

1 A hybrid Random Forest based Support Vector Machine 2 Classification supplemented by boosting

3 Tarun Rao¹

4 ¹ Acharya Nagarjuna University

5 *Received: 7 December 2013 Accepted: 5 January 2014 Published: 15 January 2014*

7 **Abstract**

8 This paper presents an approach to classify remote sensed data using a hybrid
9 classifier. Random forest, Support Vector machines and boosting methods are used to build the
10 said hybrid classifier. The central idea is to subdivide the input data set into smaller subsets
11 and classify individual subsets. The individual subset classification is done using support
12 vector machines classifier. Boosting is used at each subset to evaluate the learning by using a
13 weight factor for every data item in the data set. The weight factor is updated based on
14 classification accuracy. Later the final outcome for the complete data set is computed by
15 implementing a majority voting mechanism to the individual subset classification outcomes.

17 **Index terms**— boosting, classification, data mining, random forest, remote sensed data, support vector
18 machine.

19 **1 Introduction**

20 any organizations maintain huge data repositories which store data collected from various sources in different
21 formats. The said data repositories are also known as data warehouses. One of the prominent sources of data is
22 remote sensed data collected via satellites or geographical information systems software's [1].

23 The data thus collected can be of use in various applications including and not restricted to land use [2] [3],
24 species distribution modeling [4] [5] [6] [7], mineral resource identification [8], traffic analysis [10], network analysis
25 [9] and environmental monitoring systems [11] [12]. Data mining is used to extract information from the said data
26 repositories. The information thus mined can help various stakeholders in an organization in taking strategic
27 decisions. Data can be mined from the data repositories using various methodologies like anomaly detection,
28 supervised classification, clustering, association rule learning, regression, characterization and summarization and
29 sequential pattern mining. In this paper we shall be applying a hybrid classification technique to classify plant
30 seed remote sensed data.

31 A lot of research has been undertaken to classify plant functional groups, fish species, bird species etc... [7][13]
32 [14]. The classification of various species shall help in conserving the ecosystem by facilitating ins predicting of
33 endangered species distribution [15]. It can also help in identifying various resources like minerals, water resources
34 and economically useful trees. Various technologies in this regard have been developed. Machine learning
35 methods, image processing algorithms, geographical information systems tools etc..have added to the development
36 of numerous systems that can contribute to the study of spatial data and can mine relevant information which
37 can be of use in various applications. The systems developed can help constructing classification models that in
38 turn facilitate in weather forecasting, crop yield classification, mineral resource identification, soil composition
39 analysis and also locating water bodies near to the agricultural land.

40 Classification is the process wherein a class label is assigned to unlabeled data vectors. It can be categorized
41 into supervised and un-supervised classification which is also known as clustering. In supervised classification
42 learning is done with the help of supervisor ie. learning through example. In this method the set of possible
43 class labels is known apriori to the end user. Supervised classification can be subdivided into non-parametric
44 and parametric classification. Parametric classifier method is dependent on the probability distribution of each

2 II.

45 class. ??on without supervisor ie. learning from observations. In this method set of possible classes is not known
46 to the end user. After classification one can try to assign a name to that class. Examples of un-supervised
47 classification methods are Adaptive resonance theory(ART) 1, ART 2,ART 3, Iterative Self-Organizing Data
48 Analysis Method, K-Means, Bootstrapping Local, Fuzzy C-Means, and Genetic Algorithm [17]. In this paper
49 we shall discuss about a hybrid classification method. The said hybrid method will make use of support vector
50 machine(SVM) classification, random forest and boosting methods. Later its performance is evaluated against
51 traditional individual random forest classifiers and support vector machines.

52 A powerful statistical tool used to perform supervised classification is Support Vector machines. Herein the
53 data vectors are represented in a feature space. Later a geometric hyperplane is constructed in the feature space
54 which divides the space comprising of data vectors into two regions such that the data items get classified under
55 two different class labels corresponding to the two different regions. It helps in solving equally two class and
56 multi class classification problem. The aim of the said hyper plane is to maximize its distance from the adjoining
57 data points in the two regions. Moreover, SVM's do not have an additional overhead of feature extraction since
58 it is part of its own architecture. Latest research have proved that SVM classifiers provide better classification
59 results when one uses spatial data sets as compared to other classification algorithms like Bayesian method,
60 neural networks and k-nearest neighbors classification methods [18] [19].

61 In Random forest(RF) classification method many classifiers are generated from smaller subsets of the input
62 data and later their individual results are aggregated based on a voting mechanism to generate the desired
63 output of the input data set. This ensemble learning strategy has recently become very popular. Before RF,
64 Boosting and Bagging were the only two ensemble learning methods used. RF can be applied for supervised
65 classification, unsupervised learning and regression. RF has been extensively applied in various areas including
66 modern drug discovery, network intrusion detection, land cover analysis, credit rating analysis, remote sensing
67 and gene microarrays data analysis etc... ??20][21].

68 Other popular ensemble classification methods are bagging and boosting. Herein the complex data set is
69 divided into smaller feature subsets. An ensemble of classifiers is formed with the classifiers being used to classify
70 data items in each feature subset. The said feature subsets are regrouped together iteratively depending on
71 penalty factor also known as the weight factor applied based on the degree of misclassification in the feature
72 subsets. The class label of data items in the complete data set is computed by aggregating the individual
73 classification outcomes at each feature subset [22] [23].

74 A hybrid method is being proposed in this paper which makes use of ensemble learning from RF classification
75 and boosting algorithm and SVM classification method. The processed seed plant data is divided randomly
76 into feature subsets. SVM classification method is used to derive the output at each feature subset. Boosting
77 learning method is applied so as to boost the classification adeptness at every feature subset. Later majority
78 voting mechanism is applied to arrive at the final classification result of the original complete data set.

79 Our next section describes Background Knowledge about Random Forest classifier, SVM and Boosting. In
80 section 3 proposed methodology has been discussed. Performance analysis is discussed in Section 4. Section 5
81 concludes this work and later acknowledgement is given to the data source followed by references.

82 2 II.

83 Background Knowledge a) Overview of SVM Classifier Support vector machine (SVM) is a statistical tool used
84 in various data mining methodologies like classification and regression analysis. The data can be present either
85 in the form of a multi class or two class problem. In this paper we shall be dealing with a two class problem
86 wherein the seed plant data sets need to be categorized under two class labels one having data sets belonging to
87 North America and the other having data sets belonging to South America. It has been applied in various areas
88 like species distribution, locating mineral prospective areas etc..It has become popular for solving problems in
89 regression and classification, consists of statistical learning theory based heuristic algorithms. The advantage with
90 SVM is that the classification model can be built using minimal number of attributes which is not the case with
91 most other classification methods [24]. In this paper we shall be proposing a hybrid classification methodology to
92 classify seed plant data which would lead to improving the efficiency and accuracy of the traditional classification
93 approach.

94 The seed plant data sets used in the paper have data sets with known class labels. A classification model
95 is constructed using the data sets which can be authenticated against a test data set and can later be used to
96 predict class labels of unlabeled data sets. Since class labels of data sets are known apriori this approach is
97 categorized as supervised classification. In unsupervised classification method also known as clustering the class
98 label details is not known in advance. Each data vector in the data set used for classification comprises of unique
99 attributes which is used to build the classification model [25] [19]. The SVM model can be SVM is represented by
100 a separating hyper plane $f(x)$ that geometrically bisects the data space thus dividing it into two diverse regions
101 thus resulting in classification of the input data space into two categories.

