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Abstract7

This paper presents an approach to classify remote sensed data using a hybrid8

classifier.Random forest, Support Vector machines and boosting methods are used to build the9

said hybrid classifier. The central idea is to subdivide the input data set into smaller subsets10

and classify individual subsets. The individual subset classification is done using support11

vector machines classifier. Boosting is used at each subset to evaluate the learning by using a12

weight factor for every data item in the data set. The weight factor is updated based on13

classification accuracy. Later the final outcome for the complete data set is computed by14

implementing a majority voting mechanism to the individual subset classification outcomes.15

16

Index terms— boosting, classification, data mining, random forest, remote sensed data, support vector17
machine.18

1 Introduction19

any organizations maintain huge data repositories which store data collected from various sources in different20
formats. The said data repositories are also known as data warehouses. One of the prominent sources of data is21
remote sensed data collected via satellites or geographical information systems software’s [1].22

The data thus collected can be of use in various applications including and not restricted to land use [2] [3],23
species distribution modeling [4] [5] [6] [7], mineral resource identification [8], traffic analysis [10], network analysis24
[9] and environmental monitoring systems [11] [12]. Data mining is used to extract information from the said data25
repositories. The information thus mined can help various stakeholders in an organization in taking strategic26
decisions. Data can be mined from the data repositories using various methodologies like anomaly detection,27
supervised classification, clustering, association rule learning, regression, characterization and summarization and28
sequential pattern mining. In this paper we shall be applying a hybrid classification technique to classify plant29
seed remote sensed data.30

A lot of research has been undertaken to classify plant functional groups, fish species, bird species etc... [7][13]31
[14].The classification of various species shall help in conserving the ecosystem by facilitating ins predicting of32
endangered species distribution [15]. It can also help in identifying various resources like minerals, water resources33
and economically useful trees. Various technologies in this regard have been developed. Machine learning34
methods, image processing algorithms, geographical information systems tools etc..have added to the development35
of numerous systems that can contribute to the study of spatial data and can mine relevant information which36
can be of use in various applications. The systems developed can help constructing classification models that in37
turn facilitate in weather forecasting, crop yield classification, mineral resource identification, soil composition38
analysis and also locating water bodies near to the agricultural land.39

Classification is the process wherein a class label is assigned to unlabeled data vectors. It can be categorized40
into supervised and un-supervised classification which is also known as clustering. In supervised classification41
learning is done with the help of supervisor ie. learning through example. In this method the set of possible42
class labels is known apriori to the end user. Supervised classification can be subdivided into non-parametric43
and parametric classification. Parametric classifier method is dependent on the probability distribution of each44
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2 II.

class. ??on without supervisor ie. learning from observations. In this method set of possible classes is not known45
to the end user. After classification one can try to assign a name to that class. Examples of un-supervised46
classification methods are Adaptive resonance theory(ART) 1, ART 2,ART 3, Iterative Self-Organizing Data47
Analysis Method, K-Means, Bootstrapping Local, Fuzzy C-Means, and Genetic Algorithm [17]. In this paper48
we shall discuss about a hybrid classification method. The said hybrid method will make use of support vector49
machine(SVM) classification, random forest and boosting methods. Later its performance is evaluated against50
traditional individual random forest classifiers and support vector machines.51

A powerful statistical tool used to perform supervised classification is Support Vector machines. Herein the52
data vectors are represented in a feature space. Later a geometric hyperplane is constructed in the feature space53
which divides the space comprising of data vectors into two regions such that the data items get classified under54
two different class labels corresponding to the two different regions. It helps in solving equally two class and55
multi class classification problem. The aim of the said hyper plane is to maximize its distance from the adjoining56
data points in the two regions. Moreover, SVM’s do not have an additional overhead of feature extraction since57
it is part of its own architecture. Latest research have proved that SVM classifiers provide better classification58
results when one uses spatial data sets as compared to other classification algorithms like Bayesian method,59
neural networks and k-nearest neighbors classification methods [18] [19].60

In Random forest(RF) classification method many classifiers are generated from smaller subsets of the input61
data and later their individual results are aggregated based on a voting mechanism to generate the desired62
output of the input data set. This ensemble learning strategy has recently become very popular. Before RF,63
Boosting and Bagging were the only two ensemble learning methods used. RF can be applied for supervised64
classification, unsupervised learning and regression. RF has been extensively applied in various areas including65
modern drug discovery, network intrusion detection, land cover analysis, credit rating analysis, remote sensing66
and gene microarrays data analysis etc... ??20][21].67

