

1 A Framework for Context-Aware Semi Supervised Learning

2 Vijaya Geeta Dharmavaram¹ and Shashi Mogalla²

3 ¹ GITAM Institute of Management, GITAM University

4 *Received: 14 December 2013 Accepted: 4 January 2014 Published: 15 January 2014*

5 **Abstract**

6 Supervised learning techniques require large number of labeled examples to build a classifier
7 which is often difficult and expensive to collect. Unsupervised learning techniques, even
8 though do not require labeled examples often form clusters regardless of the intended purpose
9 or context. The authors proposes a semi supervised learning framework that leverages the
10 large number of unlabeled examples in addition to limited number of labeled examples to form
11 clusters as per the context. This framework also supports the development of semi supervised
12 classifier based on the proximity of unknown example to the clusters so formed. The authors
13 proposes a new algorithm namely ?Semi Supervised Relevance Feature Estimation?, (SFRE),
14 to identify the relevant features along with their significance weightages which is integrated
15 with the proposed framework. Experiments conducted on the benchmark datasets from UCI
16 gave results which are very promising and consistent even with lesser number of labeled
17 examples.
18

19 **Index terms**— context â???" aware, semi supervised learning, feature relevance, subspace clustering,
20 discriminant analysis.

22 **1 Introduction**

23 achine learning techniques are being adopted by various applications from different domains to build predictive
24 models. These techniques are broadly classified as supervised learning and unsupervised learning based on the
25 availability of class labels to build the model. Supervised learning methods require labeled data to build a
26 classifier model that predicts the class labels of unknown examples based on the information available in the
27 form of class labels. However, it is usually very expensive and timeconsuming process to collect the labeled data
28 ??Han et al., 2011). Even in domains with abundance of unlabeled data, labeled data are usually scarce and
29 would require some effort to collect such data. However, to build classifier with better generalized accuracy, large
30 number of labeled data is required, more so for datasets with high dimensionality -one of the problems associated
31 with curse of dimensionality (Ramona et. Al.,2012).

32 Accordingly, it is believed that with fixed number of labeled examples, the predictive power of the classifier
33 decreases with the increase in number of dimensions thus requiring larger number of labeled examples for building
34 classifier (Advani, 2011).

35 In unsupervised learning methods such as clustering, unlabeled data, if available in abundance, suffice to
36 extract hidden patterns of knowledge from a given dataset. Traditional clustering algorithms take into account
37 the entire feature space to partition the datasets into clusters such that there is homogeneity among the instances
38 within a cluster. The proximity between the instances in the cluster is measured in terms of distance function.
39 However, with the increase in dimensions, the distance measures employed in the clustering algorithm becomes
40 insignificant and clusters so produced will be meaningless. Hence clustering will full feature space, especially
41 when the number of dimensions are large, may not produce good clusters.

42 Finding the subset of feature space to produce meaningful clusters comes under the purview of subspace
43 clustering. Subspace clustering focuses on finding a subset of features or a smaller set of transformed features
44 with an aim to define cluster-able object spaces ??Han et al., 2011;Sim et al., 2013). In high dimensional

3 RELATED WORK

45 datasets due to exponentially large number of subsets of the feature set, subspace clustering techniques have
46 to eliminate enormous possibilities before identifying the appropriate feature space that contain intrinsically
47 significant clusters ??Han et al., 2011). The basic research in subspace clustering falls into unsupervised learning
48 as it tries to identify clusters based on the distribution of objects in various feature sub-spaces irrespective of
49 the class labels of the objects. The clusters thus formed may be meaningful but may not be relevant to the
50 intended purpose or context. For instance, the census data is described in terms of different features like social,
51 economic, education, health, etc.,. However, it needs to be clustered in groups depending on the purpose of the
52 data analysis. Features corresponding to social backwardness and eco-nomic status is used to identify the welfare
53 schemes to be adopted, whereas features corr-espo-nding to place of living, commutability, etc., are used to decide
54 the location of new amenities centers. In both the cases, features used and their relative significance will vary with
55 the context or purpose thus requiring the clustering algorithm to give proper emphasis to appropriate features
56 in accordance with the context for which the Context-aware-subspace clustering aims to find appropriate feature
57 subspace for a given context represented in the form of class labels of a few labeled examples which are consistent
58 with a large collection of unlabeled examples belonging to the same dataset. To the best of our knowledge, not
59 much research was published in support of feature selection algorithms making use of combination of labeled
60 as well as unlabeled examples. Hence semi supervised feature selection algorithms are needed to be developed
61 for formation of context-aware clusters in domains having only limited examples labeled and the rest being left
62 unlabeled.