102 Figure ?? : The Hyperplane The function $f(x)$ denotes the hyperplane that separates the two regions and
103 facilitates in classification of the data set. The two regions geometrically created by the hyperplane correspond
104 to the two categories of data under two class labels. A data point x_n belongs to either of the region depending
105 on the value of $f(x_n)$. If $f(x_n) > 0$ it belongs to one region and if $f(x_n) < 0$ it belongs to another region.
106 There are many such hyperplanes which can split the data into two regions. But SVM ensures that it selects

107 the hyperplane that is at a maximum distance from the nearest data points in the two regions. There are only
108 few hyperplanes that shall satisfy this criterion. By ensuring this condition SVM provides accurate classification
109 results [27].

110 SVM's can be represented mathematically as well. Assume that the input data consists of n data vectors where
111 each data vector is represented by $x_i \in \mathbb{R}^n$, where $i = 1, 2, \dots, n$. Let the class label that needs to be assigned
112 to the data vectors to implement supervised classification be denoted by y_i , which is +1 for one category of
113 data vectors and -1 for the other category of data vectors. The data set can be geometrically separated by a
114 hyperplane. Since the hyperplane is represented by a line it can also be mathematically represented by [8][3]
115 [28]: $mx_i + b \geq +1$ $mx_i + b \leq -1$ (1)

116 The hyperplane can also be represented mathematically by [31][32] [33]: $f(x) = \text{sgn}(mx + b) = \text{sgn}((\sum_{i=1}^n y_i x_i) \cdot x + b)$ (2)

117 where $\text{sgn}()$ is known as a sign function, which is mathematically represented by the following equation:
118 $\text{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$ (3)

119 The data vectors are said to be optimally divided by the hyperplane if the distance amid the adjoining data
120 vectors in the two different regions from the given hyperplane is maximum.

121 This concept can be illustrated geometrically as in Figure 2, where the distance between the adjoining data
122 points close to the hyperplane and the hyperplane is displayed [29][30] [28].

123 This hyperplane which has maximum distance d from adjoining points is computed to implement the said
124 classification. This SVM can be represented as a primal formulation given by the equation [8][5] [31]: $h(m) = 1/2$
125 $\|m\|^2 + \text{Training error} (5)$ subject to $y_i (mx_i + b) \geq 1, \forall i$

126 The idea is to increase the margin and reduce the training error. The data sample records in the training data
127 set belong to input set. Each of the data vectors have precise attributes based on which the classification model
128 is built. These set of attributes are said to form a feature space. The kernel function bridges the gap between the
129 feature space and the input space and enables to carry out classification on input space rather than complicated
130 feature space. [29].

131 In this paper we have used Gaussian radial basis functions (RBF). SVM's make use of the radial basis kernel
132 function to be able to work at the simpler input space level. The RBF kernel used is represented mathematically
133 by [3][29]: can be solved using various methods. One method is to move the data vectors to a different space
134 thereby making the problem linear. The other method is to split the multi class problem into numerous two class
135 problems and later with a voting mechanism combine the solutions of individual two class problems to get the
136 solution of the original multi class problem. [8]. $K(x_1, x_2) = \exp(-\gamma \|x_1 - x_2\|^2)$ (6)

137 The steps followed while using SVM in classifying data are mentioned in the below algorithm [16]:

138 - ? ? ?

139 In RF classification method the input data set is first subdivided into two subsets, one containing
140 two thirds of the data points and the other containing the remaining one third. Classification tree models
141 are constructed using the subset comprising of two thirds of data points. The subset which contains one third
142 data of data points which are not used at any given point of time to construct classification trees and are used
143 for validation are called out of bag(OOB) data samples of the trees. There is no truncation applied at every
144 classification tree. Hence every classification tree used in RF classification method is maximal in nature. Later
145 RF classification method follows a majority voting process wherein classification output of every classification
146 tree casts a vote to decide the final outcome of the ensemble classifier i.e., assigning a class label to a data item x
147 [21]. The set of features are used to create a classification tree model at every randomly chosen subset [37]. This
148 set of features shall remain constant throughout the growing of random forest.

149 In RF, the test set is used to authenticate the classification results and also used for predicting the class
150 labels for unlabeled data after the classification model is built. It also helps in cross validation of results among
151 different classification results provided by various classification trees in the ensemble. To perform the said cross
152 validation the out of bag(OOB) samples are used.. The individual classification tree outcomes are aggregated
153 with a majority vote and the cumulative result of the whole ensemble shall be more accurate and prone to lesser
154 classification error than individual classification tree results [26].

155 Every classification tree in the random forest ensemble is formed using the randomly selected two thirds of
156 input variables, hence there is little connection between different trees in the forest. One can also restrict the
157 number of variables that split a parent node in a classification tree resulting in the reduction of connection
158 between classification trees. The Random forest classification method works better even for larger data sets.
159 This is not the case with other ensemble methods [1] [2]. In this paper we shall be using the both boosting
160 and random forest ensemble classification methods along with support vector machines to give a more accurate
161 classification output. This hybrid method shall be more robust to noise as compared to individual classification
162 method.

163 RF classification method works with both discreet and continuous variables which is not the case with other
164 statistical classification modeling methods. Furthermore, there is no limit on the total number of classification
165 trees that are generated in the ensemble process and the total number of variable or data samples(generally two
166 thirds are used) in every random subset used to build the classification trees [36].

167 RF rates variables based on the classification accuracy of the said variable relative to other variables in the
168 data set. This rank is also known as importance index. It reflects the relative importance of every variable in

170 the process of classification. The importance index of a variable is calculated by averaging the importance of
171 the variable across classification trees generated in the ensemble. The more the value of this importance index,
172 the greater is a variables importance for classification. Another parameter obtained by dividing the variable's
173 importance index by standard error is called z-score. Both importance index as well as z-score play a significant
174 role in ensuring the efficiency of the classification process [25][36][39] [38].

175 The importance of a variable can also be assessed by using two parameters, Gini Index decrease and OOB
176 error estimation. Herein relative importance of variables are calculated which is beneficial in studies wherein the
177 numbers of attributes are very high and thus leading to relative importance gaining prominence [40].

178 3 Global Journal of Computer Science and Technology

179 Volume XIV Issue I Version I46 (D D D D) Year C 2014 ? ? ? k(C i ,X) |X| ? . ? k(C j ,X) |X| ? j?i (7)
180 where $k(C_i, X) |X|$ is the is the probability that a selected case belongsto class C_i .

181 RF method provides precise results with respect to variation and bias [39].. The performance of the RF
182 classification method is better compared to other classifiers like support vector machines, Neural Networks and
183 discriminant analysis. In this paper a hybrid classification method coalescing the advantages of both Random
184 forest and Support vector machines in addition to boosting is used. The RF algorithm is becoming gradually
185 popular with applications like forest classification, credit rate analysis, remote sensing image analysis, intrusion
186 detection etc.