Other popular ensemble classification methods are bagging and boosting. Herein the complex data set is68
divided into smaller feature subsets. An ensemble of classifiers is formed with the classifiers being used to classify69
data items in each feature subset. The said feature subsets are regrouped together iteratively depending on70
penalty factor also known as the weight factor applied based on the degree of misclassification in the feature71
subsets. The class label of data items in the complete data set is computed by aggregating the individual72
classification outcomes at each feature subset [22] [23].73

A hybrid method is being proposed in this paper which makes use of ensemble learning from RF classification74
and boosting algorithm and SVM classification method. The processed seed plant data is divided randomly75
into feature subsets. SVM classification method is used to derive the output at each feature subset. Boosting76
learning method is applied so as to boost the classification adeptness at every feature subset. Later majority77
voting mechanism is applied to arrive at the final classification result of the original complete data set.78

Our next section describes Background Knowledge about Random Forest classifier, SVM and Boosting. In79
section 3 proposed methodology has been discussed. Performance analysis is discussed in Section 4. Section 580
concludes this work and later acknowledgement is given to the data source followed by references.81

2 II.82

Background Knowledge a) Overview of SVM Classifier Support vector machine (SVM) is a statistical tool used83
in various data mining methodologies like classification and regression analysis. The data can be present either84
in the form of a multi class or two class problem. In this paper we shall be dealing with a two class problem85
wherein the seed plant data sets need to be categorized under two class labels one having data sets belonging to86
North America and the other having data sets belonging to South America. It has been applied in various areas87
like species distribution, locating mineral prospective areas etc..It has become popular for solving problems in88
regression and classification, consists of statistical learning theory based heuristic algorithms. The advantage with89
SVM is that the classification model can be built using minimal number of attributes which is not the case with90
most other classification methods [24]. In this paper we shall be proposing a hybrid classification methodology to91
classify seed plant data which would lead to improving the efficiency and accuracy of the traditional classification92
approach.93

The seed plant data sets used in the paper have data sets with known class labels. A classification model94
is constructed using the data sets which can be authenticated against a test data set and can later be used to95
predict class labels of unlabeled data sets. Since class labels of data sets are known apriori this approach is96
categorized as supervised classification. In unsupervised classification method also known as clustering the class97
label details is not known in advance. Each data vector in the data set used for classification comprises of unique98
attributes which is used to build the classification model [25] [19]. The SVM model can be SVM is represented by99
a separating hyper plane f (x) that geometrically bisects the data space thus dividing it into two diverse regions100
thus resulting in classification of the input data space into two categories.101

Figure ?? : The Hyperplane The function f(x) denotes the hyperplane that separates the two regions and102
facilitates in classification of the data set. The two regions geometrically created by the hyperplane correspond103
to the two categories of data under two class labels. A data point x n belongs to either of the region depending104
on the value of f(x n ). If f(x n ) > 0 it belongs to one region and if f(x n ) < 0 it belongs to another region.105
There are many such hyperplanes which can split the data into two regions. But SVM ensures that it selects106
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the hyperplane that is at a maximum distance from the nearest data points in the two regions. There are only107
few hyperplanes that shall satisfy this criterion. By ensuring this condition SVM provides accurate classification108
results [27].109

SVM’s can be represented mathematically as well. Assume that the input data consists of n data vectors where110
each data vector is represented by x i ? R n , where i (=1, 2, ?.., n). Let the class label that needs to be assigned111
to the data vectors to implement supervised classification be denoted by y i , which is +1 for one category of112
data vectors and -1 for the other category of data vectors. The data set can be geometrically separated by a113
hyperplane. Since the hyperplane is represented by a line it can also be mathematically represented by [8][3]114
[28]:mx i + b >= +1 mx i + b <= -1(1)115

The hyperplane can also be represented mathematically by [31][32] [33]:f(x)= sgn(mx+ b) = sgn((? ? n i=1 i116
y i x i ). x + b) (2)117

where sgn() is known as a sign function, which is mathematically represented by the following equa-118
tion:sgn(x)=? 1 if x > 0 0 if x = 0 ?1 if x < 0 (3)119

The data vectors are said to be optimally divided by the hyperplane if the distance amid the adjoining data120
vectors in the two different regions from the given hyperplane is maximum.121