63 Semi Supervised Learning which is an integration of supervised and unsupervised learning; makes use of both
64 labeled and unlabeled examples to build a model (Zhu and Goldberg, 2009). Semi supervised learning has two
65 forms namely semi supervised classification and semi supervised clustering. Semi supervised classification uses
66 both labeled and unlabeled data to build the classifier. Using the limited number of labeled data, probable class
67 labels for the unlabeled data is derived which in turn is added to the pool of labeled data thus increasing the
68 number of labeled examples ??Han et al., 2011). The basic assumption in this technique is that the similar data
69 will have same class labels (cluster assumption) ??Chapelle et al., 2006; Wang et al., 2012). Different methods
70 like self training, co-training, generative probabilistic models, graph based and support vector machines are used
71 for semi supervised classification ??Zhu, 2008). In semi supervised clustering, a large set of unlabeled data is
72 accompanied by a small amount of domain knowledge in the form of either class labels or pairwise constraints
73 (must-link and cannot-link) (Grira et al., 2004; Ding et al., 2012). This domain knowledge is used to guide the
74 clustering of unlabeled data so that the intra-cluster similarities are maximized and intercluster similarities are
75 minimized and there exist consistency between the partition and the available knowledge (Gao et al., 2006).

76 Based on the above arguments, authors proposes context-aware semi supervised subspace clustering framework
77 which leverages the domain knowledge in terms of class labels for at least some of the examples (if labeled examples
78 are expensive) in order to estimate the suitability of the features to the intended cluster solution. Proper selection
79 of features and their relative significance is essential in producing context-aware clusters which are probably uni-
80 class clusters. Uni-class clusters contain all or majority of the elements belonging to same class label which
81 is reflected in terms of cluster purity. The clustering framework is further extended to build a classifier which
82 is referred to as semi supervised classifier that requires minimum information for prediction. The authors also
83 proposes 'Semi Supervised Feature Relevance Estimation', (SFRE), algorithm to estimate the relevant features
84 and their relative significance in terms of weights that define appropriate subspaces for different targets/context.
85 The framework was tested on a few benchmark datasets from UCI repository which has given promising results.

86 2 II.

87 3 Related Work

88 Researchers in the past came up with different methods for semi supervised learning. One popular approach is
89 constrained based clustering. Constraint based methods uses pairwise constraints in the form of must-link and
90 cannot-link that guides the clustering process to partition the data in a way that do not violate these constraints
91 (Wagstaff et al., 2001; Basu et al., 2004; Lu and Leen, 2004). Recently Xiong et al., (2014) proposed an iterative
92 based active learning approach to select pairwise constraints for semi supervised clustering. It uses the concept of
93 neighbourhood that contains labeled examples of different clusters based on pairwise constraints. The uncertainty
94 associated with each point's neighbor is resolved through queries. However, repeated clustering is required with
95 growing list of constraints.

96 Another popular approach for semi supervised clustering is distance based techniques which is based on the
97 cluster assumption. Yin and Hu (2011) proposed semi supervised clustering algorithm using adaptive distance
98 metric learning where clustering and distance metric learning are performed simultaneously. The clustering
99 results are used to learn the distance metric and the data is projected into a low dimensional space such that
100 data seperability is maximized. Gao et al., (2006) focused on semi supervised clustering in terms of features
101 rather than examples. It addresses the problem where labeled and unlabeled dataset have different feature set
102 with few common features.

103 In terms of feature selection, Padmaja et al., (2010) proposed a dimensionality reduction approach that
104 estimates the significance of features based on the fractal dimensions and accordingly selects a subset of features
105 that are essential to capture the characteristics of the dataset. The algorithm detects all types of correlations

106 among features to identify the essential features after eliminating the redundant and irrelevant features. Kernel
107 based feature selection was also explored by a few researchers (Wang, 2008; Ramona et al., 2012). Clustering
108 based feature selection for classification was proposed by Song et al., (2013) where features are clustered based
109 on graph theoretic clustering method.

110 Research on feature weighting and ranking concentrated more on supervised learning (Eick et al., 2006; Al-
111 Harbi and Rayward-Smith, 2006; Zhao and Qu, 2009). Most of these research studies initially weigh the features
112 by using some random guess or equal weights. These initial weights are then adjusted accordingly. Such approach
113 may take much time to arrive at the final optimum weights if the initial guess is not appropriate.

114 This paper deals with semi supervised learning methods with wrapper based feature selection method that
115 uses discriminant analysis results to initialize the weights. These weights are adjusted accordingly in a stepwise
116 refinement process using both labeled and unlabeled examples. The proposed framework is used to develop a
117 classifier and a pertinent cluster solution.

