

Algorithm and Design Techniques -A Survey

T Saranya

Received: 7 December 2018 Accepted: 5 January 2019 Published: 15 January 2019

4

Abstract

Algorithm design plays a significant role in development of any application that is concerned with engineering and technology. Advancement in implementation levels of algorithms made a good impact with the model developed. Meanwhile, the time and space complexity of the execution of the algorithm varies with regard to the input to the algorithm upon fixation of various parametric levels. This paper summarizes a survey on various algorithm design techniques and its applications. The applicability of the algorithms varies with regard to the problem and the nature of computation levels.

13

14 **Index terms**— algorithm design; linearity; dynamic programming; greedy techniques; non-linearity.

1 Introduction

15 n algorithm is a step by step procedure which helps us to solve a problem in a sequential order. The problems are all different from one another. There are different techniques of algorithm which are suitable for each problem. The techniques are Divide and Conquer method, Greedy Method, Dynamic Programming and Backtracking. In divide and conquer, the original problem is divided into sub problems and these sub problems are solved individually then combine the solved problems to get a solution for the original problem. In greedy algorithm, it produces an optimal solution for a problem. Greedy algorithm is generally used to solve a complex problem rather than an easy one. It breaks the complex problem into a small instance and solve them recursively until the best optimal solution is gathered from the small instances of that problem. Dynamic programming technique is used to optimize the result by divides the problem into smaller sub problems and solving the smaller problems to obtain the ultimate problem. This technique recursively solves the program to obtain the optimal solution for the problem. Backtracking algorithm is an optimization technique where the solution for the problem can be backtracked many number of times until the best solution is obtained from the algorithm. The backtracking process is different for the different problem. Branch and bound technique is the another method of solving a problem to get the optimal solution. This algorithm technique is mainly used to produce the lower cost for the problem along with optimal solution. The last technique is the linear programming whereas the solution for the problem includes the maximum profit, shortest path and also in lower cost for that solution. In algorithm, there are two types of data structure. They are liner data structure and nonlinear data structure. In linear data structure, the data are arranged in the sequential order but in nonlinear data structures, the data are not arranged in sequential order but in random manner. The linear and nonlinear structures helps to store the data with the algorithm technique this data can be efficiently handled. There are many algorithms which help to manipulate the data in different forms. The linear algorithms are array, linked list and stack and queue. The array helps to store data in the each index present in the array. The linked list is of three types, they are single linked list, double lined list and circular linked list. These linked lists are used to store data in the form of node. Each node consists of both data section and link section, where the data section consists of the data of each node and in the link section it contains the address of the next data to be stored. In stack data structure, the data are stored in FILO fashion. The first entered data are to be deleted at the last time form the stack. In the nonlinear data structures the algorithms presented are trees, graphs, dictionaries, heaps and tries. In trees, the data are stored in tree format where the tree can be in various forms such as binary search tree, AVL tree, B tree and Splay tree. In graph data structure, there are algorithms such as Bellman ford and Floyd warshall. In dictionary, skip list algorithm is used to help the data structure for the efficient storing of data. In network data structure, the Ford Fulkerson and Edmond karps algorithm are used to store the data in handling the data in

3 LITERATURE SURVEY

47 the network format. In tires, there are three formats. They are standard tries, compressed tries and also suffix
48 tries. In addition to these algorithms there are text matching algorithms such as Brute force algorithm, Boyer
49 Moore algorithm and KMP algorithm. The text compression algorithms are Huffman coding algorithm where
50 the compression of data is used to handle the encoding of data.

51 2 II.

52 3 Literature Survey

53 Maximum Independent Set Approximation Based on Bellman-Ford Algorithm by Mostafa H. Dahshanis proposed
54 by in this algorithm to be found the approximate solution for the maximum independent set problem. It is treated
55 to least cost problem to be taken by in this novel approach. It can be used to bellman ford algorithm adapted
56 version Source is consist of all vertex and vertex should be measured by the number of vertex excluded in this
57 vertex independent set are included. The run time of the these algorithm is approximately $O(n(n^2-m))$. The
58 proposed algorithm is significant changed by several bench marks and random generated graph are improved. In
59 this method include one of the best greedy algorithms. Future work is proposed algorithm to be only focused on
60 run time and space requirement and lower bound theoretical independent numbers. Mathematical formulations
61 and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem by Juan Carlos
62 Rivera, a, b, *, H. Murat Afsara, Christian Prinsa is proposed by In this paper is CCRVP disaster manage the
63 single tripe arrive problem. Single vehicle arrive the short period reach in to destination and to successive tripe
64 to set off affect sites in which that select the minimization of standard. If it is used to two types of programs
65 like flow based model and set partitioning model. Bellman ford algorithm to direct acyclic resource constrains so
66 it's reduce the path of the sites. The future work the version of node routing problems to be detect in selective
67 VRP. Mt-CCRVP includes the column generation scheme. Similar to the sum of the arrival time to be reflected
68 is also interesting the priorities.

69 An Efficient Implementation of the Bellman-Ford Algorithm for Kepler GPU Architectures by Federico Busato
70 and Nicola Bombieri, Member, IEEE. Is proposed by in this algorithm find the single path problem it is find
71 best solution for single source shortest path. They are applied to many core architecture of parallelized. High
72 degree of parallelism is cannot surely performed at the cost of low work adeptness. If they are compare to the
73 similar algorithm the work consumption is a waste of power. The bellman ford algorithm parallel implement
74 to in this process it can be involved to exploits architecture of recent GPU architecture. To improved GPU
75 performance and work efficiency. In this paper focused to two things one is algorithm and another one is GPU
76 architecture. Parallel Implementation of Bellman-Ford Algorithm Using CUDA Architecture by Ganesh G Surve,
77 Medha A shah is proposed by the larger graph involves to multiple of vertex and edges. The millions of vertex
78 are apply many real time common applications and face to many challenges. Now a day multiple of application
79 like travelling problem, shortest path problem, routine network and robotic system in these application are based
80 to data routine techniques in this data represent in a graph. The graph is direct and negative cycle weighted
81 graph. Now a day growing the data application but still situation need for speed and real time response. The
82 serial algorithm takes large amount of time. An optimization problem in graph theory of bellman ford algorithm
83 easy to solve the single source shortest path problem. In this paper improve the GPU architecture of NVIDIA
84 performance and workload efficiency and it is implement the bellman ford algorithm. In this paper newly
85 introduce the parallelizing Bellman-Ford Algorithm and implement the new version of the algorithm over the
86 CUDA framework. The NVIDIA programming interface name is CUDA. The future work is done by they are
87 modifying the bellman ford algorithm. The divided in to the partitioning and execution of algorithm for both
88 CPU and GPU architecture. They are used to obtaining higher massive parallelism and vectorization.

