighted Euclidean distances are calculated between unknown /
test example, t, and each centroid, c i . The cluster C k , which has the minimum distance among all the clusters
is said to be the most compatible cluster for the example, t. Mathematically, it may be expressed as (Equation

Hybrid model for classification is applied on the value of k as discussed earlier. Hence, the proximity of the
unknown / test example, ’t’, to each class must be measured. The closer the example, ’t’, is to the neighborhood
dominated by particular class label, it is more likely to share the same class label of its neighbors (Cluster
Assumption). Accordingly, all the members of the most compatible cluster C k , are considered as neighbors
with weights assigned in the inverse proportion of their squared distance to the test example. The proximity of
the example, t, to a class label, p, denoted by W tp , is estimated by aggregating the weights of the members
belonging to that particular class. Mathematically it may be expressed as (Equation ??)W tp = 7 1 7?7 (77,77)

where d(t,i) is the Euclidean distance between t and i. This proximity estimate will ensure that the examples
that are far (possibly an outlier) from the test example has less impact on prediction compared to the ones
that are closer by. The unknown / test example is assigned the class label for which the proximity is maximum
(Equation ?70). V.

12 Global Journal of Computer
13 Experiments and Results

14 a) Experimental Setup

The proposed model was implemented on Intel Pentium dual core processor with 3GB of DDR2 667 MHz memory
and coded using .NET framework. SPSS statistic tool is used for performing discriminant analysis.

Experiments were conducted on benchmark datasets obtained from UCI repository and one dataset from SPSS
Inc. to test the performance of the proposed framework. Five binary datasets and six multi-class datasets were
used in the experimentation as shown in table 1. The labels from some For binary class datasets, experiments
were conducted with 100% labeled examples to assess the performance of the framework when all the examples
in the datasets are labeled. However availability of labeled examples upto 100% does not call for semi supervised
learning. The case with 100% labeled examples was demonstrated only to prove that the proposed method can
handle datasets having less labeled examples in the similar way with datasets having 100% labeled maintaining
consistently high performance. The complexity of cluster regularization and estimation of cluster concurrence
and purity margin for development of hybrid classifier are not required for datasets having near 100% labeled
examples and they may be better processed by an appropriate supervised learning algorithm. The performance
of the model for multi-class datasets was analysed starting from 75%.

In both the cases of clustering and classification, discriminant analysis is performed using SPSS statistics
tool on the labeled examples in the datasets to produce the discriminant function(s). For binary class datasets,
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17 CONCLUSION

discriminant coefficients, and for multi-class datasets, potency index values are used to get the initial weights of
the features in the dataset, which are referred to as initial weight vector.

15 b) Results

In case of Semi Supervised Subspace Clustering, the cluster purity was estimated based on the cluster concurrence
and the number of relevant features identified for the benchmark datasets are tabulated in table 2 and From Fig.
?? and Fig. 3, it is observed that the proposed model has consistent performance in term of cluster purity and
not much change is observed with variation in percentage of labeled example. Only in the case of Zoo dataset,
there has been huge decline in the cluster purity when there are few labeled examples. This is attributed to
the fact, that number of examples in zoo dataset are only 101 and 15% of labeled data is very less compared
to number of class labels and may not capture representatives from all the 7 class examples. In case of Semi
Supervised Classification, the training sets of benchmark datasets are used to build the classifier and the accuracy
of the classifier is tested on the test set where the predicted class labels are compared with true class labels of the
test examples. These test results given in terms of accuracy is compared with the proven classifier models. The
models considered for comparison are Weka implementation of C4.5 and an ensemble method, Bagging. Only
one ensemble method is considered for comparison as all the other ensemble methods has similar performance
on most of the datasets (Tan et al., 2006: Table 5.5). The results are tabulated in table 4 and 5 and a sample
comparison graphs for a dataset in binary and multiple class is shown in Fig. 7?7 and Fig. ??7. Experiments on
the benchmark datasets shows that the proposed framework for both clustering and classification have performed
consistently better for building models on the training set with varied range (75% to 15%) of labeled examples.
When compared to other proven techniques, the proposed framework sustained its performance even when the
number of labeled examples is reduced to 15% thus establishing its validity as a semi supervised learning model.
The proposed framework was able to identify the relevant features along with their weightages thus reducing the
information requirement for handling unknown situations may it be classification or clustering.