187 Yet another parameter that can contribute in assessing the classification is proximity measure of two samples.
188 The proximity measure is the number of classification trees in which two data samples end up in the same node.
189 This parameter when divided by the number of classification trees generated can facilitate in detecting outliers
190 in the data sets. This computation requires large amount of memory space, depending on the total number of
191 sample records and classification trees in the ensemble [1]. The pseudo code for Random Forest algorithm is
192 mentioned below [42]:

193 - ??-----Random Forest Algorithm: -----Input: D: training
194 sample a: number of input instance to be used to generate classification tree T: total number of classification
195 trees in random forest OT: Classification Output from each tree T 1) OT is empty 2) for i=1 to T 3) Db = Form
196 random sample subsets after selecting 2/3rd instances randomly from D /* For every tree this sample would
197 be randomly selected*/ 4) Cb = Build classification trees using random subsets Db 5) Validate the classifier
198 Cb using remaining 1/3rd instances //Refer Step 3. 6) OT=store classification outputs of classification trees 7)
199 next i 8) Apply voting mechanism to derive output ORT of the Random forest(ensemble of classification trees)
200 9) return ORT ??-----c) Overview of Boosting Ensemble learning is a process wherein
201 a data set is divided into subsets. Individual learners are then used to classify and build the model for each of
202 these subsets. Later the individual learning models are combined so as to determine the final classification model
203 of the complete data set. As the complex large data set is divided into smaller random subsets and classification
204 model is applied on these smaller subsets the said process of ensemble learning results in improving classification
205 efficiency and gives more accurate results. Numerous classification methodologies like bagging, boosting etc...can
206 also be used in learning by constructing an ensemble [43][44] [45].

207 In this research paper boosting method has been used to create the said ensemble. It works by rewarding
208 successful classifiers and by applying penalties to unsuccessful classifiers. In the past it has been used in
209 various applications like machine translation [46], intrusion detection [47], forest tree regression, natural language
210 processing, unknown word recognition [48] etc.

211 Boosting is applied to varied types of classification problems. It is an iterative process wherein the training
212 data set is regrouped together into subsets and various classifiers are used to classify data samples in the subsets.
213 The data samples which were difficult to classify by a classifier also known as a weak learner at one stage are
214 classified using new classifiers that get added to the ensemble at a later stage [49][50] [51]. In this way at each
215 stage a new classifier gets augmented to the ensemble. The difficulty in classifying a data item X_i at stage k is
216 represented by a weight factor $W_k(i)$. The regrouping of training sets at each step of learning is done depending
217 on the weight factor $W_k(i)$ [22]. The value of the weight factor is proportional to the misclassification of the data.
218 This way of forming regrouped data samples at every stage depending on the weight factor is called re-sampling
219 version of boosting. Yet another way of implementing boosting is by reweighting wherein weight factor is assigned
220 iteratively to every data item in the data set and the complete data set is used at every subsequent iteration by
221 modifying the weights at every stage [48] [52].

222 The most popular boosting algorithm called Adaboost [23]. Adaboost stands for Adaptive Boosting. It adapts
223 or updates weights of the data items based on misclassification of training samples due to weak learners and
224 regroups the data subsets depending on the new weights. The steps of Adaboost algorithm is mentioned below:

225 - end for ----- In the next section the proposed hybrid methodology is
226 discussed in detail.----- Adaboost Algorithm -----

227 -----

228 **4 III.**

229 **5 Proposed Methodology**

230 In this paper we shall construct a hybrid classification model which shall facilitate in predicting the class label of
231 seed plant data from test data sets. The methodology recommended has been denoted as a schematic diagram as
232 mentioned in Fig 3 and the detailed explanation of the steps followed has been given in the following subsections.
233 The data sets are randomly divided into n different random subsets each subset comprising of two third of the
234 whole data set. Classification methods are applied to each of these random subsets. The remaining one third
235 data sets at each subsets is used as a test set. At each random subset the following attributes were used so as to
236 implement the classification method discussed in the next subsection: id, continent, specificEpithet and churn.
237 Now churn is a variable that is set to yes if the seed plant data belongs to North America or if it belongs to
238 South America it is set to no.

239 **6 d) Selection of an appropriate classification method**

240 In this paper seed plant data sets are classified using a hybrid classification method which makes use of Random
241 forest, SVM classifier and boosting ensemble learning method. In the hybrid methodology the input data set is
242 randomly subdivided into subsets. Each data item in each of the subset has a weight factor associated with it.
243 The data items in the subsets are classified by SVM classifier. If a misclassification has occurred then the weight
244 factor of the data items is increased otherwise it is reduced. The data subsets are rearranged and again SVM
245 classifier is used to perform classification at each subset. The weights are again updated depending on whether
246 it is a proper classification or a misclassification. These steps are iteratively repeated till all the weights get
247 updated to a very low value. The output of the input data set is computed by applying voting mechanism to
248 all the random subsets classification outputs [34]. The algorithm for the proposed hybrid methodology is given in
249 the sample code herein:

250 Algorithm 1 Hybrid classification using RF and SVM supplemented
251 by boosting - ?? The obtained classification output at each random subset
252 is validated by using the hybrid classifier model to test against the complete data set.

253 In this paper 10 random feature subsets were used and at every subset SVM classifier was used to perform the
254 said classification. Voting mechanism was then applied to derive the final classification output. In this paper a
255 total of 180 support vectors were used.

256 IV.

257 **7 Performance Analysis a) Environment Setting**

258 The study area included is from North and South America. It includes data pertaining to localities wherein seed
259 plant species are present.

260 A total of 599 data set records from North American region and a total of 401 data set records from South
261 American region are analyzed in order to execute the proposed method. Sample records used in this paper
262 are shown in Table ?? It is observed that the most conventionally utilized evaluation metrics in classification
263 are accuracy, specificity, positive predictive value and negative predictive value. The formulae for accuracy,
264 specificity, prevalence and negative predictive value are provided by equations (??), (??), (??0) and (??1 The
265 confusion matrix or error matrix view for SVM Classifier is given in Table V and for RF Classifier in Table ??I.
266 Performance Measures using evaluation metrics are specified in Fig 5 which are calculated using equations (??),
267 (??), (??0) and (11).

268 **8 Conclusion**

269 In this paper hybrid classifier based on random forest, SVM and boosting methods is used to classify seed plant
270 data. The hybrid classification results are compared with the results attained by implementing classification
271 using traditional SVM and RF classifiers. The research has established that the hybrid approach of classification
272 is more efficient as compared to traditional SVM and RF classifiers since it gives higher values of accuracy,
273 specificity, positive predictive value and negative predictive value.

274 The reason for better results in the case of hybrid classification methodology used in this paper is since it makes
275 use of the advantages of each of the individual traditional SVM, RF classifiers methods. Furthermore, the
276 classification results are supplemented using boosting ensemble classification method. In the future the proposed
277 method can be used so as to classify vector, raster remote sensed data that can be collected via satellites and
278 various geographical information systems.