89 Efficient Implementation of the Bellman-ford algorithm for GPU by Marjan Nazarifard, Davoud Bahrepour
90 is proposed by Bellman ford algorithm is only focused to solve the shortest path to the source node. It can be
91 enabling to negative cycle weighted graph. It is fine single source path problem and analysed by graph used
92 to common algorithm. Moreover, it is represents a class of parallel algorithms, the memory accesses and work
93 distribution of which are both irregular and datadependent. Recently, graphics processors have been used for
94 implementing many algorithms, as well as an accelerator in supercomputers. Several SSSP algorithms have been
95 proposed based on graphics processing units (GPUs), each of which could traverse a specific type of graph. In
96 this paper, we accelerated the Bellman-Ford algorithm on GPU using CUDA, so that it could traverse dense and
97 sparse graphs (regular and irregular) within the shortest time compared to the previous algorithms. According
98 to the simulation results, the proposed implementation provided an average speed-up of 1.87x compared to most
99 of the previous parallel implementation algorithms. Future work is done by If it is future work to remove the
100 feck threat in beginning of the process. So reduce the time and memory. The way of feck threaded path to be
101 allotted by another thread.

102 Demonstration of Single Link Failure Recovery using Bellman Ford and Dijil (stra Algorithm in SDN by Syed
103 Waleed, Muhammad Faizan, MaheenIqbal, Muhammad Irfan Anis is proposed to In this paper to be found the
104 failure recovery mechanism was software defined network it is conducted to development of employee nodes. In
105 this SDN domain is rarely used the algorithm field. It's allows to network inside programmability. In node failure
106 recovered dynamic application building of bellman ford algorithm. The bellman ford algorithm is implemented
107 by loop confrontation and reduction. They are compare to another second algorithm is Dijkstra's algorithm.

108 Dijkstra's algorithm failure recovery mechanism to be compared based on the node bandwidth allocation. The
109 future work is the Dijkstra's algorithm techniques are reducing the processing time and calculate the any A
110 bag of paths framework for network data analysis by Kevin Francois, IlkkaKivimaki, Amin Mantrach, Fabrice
111 Rossi, Marco Saerens, is proposed to analysis the network data it is generic framework as (BoP). The network
112 path is assign to the probability distribution format. The two node are connected to the probability capture
113 notation based and It has connect high accessibility preferably low cost paths so it is extended to the bellman
114 ford algorithm. Future work done by to be investigating the graph cut the path instead of link. We also plan to
115 evaluate experimental the potential distance as the distance between sequence of character by adapting it to a
116 directed acyclic graph.

117 To be investigating the graph cut the path instead of link. we also plan to evaluate experimental the potential
118 distance as the distance between sequence of character by adapting it to a directed acyclic graph by Anggie
119 Nastiti, Andrian Rakhmatsyah, Muhammad Arief Nugroho, is proposed to In Telkom University, the topology
120 used does not have backup link for campus internal network in case of link failure because the topology is still
121 based on inter VLAN where each switch only has one path to switch core. Data packets cannot be delivered from
122 source to destination if there is a link failure on the path. Based on the problem, it is proposed a new architecture
123 which is Software Defined Network (SDN) that can overcome the link failure by configuring the controller in order
124 to move to alternative links that have been provided with Open Flow. This architecture separates the control
125 plane and data plane, so it is centralized and programmable. To look for alternative links when a link failure
126 occurs, the shortest path algorithm is Dijkstra and Bellman-Ford algorithms. The test parameters performed
127 in this research are functionality to determine whether the two algorithms can determine the path or not, and
128 convergence time to find out how long it takes to form the path from source to destination. Scenario of the test
129 is done before and after the link failure occurs by using Ryu as controller and Mininet as emulator. Based on the
130 results of the tests conducted, it was found that Dijkstra and Bellman Ford algorithm can be applied well on link
131 failure emulation in accordance with the scenario and topology used in the test. In addition to convergence time
132 parameters obtained that Dijkstra algorithm is superior compared to Bellman-Ford algorithm. The difference
133 gained in both scenarios has a value that is not so great the difference. The future work done by some links are
134 disconnected, both Dijkstra and Bellman-Ford algorithms find alternative paths to delivery data packets from
135 sources to destination. As for the convergence time test, it was found that Dijkstra algorithm is superior to the
136 Bellman-Ford in scenarios before and after a link failure occurs. The difference between them is also not big.
137 This is because the Bellman-Ford algorithm to find the shortest path always checks if there is negative weight
138 cycles or not, so as to make search path becomes longer. Differences in the number of links it was decided also
139 to affect the value of convergence time obtained.

140 On the optimality of bellman ford Moore shortest path algorithm by Stasys Jukna, Georg Schnitger, is proposed
141 to The lower bound of the Switching and rectifier networking size is over any semiring is a zero characters. The
142 minimum semi ring is also zero character.

143 So it is used to bellman ford-Moore dynamic algorithm in which to find the shortest path for S-T. the future
144 work is done by In this paper consist of single variable labelled Switches. If can extended in this model added to
145 the some Switching networks. It is extended to random combination with integral factor. So albeitbellman fords
146 Moore switching network does not add some peripheral structures in which problem to other minimization.

147 Face Image Abstraction by Ford-Fulkerson Algorithm and Invariant Feature Descriptor for Human Identifi-
148 cation by Dakshina Ranjan, Kisku Debanjan Chatterjee, S. Trivedy, Massimo Tistarelli is proposed by In this
149 paper discuss about the face image abstraction let used to SIFT features and ford Fulkerson algorithm. Ford
150 Fulkerson algorithm solves the maximum flow in flow network. It can be drawn on face image extract from
151 SIFT feature. If find the augmenting path is exit then and Augmenting path fine the based on vertex. The
152 flow of source to destination of flow value is augmenting path. All vertexes along with edges calculated to one
153 of the paths. In this process until obtained to multiple of times produce the number of different flow paths.
154 The path to be compute residual capacity of augmenting path. The result of in this paper is capture the face
155 image directed graph contains spare characteristics of objects. Ford Fulkerson algorithms apply to direct graph
156 maintain a capacity. Run time of algorithm is $O(VE)$ v is a vertex and E is a edges. Future work is used to face
157 image meth pairs for calculating matching proximity. They are focused to the maximum flow of key words.