118 4 III. Context-aware Semi Supervised

119 Subspace Clustering Framework A dataset may be clustered in multiple ways by appropriately selecting a subset
120 of features /attributes depending on the purpose. Hence to produce clusters conforming to a particular purpose
121 or context, weights must be given to features that depict the importance of the feature. Researchers in the past
122 initially start with a guess/random weights or equal weights to the feature and proceeds further to determine the
123 more acceptable weights. Instead of starting with some arbitrary values, it is proposed to use the information
124 from the available labeled data to initialize the weights which can be adjusted later. Authors thus propose
125 usage of discriminant analysis that finds the relationship between the independent features (predictors) and the
126 dependent feature (class label), to initialize the feature weights.

127 Discriminant analysis is a method that is used to predict categorical value from a given set of independent
128 feature. It assumes the independent features to be normally distributed. The linear equation of Discriminant
129 analysis is (Equation ??) $D = V_1 X_1 + V_2 X_2 + V_3 X_3 + \dots + V_i X_i + a$

130 Where D = Discriminant Score V_i = the discriminant coefficient or weight of i th feature X_i = Value of i
131 th feature a = a constant Discriminant analysis thus identifies the relevant features and its coefficients reflect
132 the relevancy of the feature. The outcome of the discriminant analysis in terms of coefficients is normalized
133 and is used as initial weights for developing binary cluster solution where as development of multi-class cluster
134 solution involves integration of results given through multiple discriminant functions. The proposed framework
135 use potency index as per the approach given in Dharmavaram and Mogalla (2013) for determining the initial
136 weights of various features based on the labeled examples in case of multiclass datasets.

137 5 b) Clustering Algorithm

138 The initial weight vector is used to form the initial cluster solution by using any partitional clustering algorithm.
139 The authors have chosen K-means algorithm for its simplicity and computational efficiency to deal with numerical
140 features. While dealing with datasets described in terms of numerical attributes, generally Kmeans algorithm
141 employs Euclidean distance to compute the distance from each data point to the cluster centroid. Euclidean
142 distance assumes that all the features are equally important while forming the clusters. However, as discussed
143 previously, weights of the feature will determine the relevancy of the feature in forming the desired cluster
144 solution and accordingly Weighted Euclidean Distance metric is used for distance calculation which has the
145 following equation (Equation ??): $dw(x_i, x_j) = \sqrt{\sum_{m=1}^M w_m^2 (x_{im} - x_{jm})^2}$ where w_m is the weight of the m th feature and M is the number of features.

146 where w_m indicates the weight of the m th feature. If the significance of the feature is more, its weight will
147 be more. The weight of an irrelevant feature can be set to zero.

148 For clustering, the number of clusters, K , is taken to be more than the number of classes. Larger values of K
149 results in formation of large number of small uni-class clusters and hence, multiple clusters are associated with a
150 single class. Each of these clusters The cluster concurrence is estimated for each cluster based on the agreement
151 of the members of the cluster towards a particular class label and hence reflects the uni-class property of a cluster.
152 In order to estimate the cluster concurrence of k th cluster, the support, S_{kj} , available for each class, j , in that
153 cluster is aggregated as shown in Equation 3. $S_{kj} = \frac{1}{|C_k|} \sum_{i \in C_k} \sum_{j=1}^M \mathbb{1}_{\{x_{ij} = 1\}}$

154 Where $P_j(n)$ indicates the probability of the example n belonging to the class j $|C_k|$ is the cardinality of
155 the cluster k , i.e., the number of examples that are assigned to cluster C_k . $M = \sum_{j=1}^M S_{kj}$

156 The binary term M acts as a deciding factor to indicate whether the example contributes to the support of
157 class j or not. It may be noted that each example, whether labeled or unlabeled, contributes to the support of
158 only one class: the unlabeled example support the class with the maximum probability, while the labeled example
159 naturally support one and only one true class label.

160 $P_j(n)$ is calculated as per the equation given below (Equation 4) where $d(i,n)$ is the weighted Euclidean
161 distance between i and n . $P_j(n) = \frac{1}{M} \sum_{i=1}^M \frac{1}{\sum_{j=1}^M w_j^2 (x_{ij} - x_{nj})^2}$

162 The predicted label of an unlabeled example, t , is the label for which the probability is maximum.

9 B) PURITY THRESHOLD OF THE CLUSTER

166 The cluster concurrence of k th cluster is estimated as: $CC_k = \max_j \{S_{kj}\}$
167 Overall cluster purity of the cluster solution is taken as the weighted sum of individual cluster concurrences
168 and is given below (Equation 5) The new algorithm, SFRE is guided by cluster purity estimated in terms of
169 labeled as well as unlabeled examples belonging to various feature subspaces. The algorithm accepts the dataset
170 D that includes L and U , initial cluster purity and the outcome of discriminant analysis as initial weights for
171 formation of initial weight vector as input. The output of the algorithm is accurate relevance estimates of the
172 feature set referred to as weight vector that defines the feature subspace for the given purpose indicated through
173 class labels. $CP = ? | ?? | ?? | ?? | ?? | ?? | ?? | ?? = 15$