279 **9 VI.**

280 1 2

¹© 2014 Global Journals Inc. (US)

²© 2014 Global Journals Inc. (US)

2

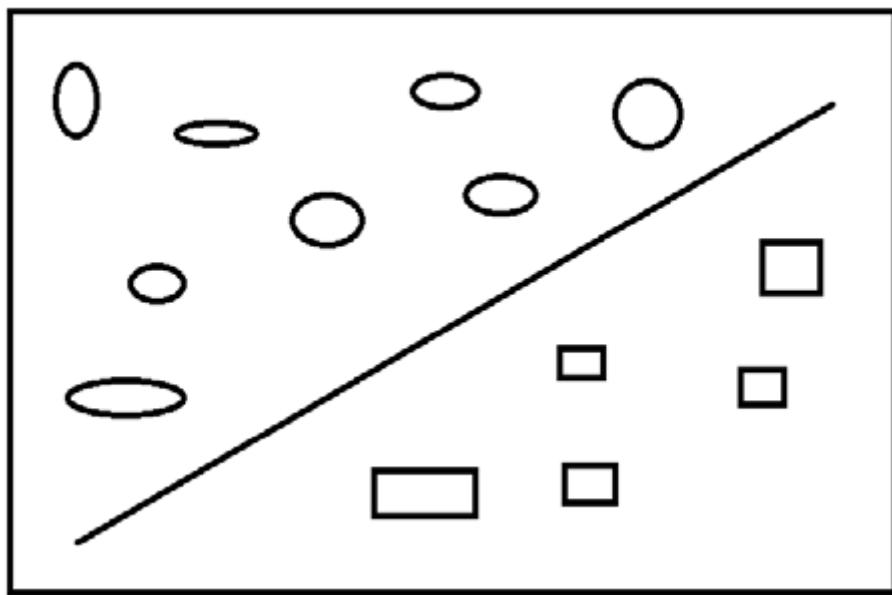


Figure 1: Figure 2 :

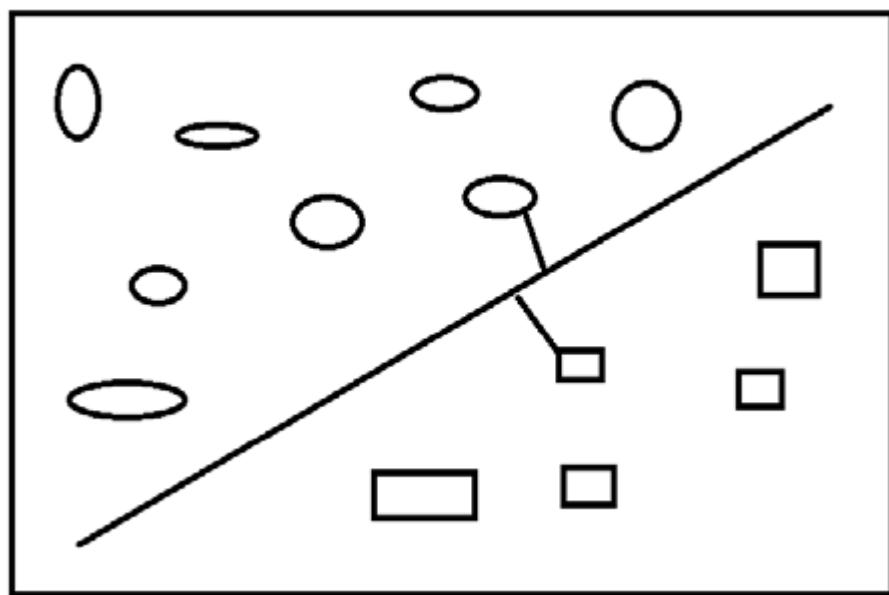
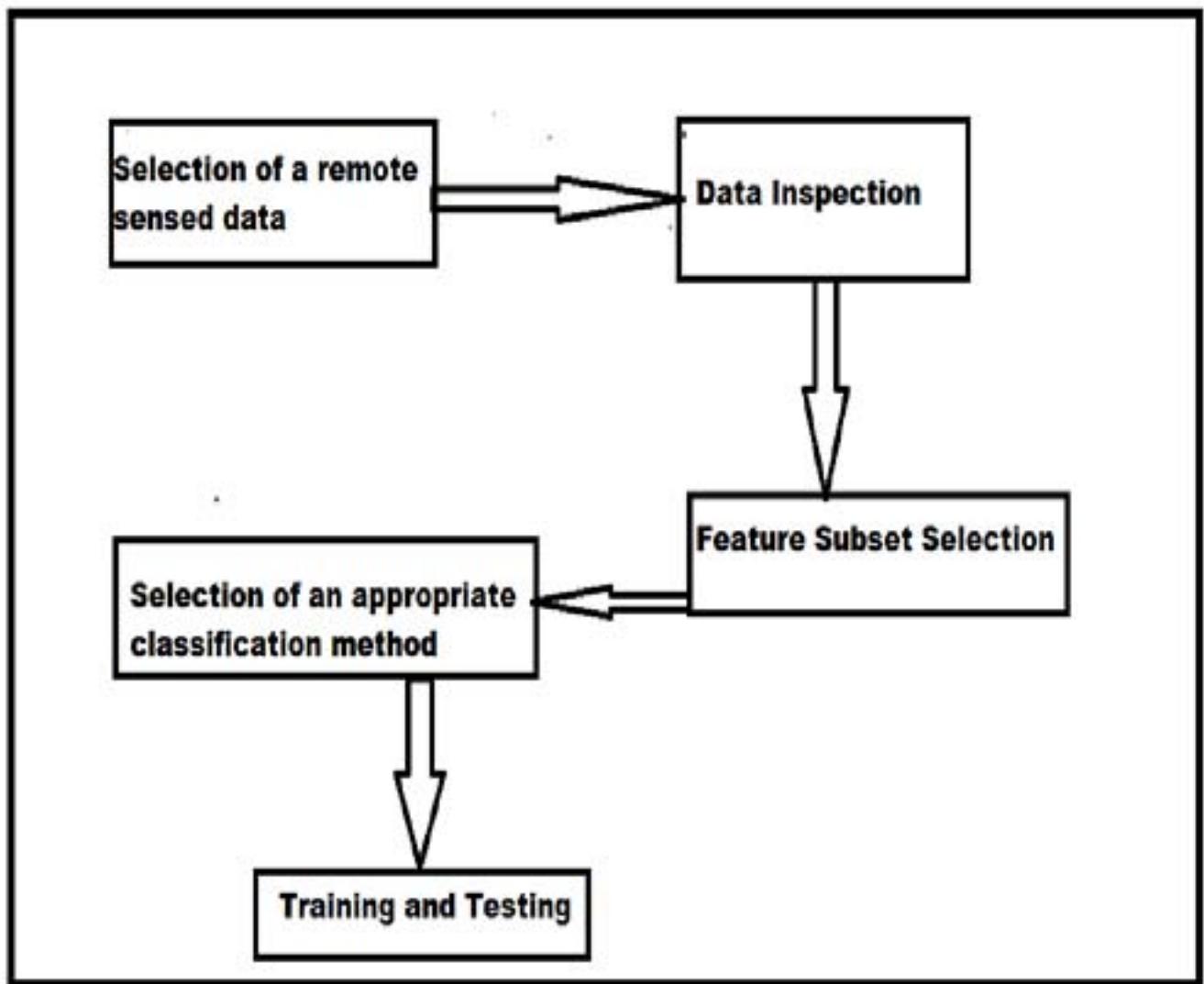


Figure 2:



2

Figure 3: - Algorithm 2

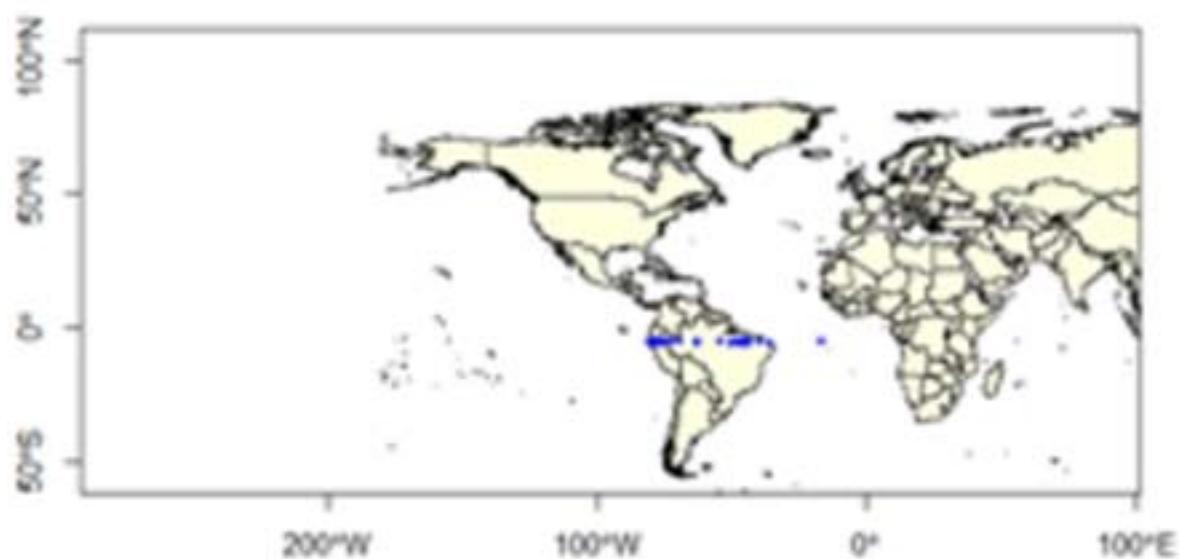


Figure 4:

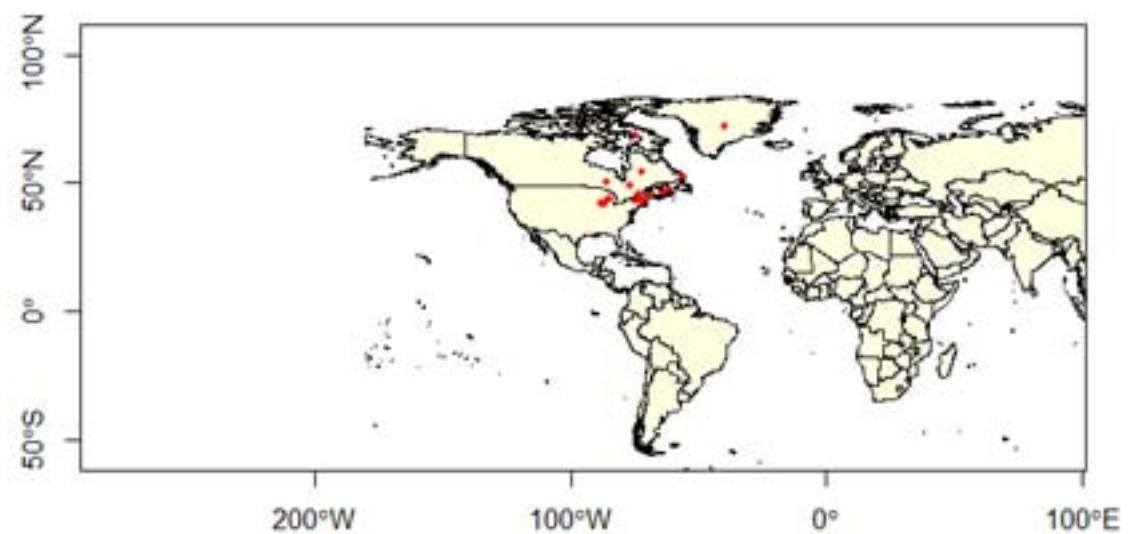
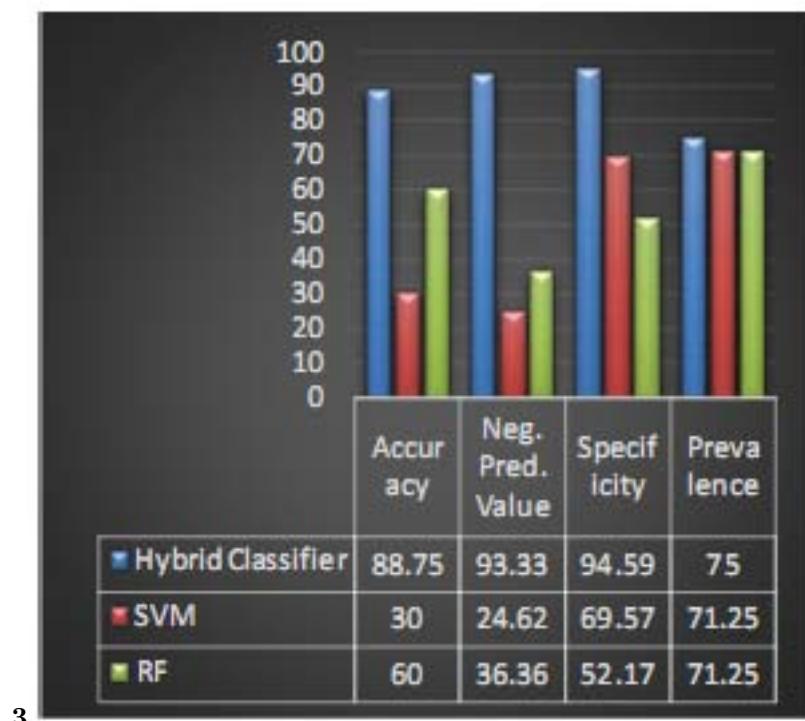


Figure 5:



3

Figure 6: Figure 3 :

1

id	higherGeography	continent	family	scientificName	decimalLatitude	decimalLongitude	specific
2759	North	Amer	North	Lycoperdaceae	72	-40	Calvatia
86	GREENLAND	America	eae	Calvatia arctica			
3333		North		Empetrum eamesii Fernald			Empetr
01	North America,	America	Ericaceae & Wiegand		52	-56	eamesii
2717		North	Ranunculaceae	Thalictrum			Thalictr
58	North America,	America	ceae	Greene	52	-56	um
							terracenovae

[Note: A]

Figure 7: Table 1 :

2

Item	Capacity
CPU	Intel CPU G645 @2.9 GHz processor
Memory	8GB RAM
OS	Windows 7 64-bit
Tools	R, R Studio

[Note: b) Result AnalysisClassification of the spatial data sets can be represented as a confusion or error matrix view as shown in]

Figure 8: Table 2 :

III

Figure 9: Table III .

3

Real group	Classification result	
	North America	South America

[Note: North America True Negative(TN) False Positive(FP) South America False Negative(FN) True Positive(TP)]

Figure 10: Table 3 :

5

Prediction	Reference	
	South America	North America
South America 8	7	
North America 49	16	

Figure 11: Table 5 :

6

Prediction	Reference	
	South America	North America
South America 36	11	
North America 21	12	

Figure 12: Table 6 :

281 .1 Acknowledgment

282 We direct our frank appreciativeness to the Field Museum of Natural History(Botany)-Seed Plant Collection
283 (accessed through GBIF data portal, <http://data.gbif.org/datasets/resource/14346,2013-06-03>) for providing us
284 with different seed plant data sets. We also thank ANU university for providing all the support in the work
285 conducted.