158 Hydraulically informed graph theoretic measure of link criticality for their salience analysis of water distribution
159 networks by Aly-Joy Ulusoy, Ivan Stoianov and Aurelie Chazerain is proposed by in this paper algorithm is include
160 by water Distribution network. This network to be complex for interconnected. It is built to resilience based
161 on energy redundancy. Failure condition operation is maintained. There are analyse the salience of WDN used
162 various methods it is analysed to base on sorrow gate way network measures. The future work is done by apply the
163 WFEBC method. They are arrange to operational network in validate of order to robustness. The also explore
164 the hydraulically in formed graph. The theoretic link measure to be critical approach of hydraulic models. In
165 this model based salience analysed.

166 Chance distribution of the maximum flow of uncertain random network by Yuhong Sheng and Jinwu Gao
167 is proposed by the uncertain variables and other random variables are called as uncertain random network. In
168 this paper to be solve the maximum flow of uncertain random network. It might be change the distribution of
169 uncertain random network. In this paper implement the maximum flow of distributed uncertain random network.

3 LITERATURE SURVEY

170 It is only focused on maximum flow of uncertain network. The future work is data analytics method to be used
171 and improve the sufficient mathematical approach.

172 Minimax properties of some density measures in graphs and digraphs by Janet Anderson, Hong-Jian Lai,
173 Xiaomin Li, Xiaoxia Lin & Murong Xu is proposed to For a graph G , let $f(G)$ denote the connectivity $\gamma(G)$, or
174 the edge connectivity $\delta(G)$, or the minimum degree $\delta(G)$ of G , and define $f(G) = \max\{f(H) : H \text{ is a sub graph of } G\}$. Mutual in [K-components, clusters, and slicing in graphs, SIAM J. x theorems related to $\gamma(G)$ and $\delta(G)$, and
175 obtained polynomial algorithms to determine $\gamma(G)$ and $\delta(G)$. The restricted edge-connectivity of G , denoted by
176 $\gamma_2(G)$, is the minimum size of a restricted edge-cut of G . We define $\gamma_2(G) = \max\{\gamma_2(H) : H \subseteq G\}$. For a digraph
177 D , let $\gamma(D)$, $\delta(D)$, $\gamma_2(D)$ and $\gamma_3(D)$ denote the strong connectivity, arc-strong connectivity, minimum in-degree
178 and out-degree of D , respectively. The future work is the connectivity of graph is activate to the polynomial
179 algorithm method we are try to new version of the algorithm.

180 Using basis dependence distance vectors in the modified Floyd-Warshall algorithm by Włodzimierz Bielecki ?
181 Krzysztof Kraska ? Tomasz Klimek is proposed to In this paper, in this paper to be focused on Floyd-Warshall
182 algorithm. Floyd-Warshall algorithm to be modified for this paper approach. Where the algorithm is most
183 dependent to time consumption it is calculated to self-dependent of loop statement. In this statement is applied
184 to self-dependence. The self-dependence is consisting of distance vector derived from all vectors description.
185 The present approach is reducing the transitive closure calculation. Transitive closure of dependence graph is
186 increase the applicability scope.it is being to build for optimization compiler. The results of experiment for
187 parallel benchmark are discussed in NASA. Future work is application of the presented approach for extracting
188 both coarse-and fine -grained parallelism for different popular benchmarks.

189 Probabilistic Calculation of Tolerances of the Dimension Chain Based on the Floyd-Warshall Algorithm by A.
190 V. Muholzoeva, V. B. Masyagina, b,* is proposed to In this paper proposed to process to mechanical engineering
191 is a time consuming of tolerance analysed it take requiring automation. In this algorithm developed to individual
192 chain to be identified.

193 In this task is more difficult. The algorithm is avoiding the difficult logarithmic procedure. They are followed
194 by the Floyd war shall algorithm for probability of closing tolerance units. It calculates the graph length of the
195 path by adding the length of pairs. The algorithm is identifying individual dimension. In this method to be
196 complex for solve the entire structure of the graph. The future work is added to calculate the dimensional circuits
197 and significantly implemented. They are used new version of the graph algorithm.

198 Shmuel T. Klein, MiriKopel Ben-Nissan (2009) proposed Boyer Moore algorithm can also be used for the
199 binary data where the processing can only be done on the entire blocks so the number of comparisons done can
200 be reduced. This method is applied to the BM algorithm with small change in the delta value. The mismatch
201 occurs only when the length of the suffix of the pattern bytes is not matched with the length of the full text
202 bytes. Here, instead of comparing the one bit with other it can also be done with a four bytes' comparison such
203 as word. It reduces the comparison and also the time complexity of the process. In future, the authors proposed
204 that it can be also used for the Fibonacci codes where the fast search is possible in the binary data.

205 Frantisek Franek, Christopher G. Jenning, W. F. Smyth (2007) proposed the combination both KMP Knuth
206 Morris Pratt Algorithm along with the Boyer Moore algorithm to form a new algorithm which is a hybrid
207 algorithm. Here, it compares the text with the pattern in the normal form as done on KMP algorithm if the
208 text is not matched with the pattern then the Sunday shift takes places where the method is similar to the BM
209 algorithm's whole shift process where the text is not found anywhere in the pattern. The benefits of both KMP
210 and BM is combined to form this hybrid algorithm. Thus, it producing a time and space complexity of $(m + k)$ times.
211 This proposed method can be applied to the faster algorithm where it avoids the text that are not
212 matching with each other.

213 Ain Zubaidah Mohd Saleh, Nur Amizah Rozali (2015) proposed the Boyer Moore algorithm which can be used
214 to find the vulnerability in the websites. This method is more useful than that of the other traditional methods
215 in terms of results. Here, the false positive is completely avoided to produce higher results. Uniform Resource
216 Locator (URL) is used in the BM algorithm to detect the vulnerability for finding the two process which are
217 efficiency and accuracy of detection of the vulnerabilities. In future, this proposed method can also have applied
218 with hybrid algorithm to provide more accurate results.

219 Phyela Mbewe, Sampson D. Asare (2017) proposed that the Huffman coding algorithm which is a text
220 compressing algorithm is used in the images. The image files are compressed with the help this algorithm
221 to reduce the size and time complexity of the process.