This concept can be illustrated geometrically as in Figure 2, where the distance between the adjoining data122
points close to the hyperplane and the hyperplane is displayed [29][30] [28].123

This hyperplane which has maximum distance d from adjoining points is computed to implement the said124
classification. This SVM can be represented as a primal formulation given by the equation [8][5] [31]:h(m)= 1 2125
||m|| 2 + Training error (5) subject to y i (mx i + b) >=1,?i126

The idea is to increase the margin and reduce the training error. The data sample records in the training data127
set belong to input set. Each of the data vectors have precise attributes based on which the classification model128
is built. These set of attributes are said to form a feature space. The kernel function bridges the gap between the129
feature space and the input space and enables to carry out classification on input space rather than complicated130
feature space. [29].131

In this paper we have used Gaussian radial basis functions (RBF). SVM’s make use of the radial basis kernel132
function to be able to work at the simpler input space level. The RBF kernel used is represented mathematically133
by [3][29]: can be solved using various methods. One method is to move the data vectors to a different space134
thereby making the problem linear. The other method is to split the multi class problem into numerous two class135
problems and later with a voting mechanism combine the solutions of individual two class problems to get the136
solution of the original multi class problem. [8].K(x1,x2)=exp( |x 1 ?x 2 | 2 2? 2 )(6)137

The steps followed while using SVM in classifying data are mentioned in the below algorithm [16]:138
- ??———————————————— ??———————————————— ??———————————139

—————– In RF classification method the input data set is first subdivided into two subsets, one containing140
two thirds of the data points and the other containing the remaining one third. Classification tree models141
are constructed using the subset comprising of two thirds of data points The subset which contains one third142
data of data points which are not used at any given point of time to construct classification trees and are used143
for validation are called out of bag(OOB) data samples of the trees. There is no truncation applied at every144
classification tree. Hence every classification tree used in RF classification method is maximal in nature. Later145
RF classification method follows a majority voting process wherein classification output of every classification146
tree casts a vote to decide the final outcome of the ensemble classifier ie.. assigning a class label to a data item x147
[21]. The set of features are used to create a classification tree model at every randomly chosen subset [37]. This148
set of features shall remain constant throughout the growing of random forest.149

In RF, the test set is used to authenticate the classification results and also used for predicting the class150
labels for unlabeled data after the classification model is built. It also helps in cross validation of results among151
different classification results provided by various classification trees in the ensemble. To perform the said cross152
validation the out of bag(OOB) samples are used.. The individual classification tree outcomes are aggregated153
with a majority vote and the cumulative result of the whole ensemble shall be more accurate and prone to lesser154
classification error than individual classification tree results [26].155

Every classification tree in the random forest ensemble is formed using the randomly selected two thirds of156
input variables, hence there is little connection between different trees in the forest. One can also restrict the157
number of variables that split a parent node in a classification tree resulting in the reduction of connection158
between classification trees. The Random forest classification method works better even for larger data sets.159
This is not the case with other ensemble methods [1] [2]. In this paper we shall be using the both boosting160
and random forest ensemble classification methods along with support vector machines to give a more accurate161
classification output. This hybrid method shall be more robust to noise as compared to individual classification162
method.163

RF classification method works with both discreet and continuous variables which is not the case with other164
statistical classification modeling methods. Furthermore, there is no limit on the total number of classification165
trees that are generated in the ensemble process and the total number of variable or data samples(generally two166
thirds are used) in every random subset used to build the classification trees [36].167

RF rates variables based on the classification accuracy of the said variable relative to other variables in the168
data set. This rank is also known as importance index. It reflects the relative importance of every variable in169
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the process of classification. The importance index of a variable is calculated by averaging the importance of170
the variable across classification trees generated in the ensemble. The more the value of this importance index,171
the greater is a variables importance for classification. Another parameter obtained by dividing the variable’s172
importance index by standard error is called z-score. Both importance index as well as z-score play a significant173
role in ensuring the efficiency of the classification process [25][36][39] [38].174