286 [Rumpf et al.] , Till Rumpf , Christoph Römer , Martin Weis , Markus Sökefeld , Roland Gerhards , Lutz Plümer
287 . <http://dx.doi.org/10.1> (Sequential Pages89-96, ISSN0168-1699)

288 [Dec] , Dec . 2012doi10.1109/NUCONE.2012.6493213.

289 [(2012)] , 10.5815/ijitcs.2012.07.06. July 2012. (Published Online)

290 [Yeh et al. (2012)] *A hybrid KMV model, random forests and rough set theory approach for credit rating, Knowledge-Based Systems*, Ching-Hiang Yeh , Chih-Yu Fengyilin , Hsu . 10.1016/j.knosys.2012.04.004. <http://dx.doi.org/10.1016/j.knosys.2012.04.004> September 2012. 33. (Pages 166-172, ISSN0950-7051)

291 [Elbasiony et al. (2013)] ‘A hybrid network intrusion detection framework based on random forests and
292 weighted k-means’. Reda M Elbasiony , Elsayed A Sallam , Tarek E Eltobely , Mahmoud M Fahmy .
293 10.1016/j.lasej.2013.01003. <http://dx.doi.org/10.1016/j.lasej.2013.01003> *A in Shams Engineering
294 Journal* 2090-4479. Available online 7 March 2013.

295 [Kumar (2010)] *A hybrid SVM based decision tree, Pattern Recognition*, M Kumar , M .
296 10.1016/j.patcog.2010.06.010. <http://dx.doi.org/10.1016/j.patcog.2010.06.010> December
297 2010. 43 p .

298 [Zhang and Zhang ()] ‘A local boosting algorithm for solving classification problems’. Chun-Xia Zhang , Jiang-
299 She Zhang . 10.1016/j.csda.2007.06.015. <http://dx.doi.org/10.1016/j.csda.2007.06.015> *Computational Statistics & Data Analysis* 0167-9473. 10 January 2008. 1928-1941. 52 (4) .

300 [Cho (2013)] ‘A support vector machine approach to CMOS-based radar signal processing for vehicle classification
301 and speed estimation’. Hsun-Jung Cho , Ming-Tetseng . 10.1016/j.mcm.2012.11.003. <http://dx.doi.org/10.1016/j.mcm.2012.11.003> *Mathematical and Computer Modelling* July 2013. 58 (2) . (Pages 438-
302 448,ISSN0895-7177)

303 [Lu and Weng ()] ‘A survey of image classification methods and techniques for improving classification
304 performance’. D Lu , & Q Weng . 10.1080/01431160600746456. <http://dx.doi.org/10.1080/01431160600746456> *International Journal of Remote Sensing* 2007. 28 (5) p .

305 [Gray et al. (2013)] ‘Alexander Hammers, Daniel Rueckert, for the Alzheimer’s Disease Neuroimaging Initiative,
306 Random forest-based similarity measures for multimodal classification of Alzheimer’s disease, NeuroImage’.
307 Katherine R Gray , Paul Aljabar , Rolf A Heckemann . 10.1016/j.neuroimage.2012.09.065. <http://dx.doi.org/10.1016/j.neuroimage.2012.09.065> Pages 167-175, ISSN10538119, 15 January 2013. 65.

308 [Rodriguez-Galiano et al. (2012)] ‘An assessment of the effectiveness of a random forest classifier for land-
309 cover classification’. V F Rodriguez-Galiano , B Ghimire , J Rogan , M Chica-Olmo , J P Rigol-Sánchez
310 . 10.1016/j.isprsjprs.2011.11.002. <http://dx.doi.org/10.1016/j.isprsjprs.2011.11.002> *ISPRS
311 Journal of Photogrammetry and Remote Sensing* January 2012. 67. (Pages 93-104, ISSN0924-2716)

312 [Zhang et al. (2008)] ‘An efficient modified boosting method for solving classification problems’. Chun-Xia Zhang
313 , Jiang-She Zhang , Gai-Ying Zhang . 10.1016/j.cam.2007.03.003. <http://dx.doi.org/10.1016/j.cam.2007.03.003> *Journal of Computational and Applied Mathematics* 0377- 0427. 1 May 2008. 214 (2) p .

314 [Kuncheva et al. (2002)] *An experimental study on diversity for bagging and boosting with linear classifiers, Information
315 Fusion*, L I Kuncheva , M Skurichina , R P W Duin . 10.1016/S1566-2535(02. [http://dx.doi.org/10.1016/S1566-2535\(02](http://dx.doi.org/10.1016/S1566-2535(02) December 2002. 3 p .

316 [Yugal Kumar and Sahoo ()] ‘Analysis of Parametric & Non Parametric Classifiers for Classification Technique
317 using WEKA’. G Yugal Kumar , Sahoo . *I.J. Information Technology and Computer Science* 2012. 7 p .

318 [Xiao et al. (2013)] ‘Bagging and Boosting statistical machine translation systems’. Tong Xiao , Jingbo Zhu
319 , Tongran Liu . 10.1016/j.artint.2012.11.005. <http://dx.doi.org/10.1016/j.artint.2012.11.005>
320 *Artificial Intelligence* February 2013. 195. (Pages 496-527, ISSN0004-3702)

321 [Zitouni et al. (2003)] ‘Boosting and combination of classifiers for natural language call routing systems’. Imed
322 Zitouni , Hong-Kwang Jeff Kuo , Chin-Hui Lee . 10.1016/0167-6393(03. [http://dx.doi.org/10.1016/0167-6393\(03](http://dx.doi.org/10.1016/0167-6393(03) *Speech Comm unication* November 2003. 41 (4) p . . (Pages 647-661, ISSN0167-6393)

323 [Tanha et al. (2013)] ‘Boosting for Multiclass Semi-Supervised Learning’. Jafar Tanha , Maarten van Someren ,
324 Hamideh Afsarmanesh . 10.1016/j.patrec.2013.10.008. <http://dx.doi.org/10.1016/j.patrec.2013.10.008> *Pattern Recognition Letters* 21 October 2013. p .

325 [Techo et al. ()] ‘Boosting-based ensemble learning with penalty profiles for automatic Thai unknown word
326 recognition’. Jakkrit Techo , Cholwich Nattee , Thanaruk Theeramunkong . 10.1016/j.camwa.2011.11.062. <http://dx.doi.org/10.1016/j.camwa.2011.11.062> *Computers &Mathematics with Applications* March
327 2012, Pages 1117-1134, ISSN08981221. 63 (6) .

328

339 [Idris et al. ()] 'Churn prediction in telecom using Random Forest and PSO based data balancing in
 340 combination with various feature selection strategies'. Adnan Idris , Muhammad Rizwan , Asifullah
 341 Khan . 10.1016/j.compeleceng.2012.09.001. <http://dx.doi.org/10.1016/j.compeleceng.2012.09.001> Pages 1808-1819, ISSN0045-7906, Novem ber 2012. 38.

343 [Naidoo et al. (2012)] 'Classification of savanna tree species, in the Greater Kruger National Park region, by
 344 integrating hyperspectral and LiDAR data in a Random Forest data mining environment'. L Naidoo , M A Cho
 345 , R Mathieu , G Asner . 10.1016/j.isprsjprs.2012.03.005. <http://dx.doi.org/10.1016/j.isprsjprs.2012.03.005> ISPRS Journal of Photogrammetry and Remote Sensing April 2012. 69 p. .