174 The cluster purity obtained by the initial weights is assigned to current cluster purity as initialization step,
175 after which the algorithm executes the following three steps iteratively: (D D D D) Year C

176 Step 1: Finding Relevant Features Step 2: Updating Weights Step 3: Check for convergence In the first step,
177 each feature in the feature set is checked for its relevance. Taking one feature at a time, clusters are formed
178 without that feature and cluster purity is estimated. If there is a decrease in cluster purity when compared to the
179 current cluster purity, it indicates that the absence of the feature has resulted in the loss in purity and hence it is
180 marked as relevant feature and its relevance increment is calculated based on the proportionate difference in the
181 cluster purity estimated with and without the feature. If there is increase in the cluster purity when compared
182 to the current cluster purity, it indicates that the absence of the feature has resulted in the gain in purity and
183 hence it is marked as irrelevant feature. The outcome of this step is to mark each feature either relevant or not
184 and to estimate the relevance increment for those relevant features.

185 In the second step, based on the relevance marking, the weights are adjusted such that weights of the relevant
186 features are incremented in accordance with the relevance increment calculated in step 1. The weights of those
187 features marked irrelevant, are made zero and finally the weight vector is normalized to sum up to 1.

188 In the final step, clusters are formed with the adjusted weights to judge the final solution. The new cluster
189 purity obtained from clusters formed with updated weights and features is compared with the current cluster
190 purity. If there is improvement in the cluster purity, the new weights are accepted and the new cluster purity
191 is taken as the current cluster purity for comparison in the next iteration. The steps are repeated till there is
192 not much significant improvement in the cluster purity. To change the order in which the features are selected
193 in the subsequent iterations; features are randomly selected without replacement. This supports in avoiding any
194 overlap or correlation in the features and to avoid local maxima.

195 6 e) Formal listing of Proposed Algorithm (SFRE)

196 Let CP_{curr} be the cluster purity estimated for the initial cluster solution then stepwise refinement in weights
197 proceeds as follows:

198 Step 1: For each feature x , randomly selected without replacement from the feature set F Perform K-means
199 without the feature x by appropriately normalizing the weight vector Estimate Cluster Purity CP_{F-x} If CP_{F-x}
200 $< CP_{curr}$ then x is relevant calculate relevance increment, $Rel_x = ????????????? - ????????????? ???? ?????????$

201 7 Else x is not relevant

202 Step 2: Increase the weight of each relevant feature x , $W_x = W_x (1 + Rel_x)$ For each irrelevant feature x , $W_x = 0$

204 Normalise the weight vector

205 Step 3: Perform K-means with adjusted weights Estimate the cluster purity CP_{new} If $CP_{new} > CP_{curr}$
206 Accept new weights $CP_{curr} = CP_{new}$ Perform above steps till there is no improvement in the cluster purity.

207 The final cluster solution thus formed consists of context-aware clusters with final set of relevant features and
208 weights.

209 8 IV. Semi Supervised Classification Framework

210 The However, in the presence of overlapping examples or outliers, the examples in a cluster may not strongly
211 agree on a particular class and such cluster is not considered as uni-class / decisive cluster and is not labeled
212 as they are considered as indecisive cluster. The final cluster solution formed in the training phase contains K
213 clusters with each cluster containing examples belonging to one or more classes. The support of a class in a
214 cluster S_{kj} , is estimated in terms of true class labels of labeled examples and the predicted (probabilistic) class
215 labels of unlabeled examples in the k th cluster. In a given cluster, the difference between the support available
216 for majority class and its competing class reflects the decisiveness of the cluster in concurrence with the majority
217 class. For this purpose, the authors propose a metric referred to as 'Purity Margin' which is measured for each
218 cluster and is compared against purity threshold as detailed below.

219 9 b) Purity Threshold of the cluster

220 The 'Purity Threshold', PT , of a cluster, C_k , PT_k is set as the minimum difference or margin, to be imposed
221 between two competing classes in a cluster, for it to be considered as the decisive cluster. The purity threshold
222 is estimated as a pre-defined fraction (?) of the product of cluster concurrence CC_k and the number of classes

223 in the dataset. In a dataset with q classes, purity threshold PT_k , for a cluster C_k is calculated as (Equation
224 6) $PT_k = \frac{CC_k}{q} \cdot q$
225 Various experiments conducted on the value of $?$ shows that 0.1 which indicates 10% of support value, is a
226 good measure to get optimum purity threshold.