The importance of a variable can also be assessed by using two parameters, Gini Index decrease and OOB175
error estimation. Herein relative importance of variables are calculated which is beneficial in studies wherein the176
numbers of attributes are very high and thus leading to relative importance gaining prominence [40].177
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where k(C i ,X) |X| is the is the probability that a selected case belongsto class C i .180
RF method provides precise results with respect to variation and bias [39].. The performance of the RF181

classification method is better compared to other classifiers like support vector machines, Neural Networks and182
discriminant analysis. In this paper a hybrid classification method coalescing the advantages of both Random183
forest and Support vector machines in addition to boosting is used. The RF algorithm is becoming gradually184
popular with applications like forest classification, credit rate analysis, remote sensing image analysis, intrusion185
detection etc.186

Yet another parameter that can contribute in assessing the classification is proximity measure of two samples.187
The proximity measure is the number of classification trees in which two data samples end up in the same node.188
This parameter when divided by the number of classification trees generated can facilitate in detecting outliers189
in the data sets. This computation requires large amount of memory space, depending on the total number of190
sample records and classification trees in the ensemble [1]. The pseudo code for Random Forest algorithm is191
mentioned below [42]:192

- ??————————————-Random Forest Algorithm: ————————————–Input: D: training193
sample a: number of input instance to be used to generate classification tree T: total number of classification194
trees in random forest OT: Classification Output from each tree T 1) OT is empty 2) for i=1 to T 3) Db = Form195
random sample subsets after selecting 2/3rd instances randomly from D /* For every tree this sample would196
be randomly selected*/ 4) Cb = Build classification trees using random subsets Db 5) Validate the classifier197
Cb using remaining 1/3rd instances //Refer Step 3. 6) OT=store classification outputs of classification trees 7)198
next i 8) Apply voting mechanism to derive output ORT of the Random forest(ensemble of classification trees)199
9) return ORT ??————————————–c) Overview of Boosting Ensemble learning is a process wherein200
a data set is divided into subsets. Individual learners are then used to classify and build the model for each of201
these subsets. Later the individual learning models are combined so as to determine the final classification model202
of the complete data set. As the complex large data set is divided into smaller random subsets and classification203
model is applied on these smaller subsets the said process of ensemble learning results in improving classification204
efficiency and gives more accurate results. Numerous classification methodologies like bagging, boosting etc...can205
also be used in learning by constructing an ensemble [43][44] [45].206

In this research paper boosting method has been used to create the said ensemble. It works by rewarding207
successful classifiers and by applying penalties to unsuccessful classifiers. In the past it has been used in208
various applications like machine translation [46], intrusion detection [47], forest tree regression, natural language209
processing, unknown word recognition [48] etc.210

Boosting is applied to varied types of classification problems. It is an iterative process wherein the training211
data set is regrouped together into subsets and various classifiers are used to classify data samples in the subsets.212
The data samples which were difficult to classify by a classifier also known as a weak learner at one stage are213
classified using new classifiers that get added to the ensemble at a later stage [49][50] [51]. In this way at each214
stage a new classifier gets augmented to the ensemble. The difficulty in classifying a data item Xi at stage k is215
represented by a weight factor Wk(i). The regrouping of training sets at each step of learning is done depending216
on the weight factor Wk(i) [22]. The value of the weight factor is proportional to the misclassification of the data.217
This way of forming regrouped data samples at every stage depending on the weight factor is called re-sampling218
version of boosting. Yet another way of implementing boosting is by reweighting wherein weight factor is assigned219
iteratively to every data item in the data set and the complete data set is used at every subsequent iteration by220
modifying the weights at every stage [48] [52].221

The most popular boosting algorithm called Adaboost [23]. Adaboost stands for Adaptive Boosting. It adapts222
or updates weights of the data items based on misclassification of training samples due to weak learners and223
regroups the data subsets depending on the new weights. The steps of Adaboost algorithm is mentioned below:224

- end for —————————————————In the next section the proposed hybrid methodology is225
discussed in detail.————————————————- Adaboost Algorithm ——————————————226
——–227
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4 III.228

5 Proposed Methodology229

In this paper we shall construct a hybrid classification model which shall facilitate in predicting the class label of230
seed plant data from test data sets. The methodology recommended has been denoted as a schematic diagram as231
mentioned in Fig 3 and the detailed explanation of the steps followed has been given in the following subsections.232
The data sets are randomly divided into n different random subsets each subset comprising of two third of the233
whole data set. Classification methods are applied to each of these random subsets. The remaining one third234
data sets at each subsets is used as a test set. At each random subset the following attributes were used so as to235
implement the classification method discussed in the next subsection: id, continent, specificEpithet and churn.236
Now churn is a variable that is set to yes if the seed plant data belongs to North America or if it belongs to237
South America it is set to no.238