222 Here, the Adaptive Huffman coding results is compared with the Arithmetic Huffman coding results to get the
223 precise results for the image compression. The Arithmetic approach is better the Adaptive in terms of the space
224 where the Adaptive algorithm is better than the Arithmetic algorithm in terms of the time. Here, this method
225 is applicable only to the files of images which are all in larger size. In future, the authors proposed that it can
226 also be applied to the social networking and the big data images also.

227 Yosang Jeong, Myungho Lee (2015) proposed that the Boyer Moore algorithm calculates the two shift rules of
228 the strings in the preprocessing phase. In the second phase, the matching operations are to be performed against
229 the text of the string. The pattern matching process is a time consuming process and it requires parallelization
230 of the process to reduce the time consuming process. This can be achieved in most of the CPUs and also applied
231 to the many core processors. It can also be applied to the multi core processors. This type of parallelization is

233 helpful for the optimization of the load balancing using threads, and also helps the results generated are less time
234 consuming than the normal process. In future the authors suggested that this can also be applied to the GPUs
235 such as CUDA programming which also helps to retrieve the pattern matching of the strings.

236 Ahsan Habib, Mohammad Shahidur Rahman (2017) suggested that the compression process of the Huffman
237 coding is same but it has different decoding process which helps in fast production of the results. It can be
238 done with the help of the quaternary tree helps to reduce the time used by the algorithm. It contains both the
239 quaternary Huffman encoding and quaternary Huffman decoding process. It is done by replacing the binary tree
240 with the use of the quaternary tree. This process can be used in the client and server environment which reduces
241 the time delay between the decoding processes. It provides high end security with less amount of time taken for
242 the decoding purpose.

243 Thierry Lecroq (1994) proposed that the Boyer Moore algorithm where the position of i in the text, which
244 helps to compute the length of the longest suffix which is to be find from the text ending at the position. This
245 technique is used to find the text form the word. This method is better than that of the earlier method of Boyer
246 Moore method. This automaton helps to find the largest number of word from the process. This process is
247 further used to calculate the matching pattern.

248 Yih-Kai Lin, Shu-Chien Huang, and Cheng-Hsing Yang (2011) proposed that the new Huffman Coding method
249 is better than that of the conventional method of Huffman coding. Here the result produced by the new algorithm
250 ranges from 1.91 to 2.13 where the processing unit is 10. Tree grows and Tree prune is applied to the decoded
251 version the Huffman code tree structure. The running time increases with due to the increase in the cache misses
252 and also y the reduced time from the average decoding symbol of the table. This process maintains the efficiency
253 of the decoding process of the algorithm.

254 Bruce W. Watson (2002) proposed that the new algorithm form a precomputed and tabulated function with
255 the help of the shift functions. This shift functions are far better than that of the Knuth Mooris Pratt algorithm
256 where the time complexity is much reduced in this process. Here, the authors used to approach two methods
257 where the first approach helps to use the shift distance which improves the algorithm. In second approach, the
258 shift distance helps to find the matching text from the pattern.

259 Wei-Wei Lu and M.P. Gough (1998) proposed that Huffman coding algorithm with the use o two trees. They
260 are front tree and back tree. The front tree is an adaptive Huffman code, the symbol is encoded only with the
261 number of occurrence or frequency of the symbol. The symbol with high frequency is placed in the front tree
262 where as the lower frequency is placed in the back tree. The proposed algorithm is 2.5 times faster than that
263 the Huffman coding. The compression efficiency of the new algorithm is affected by the dispersion of the data.
264 Here, the new algorithms have less dispersion of data where the compression of the data is practically higher.

265 Ghim Hwee Ong (2000) proposed that Heap sorting method is used to sort the data in the Huffman coding
266 algorithm where this method provides efficient result than that of the traditional approach. Here, the Heap
267 sorting method i applied on the binary tree of the algorithm. This algorithm provides less time complexity in
268 worst case also. This process is applied to the reverse process applications which are required in the real time
269 process.

270 Steven Pigeon, Yoshua Bengio (1993) proposed a new method Huffman Coding method consists three
271 conceptual methods. The methods are set representation, set migration and tree rebalancing. Set migration
272 moves symbols form one set of data to other. This process helps to ease the rebalancing method where the time
273 complexity is at the $O(\log p(s))$ times. This method concludes that the M algorithm is much slower than that
274 of this Huffman coding algorithm. In future, this method can efficiently apply for the memory management
275 method.

276 Wang Zhe, Chen Jun, Yuan Gang Zhao Zhou Yan (2001) proposed that a new algorithm where the matching
277 of image is done with the help of KMP algorithm. Extraction of the contour, extracting the contour of fragments
278 as done with the help of this algorithm. The whole algorithm depends on the hardware which provides efficiency
279 and accuracy. This can be widely applied to the medical field for the detection of diseased or affected region of
280 the body from normal function.

281 Qingzhu Meng, Zhenming Lei, Dazhong He (2017) proposed that the KMP algorithm with modification that
282 can be applied to the traffic analysis. Partition algorithm is used here is the k means algorithm produces the
283 actual solution to the problem which improves the efficiency of the KMP. This KMP algorithm is customized with
284 the traffic analysis. This algorithm can be applied to the hardware application is also depends on the efficiency
285 and accuracy of the data. This method is efficiently applied for the secure environment where the traffic signals
286 are to be prompted with this approach.

287 The improvement of the brute-force searching algorithm is proposed in the name of Star-End-Mid algorithm
288 by Abdeen. This proposed algorithm is not preprocess neither the pattern nor the text to perform searching.
289 The start-to-end algorithm start the searching process by comparing the first character of the pattern and first
290 character of the given text. If the first character is matched then the last character of the pattern and last
291 character of the text from taken sample. If the last character of the sample matched then character by character
292 comparison will take place for the taken sample, for the remaining character there is no need to take comparison.
293 The proposed algorithm start-end-mid avoids the preprocessing for the pattern therefore this improves the time
294 complexity involved in brute-force algorithm. The future work of this algorithm can be implemented for effective
295 string searching on huge volume of data and also well suited for hospital patient management software for simple