227 10 c) Purity Margin of the cluster

228 The purity margin measures the difference between the maximum support of a class in a cluster and the support
229 of its immediate competitor class. Larger the margin, more pure the cluster is. Intuitively it is taken that it
230 should be greater than or equal to the purity threshold.

231 For a cluster C_k , the purity margin $PM(C_k)$ is calculated as (Equation ??) $PM(C_k) = CC_k - S_k p$ where p
232 is the competing class. 7 d) Decisive cluster A cluster C_k , is considered to be a uni-class or a decisive cluster, if
233 $PM(C_k) \geq PT_k$ else it is considered as indecisive cluster. The decisive cluster is labeled with the majority class
234 label i.e., the class label that has maximum support of the examples in the cluster, over all classes in the cluster.
235 The indecisive cluster is left unlabeled and the details of the cluster including the predicted labels of unlabeled
236 examples are stored to apply the weighted nearest neighbour classification while classifying any unknown / test
237 example.

238 11 e) Hybrid Model for Classification

239 The authors propose a hybridization of modelbased classification and instance-based classification for classifying
240 any unknown / test example based on whether it is compatible to decisive cluster or an indecisive cluster.

241 Let the cluster, C_k be the most compatible cluster for unknown example x : ? If the cluster, C_k , is decisive
242 then ? Assign the cluster label, ?? ?? ?? to the example x .

243 ? If the cluster is indecisive then ? Apply weighted nearest neighbor classification to predict the class label of
244 x. f) Finding the most compatible cluster for unknown / test example Consider a set of clusters $C = \{C_1, C_2, \dots, C_K\}$ with centroids as $c = \{c_1, c_2, \dots, c_K\}$. Weighted Euclidean distances are calculated between unknown /
245 test example, t , and each centroid, c_i . The cluster C_k , which has the minimum distance among all the clusters
246 is said to be the most compatible cluster for the example, t . Mathematically, it may be expressed as (Equation
247 ??) $k = \arg \min_i d(t, c_i)$ 8

248 Hybrid model for classification is applied on the value of k as discussed earlier. Hence, the proximity of the
249 unknown / test example, ' t ', to each class must be measured. The closer the example, ' t ', is to the neighborhood
250 dominated by particular class label, it is more likely to share the same class label of its neighbors (Cluster
251 Assumption). Accordingly, all the members of the most compatible cluster C_k , are considered as neighbors
252 with weights assigned in the inverse proportion of their squared distance to the test example. The proximity of
253 the example, t , to a class label, p , denoted by W_{tp} , is estimated by aggregating the weights of the members
254 belonging to that particular class. Mathematically it may be expressed as (Equation ??) $W_{tp} = \frac{1}{\sum_i w_{ti}}$ 9

255 where $d(t, i)$ is the Euclidean distance between t and i . This proximity estimate will ensure that the examples
256 that are far (possibly an outlier) from the test example has less impact on prediction compared to the ones
257 that are closer by. The unknown / test example is assigned the class label for which the proximity is maximum
258 (Equation ??). V.

261 12 Global Journal of Computer

262 13 Experiments and Results

263 14 a) Experimental Setup

264 The proposed model was implemented on Intel Pentium dual core processor with 3GB of DDR2 667 MHz memory
265 and coded using .NET framework. SPSS statistic tool is used for performing discriminant analysis.

266 Experiments were conducted on benchmark datasets obtained from UCI repository and one dataset from SPSS
267 Inc. to test the performance of the proposed framework. Five binary datasets and six multi-class datasets were
268 used in the experimentation as shown in table 1. The labels from some For binary class datasets, experiments
269 were conducted with 100% labeled examples to assess the performance of the framework when all the examples
270 in the datasets are labeled. However availability of labeled examples upto 100% does not call for semi supervised
271 learning. The case with 100% labeled examples was demonstrated only to prove that the proposed method can
272 handle datasets having less labeled examples in the similar way with datasets having 100% labeled maintaining
273 consistently high performance. The complexity of cluster regularization and estimation of cluster concurrence
274 and purity margin for development of hybrid classifier are not required for datasets having near 100% labeled
275 examples and they may be better processed by an appropriate supervised learning algorithm. The performance
276 of the model for multi-class datasets was analysed starting from 75%.

277 In both the cases of clustering and classification, discriminant analysis is performed using SPSS statistics
278 tool on the labeled examples in the datasets to produce the discriminant function(s). For binary class datasets,

279 discriminant coefficients, and for multi-class datasets, potency index values are used to get the initial weights of
280 the features in the dataset, which are referred to as initial weight vector.