16 VI
17 Conclusion

In this paper, the authors proposed a framework for context-aware semi supervised learning in terms of both
clustering and classification. The proposed framework is useful to work in the domains where availability of labeled
data is either scarce or difficult/expensive to obtain. The framework with wrapper based feature selection is very
much useful in handling high dimensional datasets. With dimensions reduced, a cluster and classification solution
is defined with lesser number of features. This is very useful in cases where there are time and space constraints.
The proposed framework not only identifies the relevant features but also estimates the importance of a feature
in terms of weights such that cluster solutions are formed as per the intended purpose. Though the framework
has used K-means for the formation of cluster solution, the proposed SFRE algorithm can be wrapped into any
partitional clustering algorithm with equal ease for producing context-aware semi supervised subspace clusters
leveraging a few labeled examples for defining the context.

Since the model uses discriminant analysis for identifying attributes, it is limited to the numerical data.
However, in reality, many of the applications contains mixed data, a combination of numeric and categorical
data. This opens an avenue for further research to extend the model to work with categorical data. W e

'© 2014 Global Journals Inc. (US)
2© 2014 Global Journals Inc. (US)A Framework for Context-Aware Semi Supervised Learning
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17 CONCLUSION

Figure 3:
Figure 4:
1
S.No. Dataset #Instances # Attributes Class
1. Breast 683 9
Cancer
2. Credit 690 15
3. Tonosphere 351 34
4. Pima 768 8
5. Bankloan 700 8
6. Ecoli 336 7
7. Glass 214 9
8. Iris 150 4
9. Wine 178 13
10. Yeast 1484 8
11. 700 101 7
Figure 5: Table 1 :
2
Supervised Subspace clustering -Binary Class
Datasets

S.No Dataset 100% 75 % 50 % 25 % 15 %

1 Bcancer 97.24 96.94 95.76 96.34 96.29

2 Credit 86.52 86.26 85.63 85.77 85.78

3 Tonosphere 90.56 88.23 90.21 88.24 88.56

4 Pima 77.65 76.14 75.86 76.79 77.90

5 Bankloan 80.0

Figure 6: Table 2 :

coO DN NN DN

w w
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77.92
76.91
77.39
73.94



S.No Dataset 75 %

% O U W N

Supervised Subspace clustering -Binary Class

Datasets

Ecoli
Glass
Iris
Wine
Yeast
700

86.24
72.31
96.64
96.61
58.04
84.81
The size of the zoo dataset is 101. As 15% of the examples could not

50 %
82.90
73.72
96.64
97.74
57.90
97.0

cover all the seven classes, the error has increased unnaturally.

Dataset
Breast
Cancer
Credit
Tonosph
ere
Pima
Bank
loan

Dataset
Ecoli
Glass
Iris
Wine
Yeast
Z.00

Ensemble -Bagging

100 75 50
97.56 95.21 95.20
92.02 81.08 80.41
94.01 89.47 88.31
88.93 76.53 74.86
85.23 76.40 74.0

Ensemble -Bagging

75 50

74.66 74.02
61.66 62.71
100 94.11
91.66 91.66
58.71 54.15
82.14 70T

25

70.66
49.15
94.11
88.88
51.87
75

Figure 7: Table 3 :

C4.5

25 15 100
95.09

79.02

86.82
77.20

94.84
86.37

86.84
75.69

80.51
71.80

99.0
84.11

72.0 72.0 90.0

Figure 8: Table 4 :

C4.5
15 75 50
56
49.15 62.71
58.82 97.11
86.11 91.66
45.6

53.57 82.14

Figure 9: Table 5 :

76 75.32
61.66
94.11
91.66

52.9 52.53
78.57

75 50 25

95.24 94.03
83.78 80.47

91.70
80.0

92.20 90.78
71.82 71.50

88.31
70.94

73.93 72.34  72.0

25

70.66
49.15
91.17
88.88
51.44
77T

15

25 %
83.82
72.76
95.30
96.61
56.30
92.0

15

91.61
79.0

84.21
70.39

70.0

54.66 76.5
45.76 60.3
76.47 96.96
83.33 97.14
51.74 55.52
64.28 88.88

15 %
82.81
69.01
95.92
95.44
56.10
65*

Proposed Model

100 75
97.60 97.56
86.52 85.21
91.76 88.0
707 76.83
78.11 74.63

Proposed Model
75 50
75.3
57.72 56.8
96.96 96.5
94.2
54.71 52.5

50

96.68
80.28

86.6
76.27

74.62

25 15
73.969

o7
93

94.291

51

85.18 81.48 72.22
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