347 [Liu et al. (2013)] 'Comparison of random forest, support vector machine and back propagation neural network
 348 for electronic tongue data classification: Application to the recognition of orange beverage and Chinese
 349 vinegar'. Miao Liu , Mingjun Wang , Duo Junwang , Li . 10.1016/j.snb.2012.11.071. <http://dx.doi.org/10.1016/j.snb.2012.11.071> Pages 970-980, ISSN0925-4005, February 2013. 177.

351 [Liu et al. ()] 'Comparison of random forest, support vector machine and back propagation neural network for
 352 electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar'.
 353 Mingjun Liu , Jun Wang , Duo Wang , Li . 10.1016/j.snb.2012.11.071. <http://dx.doi.org/10.1016/j.snb.2012.11.071> Sensors and Actuators B: Chemical 0925-4005. February2013. 177 p. .

355 [Shao and Lunetta ()] *Comparison of support vector machine, neural network, and CART algorithms for the
 356 land-cover classification using limited training data points*, ISPRS Journal of Photogrammetry and Remote
 357 Sensing, Volume70, Yang Shao , Ross S Lunetta . 10.1016/j.isprsjprs.2012.04.001. <http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001> June2012, Pages78-87,ISSN0924-2716.

359 [Chau et al.] *Convex and concave hulls for classification with support vector machine*, Neuro computing, Asdrúbal
 360 López Chau , Xiaoou Li , Wen Yu . 122 p. 25.

361 [Ruano-Ordás et al. ()] 'Effective scheduling strategies for boosting performance on rule-based spam filtering
 362 frameworks'. D Ruano-Ordás , J Fdez-Glez , F Fdez-Riverola , J R Méndez . 10.1016/j.jss.2013.07.036.
 363 <http://dx.doi.org/10.1016/j.jss.2013.07.036> Journal of Systems and Software 0164-1212. Vol-
 364 ume86,Issue12, December2013,Pages 3151-3161.

365 [Jeyanthi (2007)] *Efficient Classification Algorithms using SVMs for Large Datasets, A Project Report Submitted
 366 in partial fulfillment of the requirements for the Degree of Master of Technology in Computational Science*, S
 367 N Jeyanthi . June 2007. IISC, BANGALORE, INDIA. Supercomputer Education and Research Center

368 [Zintzaras and Kowald] 'Forest classification trees and forest support vector machines algorithms: Demonstration
 369 using microarray data'. Elias Zintzaras , Axel Kowald . 10.1016/j.combiomed.2010.03.006. <http://dx.doi.org/10.1016/j.combiomed.2010.03.006> Computers in Biology and Medicine (Pages 519-524,
 371 ISSN0010-4825)

372 [Yeh et al. (2013)] 'Going-concern prediction using hybrid random forests and rough set approach'. Ching-Chiang
 373 Yeh , Der-Jang Chi , Yi-Rong Lin . 10.1016/j.ins.2013.07.011. <http://dx.doi.org/10.1016/j.ins.2013.07.011> Information Sciences 0020-0255. August 2013.

375 [Aguilera et al. (2010)] 'Hybrid Bayesian network classifiers: Application to species distribution models'. P A
 376 Aguilera , A Fernández , F Reche , R Rumí . 10.1016/j.envsoft.2010.04.016. <http://dx.doi.org/10.1016/j.envsoft.2010.04.016> Environmental Modelling & Software, Volume25, Issue12, December 2010.
 378 p. .

379 [Björnwaske et al. (2012)] 'imageRF -A user-oriented implementation for remote sensing image analysis with
 380 Random Forests'. Sebastian Björnwaske , Carsten Vander Linden , Benjamin Oldenburg , Jakimow .
 381 10.1016/j.envsoft.2012.01.014. <http://dx.doi.org/10.1016/j.envsoft.2012.01.014> Environmental
 382 Modeling & Software, (Andreas Rabe, Patrick Hostert) July 2012, Pages192-193. 35.

383 [Löw et al. (2013)] *Impact of feature selection on the accuracy and spatial uncertainty of per-field crop
 384 classification using Support Vector Machines*, ISPRS Journal of Photogrammetry and Remote Sensing,
 385 Volume85, F Löw , U Michel , S Dech , C Conrad . 10.1016/j.isprsjprs.2013.08.007. <http://dx.doi.org/10.1016/j.isprsjprs.2013.08.007> November 2013. p. .

387 [Borra and Di Ciaccio (Volume38, Issue4, 28February2002. Pages 407-420,ISSN01679473)] 'Improving nonpara-
 388 metric regression methods by bagging and boosting'. Simone Borra , Agostino Di Ciaccio . 10.1016/S0167-
 389 9473(01. [http://dx.doi.org/10.1016/S0167-9473\(01](http://dx.doi.org/10.1016/S0167-9473(01) Computational Statistics &Data Analysis Vol-
 390 ume38, Issue4, 28February2002. Pages 407-420,ISSN01679473. p. .

391 [Rodríguez-Galiano et al. ()] 'Incorporating Spatial Variability Measures in Land-cover Classification using
 392 Random Forest'. V F Rodríguez-Galiano , F Abarca-Hernández , B Ghimire , M Chica-Olmo , P M Akinson ,
 393 C Jeganathan . 10.1016/j.proenv.2011.02.009. <http://dx.doi.org/10.1016/j.proenv.2011.02.009>
 394 Procedia Environmental Sciences 1878- 0296. Volume3,2011. p. .

395 [Özyer et al. (2007)] 'Intrusion detection by integrating boosting genetic fuzzy classifier and data mining
 396 criteria for rule prescreening'. Tansel Özyer , Reda Alhajj , Ken Barker . 10.1016/j.jnca.n2005.06.002.
 397 <http://dx.doi.org/10.1016/j.jnca.n2005.06.002> Journal of Network and Computer Applications
 398 January 2007. 30 (1) . (Pages 99-113, ISSN1084-8045)

399 [Rajasekhar et al.] 'Magnetic resonance brain images classification using linear kernel based Support Vector
400 Machine'. N Rajasekhar , S J Babu , T V Rajinikanth . *2012Nirma University International Conference on*,
401 5 p. 68. (Engineering (NUiCONE))

402 [Nemmour and Chibani (2006)] 'Multiple support vector machines for land cover change detection: An applica-
403 tion for mapping urban extensions'. Hassiba Nemmour , Youcef Chibani . 10.1016/j.isprsjprs.2006.09.004.
404 <http://dx.doi.org/10.1016/j.isprsjprs.2006.09.004> *ISPRS Journal of Photogrammetry and*
405 *Remote Sensing* November 2006. 61 (2) . (Pages 125-133,ISSN0924-2716)

406 [Lam Hong Lee et al. ()] *Oil and gas pipeline failure prediction system using long range ultrasonic trans-
407 ducers and Euclidean-Support Vector Machines classification approach, Expert Systems with Applica-
408 tions, Volume40, Issue6*, Rajprasad Lam Hong Lee , Lai Hung Rajkumar , Chin Lo , Dino Heng Wan
409 , Isa . 10.1016/j.eswa.2012.10.006. <http://dx.doi.org/10.1016/j.eswa.2012.10.006> May 2013,
410 Pages1925-1934.