296 and fast search of patient details with the given sample of pattern. The algorithm Start-End-Mid works based on
297 the idea of first, last and mid character of the pattern is compared with the first, last, mid character of the text for
298 the given sample. This start by separating the text into two segments from the index 0. In the second step it will
299 compare the first character if the match occurs it will move on to the second step else it will move on to next index
300 of character. In the second step the last character of the pattern is compared with last character of the text if the
301 match occurs then it will proceed the next step else it will go to the second step. In the third step it will check
302 the length of the pattern if it has two character then follows the next step. If it has more than two character then
303 compare the floor(length of the pattern/2) of the pattern with the text floor(length of the pattern/2) character,
304 from this if a match occurs, it will take the next step else it will work on next segment of the text and follow
305 the step 1. The improved version of brute force algorithm that is Start-End-Mid working process of checking has
306 been improved the time of searching by avoiding the character by character matching comparison. The Start-End-
307 Mid algorithm time complexity is $O(((n-m)+1^*(m-3)))$. LUPIN by using the brute force algorithm, topology of the
308 wireless network is optimized. This optimization will ensure the reduction involved in computational complexity
309 of the algorithm by implementing multi-thread application for processing optimization. The topology of wireless
310 network connection should contain point-point, point-multipoint, peer-peer. These stages of network topology
311 of spatial distribution of forming communication channel this in turn to create various types of optimization
312 algorithm. The requirements need to be undertaken while optimizing the network topology such that cost, level
313 of security, uniformity. The genetic algorithm is often used to solve problems in optimization, which is based on
314 natural selection. The genetic algorithm can be used where the standard algorithm can't work well to resolve the
315 optimization problem. There is computation complexity and difficulties in genetic algorithm as well as in modified
316 genetic algorithm (Bhondekar et al.). The proposed algorithm for optimization is based on search algorithm called
317 Brute Force Algorithm. Due to the improvement in processors and accelerators the implementation of brute force
318 algorithms became more. The finite set of network elements (E_n) occupies the possible position points (P_k).
319 The number of possible position points should be larger than the number of elements ($k > n$). The D_n is the
320 N -dimensional vector which is the solution of the problem and it belongs to the position points. F is the function
321 finding distribution of the element ($F(d_n) = \min(\max)$). This problem allows the brute force algorithm to a
322 multi-thread application. The optimization criteria should contradict each other (the accuracy of function should
323 depends on coordination of antennas). This is the problem of multicriteria optimization. In corresponding to the
324 criteria function, brute force algorithm makes analyses and select the option for that and providing invariance of
325 algorithm. The computation complexity is defined as $O(K_n)$, k_n is calculated for each points. The decision
326 will be obtain as a set of local optimum variants where, by the fragmentation of the topology, the task of network
327 topology design to a simplified to reduce the computation. The parallel platform algorithm is taken because the
328 design of network topology is much complicated. To determine the location of element in wireless network is
329 confirmed by using the brute force algorithm. This brute force algorithm is very effective and there is no need
330 for any reorganization of application due to invariant in relating to criteria function.

331 The implementation through FFT and IFFT (inverse fast Fourier transform) to examine fast discrete
332 convolution algorithm by HAYANAL. In some case, the combination of FFT and IFFT in fast convolution
333 allows better freedom by selecting valid twiddle factor. By exploiting the freedom and use SAT solvers in order
334 to find new fast convolution algorithm with very minimum count of operation. To find FFT algorithm within
335 larger solution space the working of brute force search algorithm state of the art Boolean satisfiability (SAT)
336 solvers. The future work employed on this algorithm SAT

337 **4 Global Journal of Computer Science and Technology**

338 Volume XIX Issue III Version I 48 Year 2 019 () C based brute force search will explore enlarging the solution
339 space, and also formulating search objectives other than reducing the operation count. The proposed SAT based
340 brute force search is used to find FFT algorithm with lower flop count than the split-radix and higher flop
341 count than tangent FFT, due to the constraint that the twiddle factor must be n th root of unity. In order to
342 search selected instance than that will require fewer flops, in large FFT so we can cast the search as based on
343 Boolean satisfiability (SAT) problem. By using satisfiability modulo theory (SMT) the integer arithmetic (\bmod
344 n) accommodation will done. The search will take place by two modification to FFT search to be made first
345 modification done in the bottom row node of the FFT (no cost). final multiplication undo any of the residual
346 weight on base, these multiplication will not needed in the final fast convolution will equal, therefore FFT flow
347 graphs are feasible to search. Finding fast convolution algorithms with the lowest known operation count is done
348 by the brute force search techniques based on SAT. This ensures the constraints of the formula by the established
349 bounds for the lowest possible FLOP count in the fast convolution.

350 The parameter search in a four dimensional space using an epipolar parametrization. With very simple
351 and easily parallelizable computation we can do exhaustive search of parameter space by ENGVIST. A simple
352 brute force algorithm which possess Robustness to outliers, No algorithmic degeneracies, cost function based
353 on reprojection errors, not dependent on a good initialization, this ensures that the algorithm resulting in an
354 effective method. The brute force search proposed method is used to estimate the relative orientation is to search
355 rotation matrices R and R' for as many points correspondences as possible. The two rotation matrices is used
356 to represent a relative orientation is an over parametrization. The rotation s about the z axis is then R, R' and
357 SR, SR' should describe the same relative orientation. For the given level of discretization and error threshold

358 the maximum number of inliers is computed which has relative orientation. The other cost functions: inliers are
359 correspondences with reprojection errors less than some prescribed threshold this will yield good result. In the
360 motion restriction (planar motion, small motion) a few standards are restricted and one advantage of estimating
361 relative orientation is that restricted motion and this can be handled very easily. The main role of motion
362 segmentation is to estimate all these motions as well as the motion of the camera for the given sequence of
363 moving object by the brute force algorithm. Further improve the motion segmentation by spatial prior assuming
364 that close points probably belong to the same motion. Using Map Reduce model we can achieve parallelize the
365 algorithm. CUDA is one of the best example for parallel implementation. Therefore the brute force algorithm
366 approach becomes a viable and robust alternative for real-time visual odometry.

367 The brute force search algorithm is very essential optimal for the local string search problems and can be
368 substantially be improved when it applied to classical NP hard string by GUO. In this we addressed two types
369 of problem such that Closest string, Longest common subsequence string Closest string: in local search variant
370 of the closest string, let A be the some arbitrary alphabet, and n be a positive integer. The input is a set $T \subseteq A^n$
371 of string d be the integer. The main aim is to find whether there is a string. The closest string can be solved
372 by brute force algorithm in $O(n \cdot k+1 \cdot m)$ time. Longest common subsequence problem need to find an input
373 set T of a string S with some specified length L such that S is a subsequence of each string $t \in T$. The brute
374 force algorithm solve this longest subsequence problem in $n \cdot o(k)$ time. By considering the Hamming distance
375 as a metric for defining the local neighbourhood where the search is performed, under this metric the brute
376 force algorithm cannot be improved but other metrics are interestingly deserve important consideration. The
377 local search algorithm can be substantially improved by applying brute force algorithm to the NP hard classical
378 string problem. This local search can be applied by implementing brute force algorithm for many NP hard string
379 problems. The optimal solution for local search is brute force algorithm.