281 15 b) Results

282 In case of Semi Supervised Subspace Clustering, the cluster purity was estimated based on the cluster concurrence
283 and the number of relevant features identified for the benchmark datasets are tabulated in table 2 and From Fig.
284 ?? and Fig. 3, it is observed that the proposed model has consistent performance in term of cluster purity and
285 not much change is observed with variation in percentage of labeled example. Only in the case of Zoo dataset,
286 there has been huge decline in the cluster purity when there are few labeled examples. This is attributed to
287 the fact, that number of examples in zoo dataset are only 101 and 15% of labeled data is very less compared
288 to number of class labels and may not capture representatives from all the 7 class examples. In case of Semi
289 Supervised Classification, the training sets of benchmark datasets are used to build the classifier and the accuracy
290 of the classifier is tested on the test set where the predicted class labels are compared with true class labels of the
291 test examples. These test results given in terms of accuracy is compared with the proven classifier models. The
292 models considered for comparison are Weka implementation of C4.5 and an ensemble method, Bagging. Only
293 one ensemble method is considered for comparison as all the other ensemble methods has similar performance
294 on most of the datasets (Tan et al., 2006: Table 5.5). The results are tabulated in table 4 and 5 and a sample
295 comparison graphs for a dataset in binary and multiple class is shown in Fig. ?? and Fig. ???. Experiments on
296 the benchmark datasets shows that the proposed framework for both clustering and classification have performed
297 consistently better for building models on the training set with varied range (75% to 15%) of labeled examples.
298 When compared to other proven techniques, the proposed framework sustained its performance even when the
299 number of labeled examples is reduced to 15% thus establishing its validity as a semi supervised learning model.
300 The proposed framework was able to identify the relevant features along with their weightages thus reducing the
301 information requirement for handling unknown situations may it be classification or clustering.

302 16 VI.

303 17 Conclusion

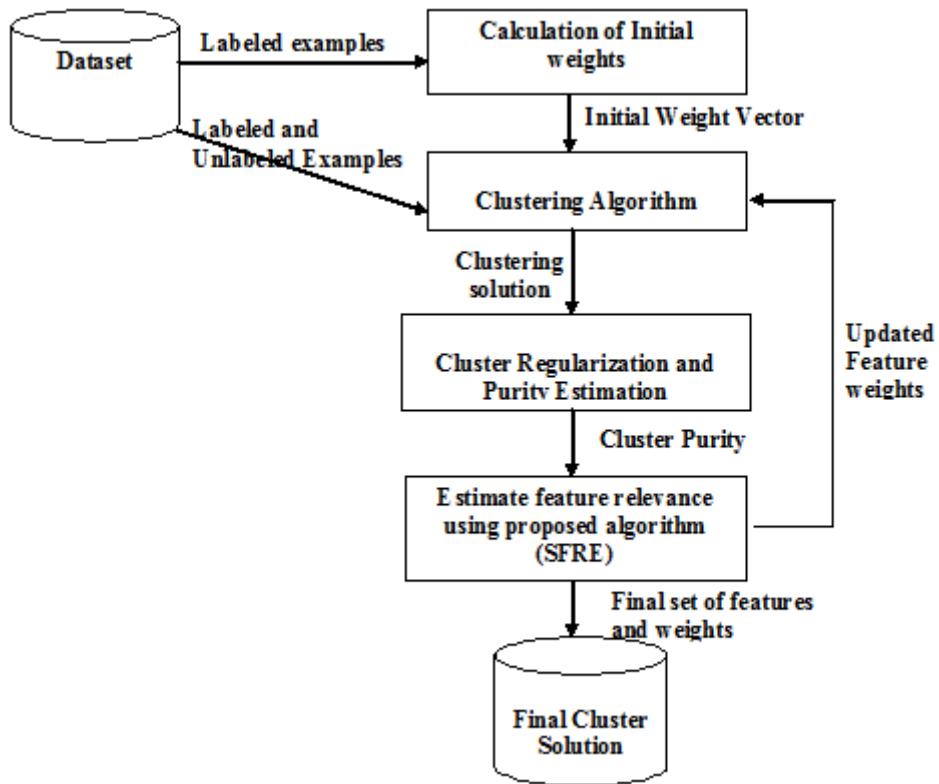
304 In this paper, the authors proposed a framework for context-aware semi supervised learning in terms of both
305 clustering and classification. The proposed framework is useful to work in the domains where availability of labeled
306 data is either scarce or difficult/expensive to obtain. The framework with wrapper based feature selection is very
307 much useful in handling high dimensional datasets. With dimensions reduced, a cluster and classification solution
308 is defined with lesser number of features. This is very useful in cases where there are time and space constraints.
309 The proposed framework not only identifies the relevant features but also estimates the importance of a feature
310 in terms of weights such that cluster solutions are formed as per the intended purpose. Though the framework
311 has used K-means for the formation of cluster solution, the proposed SFRE algorithm can be wrapped into any
312 partitional clustering algorithm with equal ease for producing context-aware semi supervised subspace clusters
313 leveraging a few labeled examples for defining the context.