411 [Topouzelis and Psyllos (2012)] 'Oil spill feature selection and classification using decision tree forest on SAR
412 image data'. Konstantinos Topouzelis , Apostolos Psyllos . 10.1016/j.isprsjprs.2012.01.005. <http://dx.doi.org/10.1016/j.isprsjprs.2012.01.005> *ISPRS Journal of Photogrammetry and Remote Sensing* 0924-
413 2716. March 2012. 68 p. .

414 [Pages 198-209,I SSN 0925-2312 (2013)] 10.1016/j.neucom.2013.05.040. <http://dx.doi.org/10.1016/j.neucom.2013.05.040> Pages 198-209,I SSN 0925-2312, December 2013.

415 [Shataeea et al. ()] 'Plot-level Forest Volume Estimation Using Airborne Laser Scanner and TM Data, Com-
416 parison of Boosting and Random Forest Tree Regression Algorithms'. Shaban Shataeea , Holger Weinaker
417 , Manoucher Babanejad . 10.1016/j.proenv.2011.07.013. <http://dx.doi.org/10.1016/j.proenv.2011.07.013> *Procedia Environmental Sciences* 1878- 0296. 2011. 7 p. .

418 [Pino-Mejías et al. (2010)] 'Predicting the potential habitat of oaks with data mining models andtheR system'.
419 Rafael Pino-Mejías , María Dolores Cubiles-De-La-Vega , María Anaya-Romero , Antonio Pascual-Acosta
420 , Antonio Jordán-López . 10.1016/j.envsoft.2010.01.004. <http://dx.doi.org/10.1016/j.envsoft.2010.01.004> *Environmental Modelling & Software*, July 2010. 25 p. . Nicolás Bellinfante-Crocci

421 [Song Feng (2012)] 'QBoost: Predicting quantiles with boosting for regression and binary classification'. Zheng
422 Song Feng . 10.1016/j.eswa.2011.06.060. <http://dx.doi.org/10.1016/j.eswa.2011.06.060> *Expert
423 Systems with Applications* 0957- 4174. 1 February 2012. 39 (2) p. .

424 [Rahim et al. ()] N , Abdul Rahim , M P Paulraj , A H Adom . 10.1016/j.proeng.2013.02.054. <http://dx.doi.org/10.1016/j.proeng.2013.02.054> *Adaptive Boosting with SVM Classifier for Moving Vehicle
425 Classification, Procedia Engineering*, 2013. 53 p. .

426 [Özçift (2011)] 'Random forests ensemble classifier trained with data resampling strategy to improve cardiac
427 arrhythmia diagnosis'. Akin Özçift . 10.1016/j.combiomed.2011.03.001. <http://dx.doi.org/10.1016/j.combiomed.2011.03.001> *Computers in Biology and Medicine* May 2011. 41 (5) . (Pages 265-271
428 ,ISSN0010-4825)

429 [Pall Oskar Gislason et al. (2006)] 'Random Forests for land cover classification'. Jon Atli Pall Oskar Gislason
430 , Johannes R Benediktsson , Sveinsson . 10.1016/j.patrec.2005.08.011. <http://dx.doi.org/10.1016/j.patrec.2005.08.011> *Pattern Recognition Letters* 0167-8655. March 2006. 27 (4) p. .

431 [Xiao et al. (2013)] 'Sleep stages classification based on heart rate variability and random forest'. Meng Xiao ,
432 Hong Yan , Jinzhong Song , Yuzhou Yang , Xianglin Yang . 10.1016/j.bspc.2013.06.001. <http://dx.doi.org/10.1016/j.bspc.2013.06.001> *Biomedical Signal Processing and Control* November 2013. 8. (Pages
433 624-633, ISSN1746-8094)

434 [Peng et al. ()] *Structural twin parametric-margin support vector machine for binary classification, Knowledge-
435 Based Systems*, Xinjun Peng , Yifei Wang , Dong Xu . 10.1016/j.knosys.2013.04.013. <http://dx.doi.org/10.1016/j.knosys.2013.04.013> September2013. 49 p. .

436 [Lin et al. ()] 'Study on Recognition of Bird Species in Minjiang River Estuary Wetland'. Hongji Lin , Han Lin
437 , Weibin Chen . 10.1016/j.proenv.2011.09.386. <http://dx.doi.org/10.1016/j.proenv.2011.09.386>
438 *Procedia Environmental Sciences* 1878-0296. 2011. p. .

439 [Abedi et al. ()] 'Support vector machine for multiclassification of mineral prospectivity areas'. Maysam Abedi
440 , Gholam-Hossain , Abbas Norouzi , Bahroudi . 10.1016/j.cageo.2011.12.014. <http://dx.doi.org/10.1016/j.cageo.2011.12.014> *Computers & Geosciences* 0098-004. September2012. 46 p. .

441 [Bosch et al. (2013)] 'Support vector machine under uncertainty: An application for hydroacoustic classi-
442 fication of fish-schools in Chile'. Paul Bosch , Julio López , Héctor Ramírez , Hugo Robotham .
443 10.1016/j.eswa.2013.01.006. <http://dx.doi.org/10.1016/j.eswa.2013.01.006> *Expert Systems with
444 Applications* August 2013. 40 (10) . (Pages 4029-4034,ISSN0957-4174)

445 [Gunn ()] *Support Vector Machines for Classification and Regression*, Steve R Gunn . May1998. Faculty of
446 Engineering, Science and Mathematics School of Electronics and Computer Science, University Of South
447 Hampton (Technical Report)

458 [Meyer (2012)] *Support Vector Machines The Interface to lib svm in package e1071*, David Meyer . September,
459 2012. Austria. Technische University of Wien

460 [Yang et al. (2013)] ‘The one-against-all partition based binary tree support vector machine algorithms for multi-
461 class classification’. Xiaowei Yang , Qiaozhen Yu , Lifang He , Tengjiao Guo . 10.1016/ j.neucom.2012.12.048.
462 *Neurocomputing* 0925-2312. 3 August 2013. 113 (1-7) .

463 [Martínez-Muñoz and Suárez (2007)] ‘Using boosting to prune bagging ensembles’. Gonzalo Martínez-Muñoz ,
464 Alberto Suárez . 10.1016/j.patrec.2006.06.018. <http://dx.doi.org/10.1016/j.patrec.2006.06.018>
465 *Pattern Recognition Letters* 1 January 2007. 28. (Pages 156-165, ISSN0167-8655)

466 [Genuer et al. (2010)] ‘Variable selection using r random forests’. Robin Genuer , Jean-Michel Poggi , Christine
467 Tuleau-Malot . 10.1016/j.patrec.2010.03.014. <http://dx.doi.org/10.1016/j.patrec.2010.03.014>
468 *Pattern Recognition Letters* 15 October 2010. 31 (14) . (Pages 2225-2236, ISSN0167-8655)

469 [Hu et al. (2012)] *XiuliSi, Fish species classification by color, texture and multi-class support vector machine using*
470 *computer vision, Computers and Electronics in Agriculture*, Jing Hu , Daoliang Li , Qingling Duan , Yueqi Han
471 , Guifen Chen . 10.1016/j.compag.2012.07.008. <http://dx.doi.org/10.1016/j.compag.2012.07.008>
472 October 2012. 88. (Pages 133-140, ISSN0168-1699)