380 The information security can be enhance by implementing hash algorithm for verification of digital signatures,
381 key derivation, and random bit generation by RAVILLA, PUTTA. In this first the Zone routing protocol
382 and hybrid MANET protocol is being implemented in NS2 and hashing algorithm and keyed hash message
383 authentication code -secure hashing algorithm 512 is implemented for the authentication and data integrity of
384 the information. Trust-based system is also used to prevent Denial-Of-Service attacks. The feature of this work
385 will expand ZRP to SZRP so, this ensure the data confidentiality between source and destination. This method
386 of work will lead the military operation into a very secure way by preventing it from eavesdropping. Digital
387 signature is one of the authentication mechanism. It is created by taking the hash of the message and with the
388 help of private key, the message is encrypted. The length of the hash code is very important against cryptanalysis
389 such as brute force attack and also it should be a one way property (irreversible). where $H(x) = h$. SHA-512 is
390 used to hash a message (M), with length(L), 0 less than or equal to L less 2128, each block has 1024 bits which
391 denote the 64 bit words, the output of SHA512 is a 512 bit message digest. In SHA-512 the preprocessing will take
392 care of padding the message, parsing message into message blocks, and setting initial hash value. Trussted based
393 system is the cryptographic based system which ensures the additional security to the network by identifying the
394 malicious code in the network and differentiate it from trusted nodes this done by setting timer while sending
395 data. The turtvalu of the node increase for all transmission and reduce for the nodes who not send data, their
396 trust value is reduces for certain threshold, they are deemed malicious. The malicious node is broadcasted and
397 kept isolated from the network (no service is offered). Trust Value = (Sum of '1' or '0')/Total Sent Packets By
398 implementing two techniques namely HMAC-SHA512 for providing data integrity along with authentication and
399 trusted based system to make secure network. The proposed protocol is used give to better result which is based
400 on cryptography based algorithm.

401 The hash function is designed with new technology based on chaotic neural networks due to the properties of
402 chaos and neural network, such as non-linearity, compression, confusion, and diffusion by ABDOUN, SAFWAN.
403 The proposed system is not using simple chaotic maps, because the simple chaotic map is not robust. It integrates
404 a strong chaotic generator into neurons. This proposed algorithm is very efficiency against strong collision
405 resistant and high message sensitive when compared to SHA-2. It consist of 2 layers an input layer and output
406 layer. Where k is the secret key, M is the input message and H is the hash value. The chaotic generator
407 will supplies the parameter and condition. Thus the parameter and condition constitute the two layers by sub
408 keys. The transfer function will have two chaotic maps such as Discrete Skew Tent Map and Discrete piecewise
409 linear chaotic map which was connected in parallel. The future work will extend the algorithm to be against of
410 cryptographic attacks such as Birthday attack, Collision attack, Joux multi-collision, Long message, Second pre
411 image, Herding, and Meetin-the-middle attack. Thus we obtained the uniformity of hash values and the message
412 sensitive, by a strong hash function therefore the proposed hash function is better then standard SHA-2. This
413 hash function ensures the data integrity, digital signature, and authentication.

414 The proposed method is based on optimization of classifiers using quadratic probing by KUMAR. The time
415 complexity for sequential search is $O(N)$, where N is the number of rule in a rule set. The search time can be
416 reduced by reducing the quantity N . We found that same address and protocol fields are shared by different header
417 fields, this succeeded by decompose the rule set and map the hash table. The numbers of entries in the classifiers
418 are reduced on the basis of hash value generated by hash function. In the first step an appropriate hash function
419 is selected to generate efficient hash values, this function is applied for each field value of rule-set in classifier. In
420 case collision occurs, the counter is increased by one for the value and a new hash value is generated. This step

421 is continued until collision is resolved or hash table is full. The procedure is susceptible to false negative value if
422 hash table is small. But this situation is avoidable using appropriate size of hash table. With the advancement in
423 communication technology, gigabit networks are becoming more. The traditional processors do not have sufficient
424 processing capabilities to handle and process packets arriving at such high speed. So in order to fulfil the need
425 of high processing. This techniques has been used in future work by merging this with the tree based classifier
426 and future the processing time is reduced .This method will considers the header fields repeating in the classifier
427 only once so, that the size of the classifier table is not supported for incremental update and the size of the table
428 is reduce significantly. This is tested under three classifier such that ACL rule-set with916 rules, firewall rule-set
429 with 791 rules, IPC rule set with 1500 rules. Therefore the three values 50,100,150 are used for the modulus
430 operation performing on the header value of classifier. And the values of header and classifier is interchangeably
431 used. Thus the complete packet preprocessing structure for effective scalable packet classification in ip forwarding
432 is done by packet preprocessing scheme. This can also be used with high speed network.

433 The encrypted message is also not secure over the transmission so the security improved by verifying with
434 digital signature, where the hashing algorithm is used to design the improvement by SHARMA, KOPPAD. SHA-3
435 algorithm is designed using verilog HDL and simulated in Xilinx ISE v14.2. SHA-3 is designed which has fixed
436 output 512-bit, the improvement is done to increase the performance of frequency pipelining, which also includes
437 Clock gated pipelined SHA-3. the combinational SHA-3 algorithm is designed with fixed output length 512 bits.
438 Input at any size. Then input padding module will pad required numbers of zeros when sel signal for MUX is
439 0 then input bit connect to theta via MUX, this followed by xoring the input with round constant. The input
440 of MUX and DMUX is controlled by FSM(finite state machine). This has three output mux_sel, dmux_sel,
441 and counter_en and connected to selected line of MUX,DMUX. MUX, DMUX will be one then the output iota
442 stage will fed back to theta stage for next round. This continues for 24 round. The pipeline is done in order
443 to increase the performance of SHA-3.between the step mapping the register is inserted. 1st register is placed
444 between theta and module, second in between rho and pi module, last is placed between chi and iota module.
445 These registers are controlled by the input clock signal and clock enable signal. Clock gating is implemented in
446 pipelined registers. The last based clock gating is applied to the pipelined SHA_3 the clok is controlled by a
447 clock signal. 0 when clock is not required and 1 when clock is required. This in turns prevents the glitches from
448 propogation to clock.