314 Since the model uses discriminant analysis for identifying attributes, it is limited to the numerical data.
315 However, in reality, many of the applications contains mixed data, a combination of numeric and categorical
316 data. This opens an avenue for further research to extend the model to work with categorical data. ^{1 2}

¹© 2014 Global Journals Inc. (US)

²© 2014 Global Journals Inc. (US)A Framework for Context-Aware Semi Supervised Learning

Figure 1:



1

Figure 2: Figure 1 :

Figure 3:

Figure 4:

1

S.No.	Dataset	#Instances	# Attributes	Class
1.	Breast Cancer	683	9	2
2.	Credit	690	15	2
3.	Ionosphere	351	34	2
4.	Pima	768	8	2
5.	Bankloan	700	8	2
6.	Ecoli	336	7	8
7.	Glass	214	9	10
8.	Iris	150	4	3
9.	Wine	178	13	3
10.	Yeast	1484	8	10
11.	Zoo	101	7	7

Figure 5: Table 1 :

2

		Supervised Subspace clustering -Binary Class						
		Datasets						
S.No	Dataset	100%	75 %	50 %	25 %	15 %		
1	Bcancer	97.24	96.94	95.76	96.34	96.29		
2	Credit	86.52	86.26	85.63	85.77	85.78		
3	Ionosphere	90.56	88.23	90.21	88.24	88.56		
4	Pima	77.65	76.14	75.86	76.79	77.90		
5	Bankloan	80.0					77.92	
							76.91	
							77.39	
							73.94	

Figure 6: Table 2 :

3

Supervised Subspace clustering -Binary Class
Datasets

S.No	Dataset	75 %	50 %	25 %	15 %
1	Ecoli	86.24	82.90	83.82	82.81
2	Glass	72.31	73.72	72.76	69.01
3	Iris	96.64	96.64	95.30	95.92
4	Wine	96.61	97.74	96.61	95.44
5	Yeast	58.04	57.90	56.30	56.10
6	Zoo	84.81	97.0	92.0	65*

*The size of the zoo dataset is 101. As 15% of the examples could not cover all the seven classes, the error has increased unnaturally.

Figure 7: Table 3 :

4

Dataset	Ensemble -Bagging					C4.5				Proposed Model			
	100	75	50	25	15	100	75	50	25	15	100	75	50
Breast													
Cancer	97.56	95.21	95.20	95.09	86.82	94.84	95.24	94.03	91.70	91.61	97.60	97.56	96.68
Credit	92.02	81.08	80.41	79.02	77.20	86.37	83.78	80.47	80.0	79.0	86.52	85.21	80.28
Ionosph													
ere	94.01	89.47	88.31	86.84	80.51	99.0	92.20	90.78	88.31	84.21	91.76	88.0	86.6
Pima	88.93	76.53	74.86	75.69	71.80	84.11	71.82	71.50	70.94	70.39	77.77	76.83	76.27
Bank													
loan	85.23	76.40	74.0	72.0	72.0	90.0	73.93	72.34	72.0	70.0	78.11	74.63	74.62

Figure 8: Table 4 :

5

Dataset	Ensemble -Bagging				C4.5				Proposed Model			
	75	50	25	15	75	50	25	15	75	50	25	15
Ecoli	74.66	74.02	70.66	56	76	75.32	70.66	54.66	76.5	75.3	73.969	
Glass	61.66	62.71	49.15	49.15	62.71	61.66	49.15	45.76	60.3	57.72	56.8	57
Iris	100	94.11	94.11	58.82	97.11	94.11	91.17	76.47	96.96	96.96	96.5	93
Wine	91.66	91.66	88.88	86.11	91.66	91.66	88.88	83.33	97.14	94.2	94.291	
Yeast	58.71	54.15	51.87	45.6	52.9	52.53	51.44	51.74	55.52	54.71	52.5	51
Zoo	82.14	77.77	75	53.57	82.14	78.57	77.77	64.28	88.88	85.18	81.48	72.22

Figure 9: Table 5 :

317 [Chapelle et al.] 20-6) *Semisupervised learning*, O Chapelle , B Schölkopf , A Zien . Cambridge, MA: MIT press.

318 [Song et al. ()] 'A fast clustering-based feature subset selection algorithm for high dimensional data. Knowledge
319 and Data Engineering'. Q Song , J Ni , G Wang . *IEEE Transactions on* 2013. 25 (1) p. .