6 d) Selection of an appropriate classification method239

In this paper seed plant data sets are classified using a hybrid classification method which makes use of Random240
forest, SVM classifier and boosting ensemble learning method. In the hybrid methodology the input data set is241
randomly subdivided into subsets. Each data item in each of the subset has a weight factor associated with it.242
The data items in the subsets are classified by SVM classifier. If a misclassification has occurred then the weight243
factor of the data items is increased otherwise it is reduced. The data subsets are rearranged and again SVM244
classifier is used to perform classification at each subset. The weights are again updated depending on whether245
it is a proper classification or a misclassification. These steps are iteratively repeated till all the weights get246
updated to a very low value. The output of the input data set is computed by applying voting mechanism to247
all the random subsets classification outputs [34]. The algorithm for the proposed hybrid methodology is givenin248
the sample code herein:249

—————————————————–Algorithm 1 Hybrid classification using RF and SVM supplemented250
by boosting - ??————————————————– The obtained classification output at each random subset251
is validated by using the hybrid classifier model to test against the complete data set.252

In this paper 10 random feature subsets were used and at every subset SVM classifier was used to perform the253
said classification. Voting mechanism was then applied to derive the final classification output. In this paper a254
total of 180 support vectors were used.255

IV.256

7 Performance Analysis a) Environment Setting257

The study area included is from North and South America. It includes data pertaining to localities wherein seed258
plant species are present.259

A total of 599 data set records from North American region and a total of 401data set records from South260
American region are analyzed in order to execute the proposed method. Sample records used in this paper261
are shown in Table ?? It is observed that the most conventionally utilized evaluation metrics in classification262
are accuracy, specificity, positive predictive value and negative predictive value. The formulae for accuracy,263
specificity, prevalence and negative predictive value are provided by equations ( ??), ( ??), ( ??0) and ( ??1 The264
confusion matrix or error matrix view for SVM Classifier is given in Table V and for RF Classifier in Table ??I.265
Performance Measures using evaluation metrics are specified in Fig 5 which are calculated using equations ( ??),266
( ??), ( ??0)and (11).267

8 Conclusion268

In this paper hybrid classifier based on random forest, SVM and boosting methods is used to classify seed plant269
data. The hybrid classification results are compared with the results attained by implementing classification270
using traditional SVM and RF classifiers. The research has established that the hybrid approach of classification271
is more efficient as compared to traditional SVM and RF classifiers since it gives higher values of accuracy,272
specificity, positive predictive value and negative predictive value.273

The reason for better results in the case of hybrid classification methodology used in this paper is since it makes274
use of the advantages of each of the individual traditional SVM, RF classifications methods. Furthermore, the275
classification results are supplemented using boosting ensemble classification method. In the future the proposed276
method can be used so as to classify vector, raster remote sensed data that can be collected via satellites and277
various geographical information systems.278

9 VI.279
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Figure 6: Figure 3 :

1

decimalLatitdecimalLongi specificEpichu
id higherGeography continent family scientificName ude tude genus thet rn
2759 North America,North Lycoperdac Calvati
86 GREENLAND America eae Calvatiaarctica 72 -40 a arctica yes
3333 North Empetrumeamesii Fernald Empetr
01 North America, America Ericaceae&Wiegand 52 -56 um eamesii yes
2717 North RanunculaThalictrum terrae-

novae
Thalictr

58 North America, America ceae Greene 52 -56 um terrae-
novae

yes

[Note: A]

Figure 7: Table 1 :

2

Item Capacity
CPU Intel CPU G645 @2.9 GHz processor
Memory 8GB RAM
OS Windows 7 64-bit
Tools R, R Studio

[Note: b) Result AnalysisClassification of the spatial data sets can be represented as a confusion or error matrix
view as shown in]

Figure 8: Table 2 :
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III

Figure 9: Table III .

3

Real group Classification result
North America South America

[Note: North America True Negative(TN) False Positive(FP) South America False Negative(FN) True
Positive(TP)]

Figure 10: Table 3 :

5

Prediction Reference South America North America
South America 8 7
North America 49 16

Figure 11: Table 5 :

6

Prediction Reference South America North America
South America 36 11
North America 21 12

Figure 12: Table 6 :
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