449 The complexity is focused to show that the shortest path problem is N-P hard in either additive networks and
450 directed cyclic networks where both models coincide by SINGH, KHOLI. This proposed work

451 5 Global Journal of Computer Science and Technology

452 Volume XIX Issue III Version I 50 Year 2 019 () C provide a pseudo-polynomial time solution with nonnegative
453 costs and gains. In networks with losses and gains there are two versions: a flow model and a path model.
454 The shortest path problem is solvable in pseudo-polynomial time for nonnegative costs and gains by a dynamic
455 programming approach. These N P-hardness results hold for the out-flow from the source, even for networks
456 with integral capacities and with unit gain or with loss two for each arc, and for the in-flow into the sink, even
457 for networks with unit loss or with unit gain for each arc. Moreover, the maximum flow problem is MAX-SNP-
458 hard, and is hard to approximate. On the contrary, in unit-loss networks the maximum flow problem from the
459 source can be solved efficiently by the Edmonds-Karp algorithm in $O(nm^2)$. Results reveal an essential difference
460 between networks with additive and with (or without) multiplicative losses and gains. From the algorithmic point
461 additive networks are much harder. Here the common flow problems are intractable whereas they are tractable
462 in generalized networks with multiplicative losses and gains and in standard networks. The computation of the
463 maximal flow in N from s to t uses the Edmonds-karp algorithm. This computes the flow augmenting paths
464 according to their lengths, the length in sence number of arcs. Edmonds-Karp algorithm computes a maximal
flow, and the flow is integral at every arc. ^{1 2}

465 Figure 1:

¹© 2019 Global JournalsAlgorithm and Design Techniques -A Survey

²() C © 2019 Global Journals Algorithm and Design Techniques -A Survey

466 [Jeong and Lee ()] , Myungho Jeong , Lee . 2015. Springer. 18 p. .

467 [Kivimaki et al. ()] *A bag of paths framework for network data analysis*” Kevin Francoisse, Ilkka Kivimaki , Amin
468 Mantrach , Fabrice Rossi , Marco Saerens . 2017. Elisevier. 90 p. .

469 [Bruce and Watson ()] ‘A Boyer-Moore-style algorithm for regular expression pattern matching’. W Bruce ,
470 Watson . *Science Direct* 2002. 48 p. .

471 [Yih-Kai Lin, Shu-Chien Huang, Cheng-Hsing Yang ()] ‘A fast algorithm for Huffman decoding based on a
472 recursion Huffman tree’. *Science Direct* Yih-Kai Lin, Shu-Chien Huang, Cheng-Hsing Yang (ed.) 2011. 85
473 p. .

474 [Lu and Gough ()] *A Fast-Adaptive Huffman Coding Algorithm*, Wei-Wei Lu , M P Gough . 1998. IEEE. 41 p. .

475 [A memory Effective Adaptive Huffman Coding Algorithm ()] *A memory Effective Adaptive Huffman Coding*
476 *Algorithm*, 1993. Steven Pigeon, Yoshua Bengio: Springer. 21 p. .

477 [A Method for Web Application Vulnerabilities Detection by Using Boyer-Moore String Matching Algorithm Ain Zubaidah Mohd
478 ‘A Method for Web Application Vulnerabilities Detection by Using Boyer-Moore String Matching Algorithm’.
479 *Ain Zubaidah Mohd Saleh* 2015. 72 p. . (Science Direct)

480 [Zhe et al. ()] ‘A Quick algorithm for planar fragmented objects stitching Base on KMP algorithm’. Wang Zhe ,
481 Chen Jun , Yuan Gang Zhao Zhou Yan . *Science Direct* 2001. 467 p. .

482 [Franek et al. ()] ‘A simple fast hybrid pattern-matching algorithm’. Frantisek Franek , Christopher G Jenning ,
483 W F Smyth . *Science Direct* 2007. 5 p. .

484 [Lecroq ()] ‘A variation on the Boyer-Moore algorithm’. Thierry Lecroq . *Science Direct* 1994. 92 p. .

485 [Shmuel et al. ()] *Accelerating Boyer Moore searches on binary texts*, T Shmuel , Mirikopel Klein , Ben-Nissan .
486 2009. Springer. 410 p. .

487 [An algorithm For Generating n Huffman Codes with a Worst Case Of (n log, n + n log, log, n) Comparisons ()]
488 *An algorithm For Generating n Huffman Codes with a Worst Case Of (n log, n + n log, log, n) Comparisons*,
489 2000. IEEE. 32 p. .

490 [Yavne ()] *An economical method of calculating the discrete fourier transform,” in proc. AFIPS fall joint computer*
491 *conf.* , R Yavne . 1968. ACM. 33 p. .

492 [An Efficient Implementation of the Bellman -Ford Algorithm for Keller GPU Architectures Federico Busato and Nicola Bombieri
493 ‘An Efficient Implementation of the Bellman -Ford Algorithm for Keller GPU Architectures’. *Federico*
494 *Busato and Nicola Bombieri* 2016. IEEE. 27 (8) . (Member. s)

495 [Phyela Mbewe, Sampson D. Asare (ed.) ()] *Analysis and Comparison of Adaptive Huffman Coding and Arithmetic Coding algorithms*, Phyela Mbewe, Sampson D. Asare (ed.) 2017. IEEE. 978 p. .

496 [Application of KMP Algorithm in Customized Flow Analysis Qingzhu Meng, Zhenming Lei, Dazhong He ()]
497 ‘Application of KMP Algorithm in Customized Flow Analysis’. *Qingzhu Meng, Zhenming Lei, Dazhong He*,
498 2017. IEEE. 45 p. .

499 [Bernstein ()] *Applied Algebra, Algebraic Algorithm and Error-Correction Codes*, D Bernstein . 2007. p. . (The
500 tangent FFT)

501 [Ahsan Habib, Mohammad Shahidur Rahman (ed.) ()] *Balancing decoding speed and memory usage for Huffman*
502 *codes using quaternary tree*, Ahsan Habib, Mohammad Shahidur Rahman (ed.) 2017. Springer. 4 p. .

503 [Chance distribution of the maximum flow of uncertain random network Yuhong Sheng and Jinwu Gao ()]
504 ‘Chance distribution of the maximum flow of uncertain random network’. *Yuhong Sheng and Jinwu Gao*
505 2014. Springer. (8) p. .