320 [Zhao and Qu (2009)] 'A Novel Supervised Clustering Based on the Feature Classification Weight'. Q Zhao , H
321 Qu . *Computational Intelligence and Natural Computing, 2009. CINC'09. International Conference on*, 2009.
322 June. IEEE. 1 p. .

323 [Basu et al. (2004)] 'A probabilistic framework for semi-supervised clustering'. S Basu , M Bilenko , R J Mooney
324 . *Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining*,
325 (the tenth ACM SIGKDD international conference on Knowledge discovery and data mining) 2004. August.
326 ACM. p. .

327 [Sim et al. ()] *A survey on enhanced subspace clustering. Data mining and knowledge discovery*, K Sim , V
328 Gopalkrishnan , A Zimek , G Cong . 2013. 26 p. .

329 [Xiong et al. ()] 'Active learning of constraints for semi-supervised clustering. Knowledge and Data Engineering'.
330 S Xiong , J Azimi , X Fern . *IEEE Transaction on* 2014. 26 (1) p. .

331 [Al-Harbi and Smith ()] 'Adapting k-means for supervised clustering'. S H Al-Harbi , V J Smith . *Applied
332 Intelligence* 2006. 24 (3) p. .

333 [Wagstaff et al. (2001)] 'Constrained k-means clustering with background knowledge'. K Wagstaff , C Cardie , S
334 Rogers , S Schrödl . *ICML*, 2001. June. 1 p. .

335 [Han et al. ()] *Data mining: concepts and techniques*, J Han , M Kamber , J Pei . 2006. New Delhi: Morgan
336 kaufmann.

337 [Yin and Hu ()] *Distance metric learning guided adaptive subspace semi-supervised clustering. Frontiers of
338 computer science in china*, X Yin , E Hu . 2011. 5 p. .

339 [Wang ()] 'Feature selection with kernel class separability. Pattern Analysis and Machine Intelligence'. L Wang
340 . *IEEE Transactions on* 2008. 30 (9) p. .

341 [Padmaja et al. ()] 'Intrinsic Dimensionality Based Conceptual Clustering'. P Padmaja , M Shashi , K N K Teja
342 . *International Journal of Advanced Computer Engineering* 2010. 3 (1) p. .

343 [Pang-Ning et al. ()] *Introduction to Data Mining*, Tan Pang-Ning , Steinbach Michael , Kumar Vipin . 2006.
344 New Delhi: Pearson Education.

345 [Zhu and Goldberg ()] *Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and
346 machine learning*, X Zhu , A B Goldberg . 2009. 3 p. .

347 [Advani ()] *Learning from High Dimensional fMRI Data using Random Projections*, M Advani . <http://cs229.stanford.edu/> 2011.

348

349 [Ramona et al. ()] 'Multiclass feature selection with kernel Gram-matrix based criteria. Neural Networks and
350 Learning Systems'. M Ramona , G Richard , B David . *IEEE Transactions on* 2012. 23 (10) p. .

351 [Wang et al. ()] 'New semisupervised classification method based on modified cluster assumption. Neural
352 Networks and Learning Systems'. Y Wang , S Chen , Z H Zhou . *IEEE Transactions on* 2012. 23 (5) p.
353 .

354 [Ding et al. ()] 'Research of semi-supervised spectral clustering based on constraints expansion'. S Ding , B Qi ,
355 H Jia , H Zhu , L Zhang . *Neural Computing and Applications* 2012. p. .

356 [Dharmavaram and Mogalla ()] *Semi Supervised Weighted K-Means Clustering for Multi Class Data Classifica-
357 tion*, V G Dharmavaram , S Mogalla . 2013. IJCAIT p. .

358 [Gao et al. (2006)] 'Semi-Supervised Clustering with Partial Background Information'. J Gao , P N Tan , H
359 Cheng . *SDM*, 2006. April.

360 [Zhu ()] *Semi-supervised learning literature survey*, X Zhu . 2006. 2 p. 3. Computer Science, University of
361 Wisconsin Madison

362 [Lu and Leen ()] *Semi-supervised learning with penalized probabilistic clustering. I-n Advances in neural infor-
363 mation processing systems*, Z Lu , T K Leen . 2004. p. .

364 [Grira et al. ()] *Unsupervised and semi-supervised clustering: a brief survey. A review of machine learning tech-
365 niques for processing multimedia content*, N Grira , M Crucianu , N Boujemaa . 2004. (Report of the MUSCLE
366 European Network of Excellence (FP6))

367 [Eick et al. ()] *Using clustering to learn distance functions for supervised similarity assessment. Engineering
368 Applications of Artificial Intelligence*, C F Eick , A Rouhana , A Bagherjeiran , R Vilalta . 2006. 19 p. .