506 [Arshad et al. (2014)] ‘Compact Implementation of SHA3-512 on FPGA’ Alia Arshad , Arshad Dur-E-
507 Shahwarkundi , Aziz . *IEEE Conf. on Information Assurance and Cyber Security (CIACS)*, (Rewalpindi,
508 Pakistan) June, 2014. p. .

509 [Syed Waleed, Muhammad Faizan, MaheenIqbal, Muhammad Irfan Anis (ed.) ()] *Demonstration of Single Link*
510 *Failure Recovery using Bellman Ford and Dijil (stra Algorithm in SDN*, Syed Waleed, Muhammad Faizan,
511 MaheenIqbal, Muhammad Irfan Anis (ed.) 2017. IEEE. p. .

512 [Efficient Implementation of the Bellman-ford algorithm for GPU” Marjan Nazarifard ()] *Efficient Implementation*
513 *of the Bellman-ford algorithm for GPU” Marjan Nazarifard*, 2017. IEEE. p. .

514 [Ravilla and Reddy Putta ()] ‘Enhancing the security of mannets using hash algorithm’. Dilla Ravilla , Chandra
515 Reddy Putta . *Computer Science* 2015. 54 p. .

516 [High performance parallelization of Boyer-Moore algorithm on many-core accelerators] *High performance par-*
517 *allelization of Boyer-Moore algorithm on many-core accelerators*,

518 [Lenosioannou et al. (2015)] ‘High Performance Pipelined FPGA Implementation of the SHA-3 Hash Algorithm’.
519 Harris E Lenosioannou , Artemios G Michail , Voyatzis . *4th IEEE Mediterranean Conf. on Embedded*
520 *Computing (MECO)*, (Budva, Montenegro) June 2015. p. .

521

522 [Athaniou and Makkas (2014)] 'High throughput pipelined FPGA implementation of the new SHA-
 523 3cryptographic hash algorithm'. George S Athaniou , George-Paris Makkas , Georgostheodoridis . *6th*
 524 *IEEE Int. Symp. On Communications, Control and Signal Processing*, (Athens, Greece) May 2014. p. .

525 [Ranjan et al. ()] 'Hydraulically informed graph theoretic measure of link criticality for there silience analysis
 526 of water distribution networks'. Kisku Ranjan , S Debanjan Chatterjee , Massimo Trivedy , Tistarelli . 876-
 527 895. 11. *On the optimality of bellman ford Moore shortest path algorithm*" Stasys Jukna, Georg Schnitger,
 528 2015. 2014. Springer open. 10 p. . (Face Image Abstraction by Ford-Fulkerson Algorithm and Invariant
 529 Feature Descriptor for Human Identification)

530 [Jain (2005)] 'I want my IPTV'. R Jain . *IEEE Multimedia* Jul. 2005. 12 (3) .

531 [Mathematical formulations and exact algorithm for the multi trip cumulative capacitated single-vehicle routing problem Elisevier
 532 'Mathematical formulations and exact algorithm for the multi trip cumulative capacitated single-vehicle
 533 routing problem'. *Elisevier*, (Juan Carlos Riveraa, b, * , H. Murat Afsara) 2015. Christian Prinsa. p. .

534 [Maximum Independent Set Approximation Based on Bellman-Ford Algorithm Mostafa H. Dahshan ()]
 535 'Maximum Independent Set Approximation Based on Bellman-Ford Algorithm'. *Mostafa H. Dahshan*
 536 2014. Springer. (39) p. . (References Références Referencias 1)

537 [Hong-Jian Lai, Xiaomin Li, Xiaoxia Lin Murong Xu ()] 'Minimax properties of some density measures in
 538 graphs and digraphs'. *Janet Anderson* Hong-Jian Lai, Xiaomin Li, Xiaoxia Lin & Murong Xu (ed.) 2018.
 539 3 p. .

540 [Ahlsweide et al. (2000)] 'Network information flow'. R Ahlsweide , N Cai , S.-Y. Li , R Yeung . *IEEE Transactions*
 541 *on Information Theory* July 2000. 46 (4) p. .

542 [Schwarz et al. (2007)] 'Overview of the scalable videocoding extension of the H.264/AVC standard'. H Schwarz
 543 , D Marpe , T Wiegand . *IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on*
 544 *Scalable Video Coding*, Sep. 2007. 17.

545 [Ganesh G Surve et al. ()] *Parallel Implementation of Bellman-Ford Algorithm Using CUDA Architecture*,
 546 Ganesh G Surve , A Medha , Shah . 2017. IEEE. p. .

547 [Pervasive Intelligence and Computing (CIT/IUCC/ DASC/PICOM) (2015)] *Pervasive Intelligence and Com-*
 548 *puting (CIT/IUCC/ DASC/PICOM)*, (Liverpool, England) 26-28 Oct. 2015. p. .

549 [A. V. Muholzoeva, V. B. Masyagina, b ()] 'Probabilistic Calculation of Tolerances of the Dimension Chain
 550 Based on the Floyd-Warshall Algorithm'. *Science direct* A. V. Muholzoeva, V. B. Masyagina, b (ed.) 2016.
 551 (150) p. .

552 [Abdoun et al.] *Secure hash algorithm based on efficient chaotic neural network*, Nabil Abdoun , E I Safwan ,
 553 Assad . 978-1-4673-8197-0/16/2016 IEEE.

554 [Muzaffarao et al.] 'Secure Hash Algorithm-3(SHA-3) implementation on Xilinx FPGAs, Suitable for IOT
 555 Applications'. Thomas Muzaffarao , Ian Newe , Grout . *IEEE Int. Conf. on Computer and Information*
 556 *Technology, Ubiquitous Computing and Communications, Dependable, Autonomic and Secure Computing*,

557 [Using basis dependence distance vectors in the modified Floyd-Warshall algorithm W?odzimierz Bielecki ? Krzysztof Kraska ? T
 558 'Using basis dependence distance vectors in the modified Floyd-Warshall algorithm'. *W?odzimierz Bielecki ?*
 559 *Krzysztof Kraska ? Tomasz Klimek* 2014. Springer. (30) p. .

560 [We also plan to evaluate experimental the potential distance as the distance between sequence of character by adapting it to a d
 561 'We also plan to evaluate experimental the potential distance as the distance between sequence of character
 562 by adapting it to a directed acyclic graph'. *Anggie Nastiti* 2018. IEEE. (345) p. . (To be investigating the
 563 graph cut the path instead of link)