Global Journals INTEX JournalKaleidoscope™

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42

Mediation of Lazy Update Propagation in a Replicated Database
over a Decentralized P2P Architecture

Katembo Kituta Ezechiel', Shri Kant? and Ruchi Agarwal?

! Sharda University

Received: 6 December 2018 Accepted: 4 January 2019 Published: 15 January 2019

Abstract

While replicating data over a decentralized Peer-to- Peer (P2P) network, transactions
broadcasting updates arising from different peers run simultaneously so that a destination
peer replica can be updated concurrently, that always causes transaction and data conflicts.
Moreover, during data migration, connectivity interruption and network overload corrupt
running transactions so that destination peers can experience duplicated data or improper
data or missing data, hence replicas remain inconsistent. Different methodological approaches
have been combined to solve these problems: the audit log technique to capture the changes
made to data; the algorithmic method to design and analyse algorithms and the statistical
method to analyse the performance of new algorithms and to design prediction models of the
execution time based on other parameters. A Graphical User Interface software as prototype,
have been designed with C , to implement these new algorithms to obtain a database
synchronizer-mediator. A stream of experiments, showed that the new algorithms were
effective. So, the hypothesis according to which ?The execution time of replication and
reconciliation transactions totally depends on independent factors.? has been confirmed.

Index terms— peer-to-peer (P2P), database replication, data reconciliation, transaction serialization,
synchronizer-mediator.

1 Introduction

n computing, a Distributed Database System (DDBS) is a database whose storage devices are not necessarily
all linked to a common processing unit; but rather in this approach, the database can be stored on multiple
computers, located in the same physical location or can be scattered on networked computers [1], [8]. The
distribution transparency is the fundamental principle of the DDBS which consists of making a distributed
system to appear similar to a centralized system to the users. The distribution transparency as well as the
management of a DDBS are ensured by a program called Distributed Database Management System (DDBMS)
[3]. The design of a DDBS requires that it be entirely resident on different sites of a computer network but not
necessarily all. This means that at least two sites must host the database and not necessarily each site in the
network, as depicted in the Fig. 1.

Thus, there are two distribution strategies: data fragmentation and data allocation on the one hand and
data replication on the other hand. So, to make a good design, all these strategies are compiled [2], [3], 7?733].
The fragmentation consists in splitting a relation (a table of a database) into a number of sub-relations, called
fragments; which can be horizontal, vertical or hybrid. Horizontal fragments are subsets of tuples (table records),
vertical fragments are subsets of attributes (table columns), and hybrid fragmentation consists of mixing the
two preceding ones. In turn the allocation is nothing more than the assignment of fragments to the sites in an
optimal way [2]. When allocated fragments have to share data among them, they need the replication procedure.
However, this work focuses on the data replication strategy. The replication consists of duplication and storage

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69

70

71
72

73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9
01
92
93
04
95
9%
97
98
99

100

101

4 A) DATA REPLICATION

of multiple copies or replicas (at least two) of the same fragment or the entire relation (in the case of a fully
replicated database) of a DDBS in multiple different sites. The replication is the strategy used to ensure the
data exchange between fragments or relations in a fully replicated database [2], [3], [4], as illustrate in Fig. 2.
In any case, the main problem of the data replication is the synchronization of replicas. Data synchronization
is nothing than keeping consistent replicas in a Replicated Database System (RDBS) [5]. This means ens uring
the exchange of updates between replicas. Nowadays P2P computer network is in full emergence. Comparatively
to client/server model, in a P2P system, each client is itself a server. In this way replicating a Database over
a P2P network require that all peers keep the same data copy. In the same way, the emergence of advanced
applications of P2P systems, requiring general replication capabilities with different levels of granularity and
multi-master mode [11], where each peer can transfer updates to all others and the same replica can be updated
by several peers in a replicated databases environment [4], [10], the serialization of updates and the reconciliation
of data turns out to be the particular P2P replication problems because those flows of updates (data) and refresh
transactions conflict each other [8], ?730], 7733].

For example, the operations on an account, of a customer, opened in a bank with multiple branches can be
replicated by several branches of the same bank and must be able to be updated by any branch anytime, to
acquire reception of a transfer, for a deposit to the account, a withdrawal from the account, etc. Concretely,
changes made by refresh transactions from different peers reach a destination site at the same time and multiple
updates of the same replicas by different peers break the reliability and the consistency of replicas [2]. This is
why this study aims to introduce an effective approach to serialize refresh transactions and to reconcile replicas
in the case of inconsistency. To overcome one of DDBS homogeneity aspects, namely the same DBMS, the result
of this design needs to be implemented as a synchronizer-mediator for database replication in a Graphical User
Interface (GUI) using lazy decentralized sites strategy on a P2P network. To reach this purpose, the structure
of this paper is organized as follow: the first section introduced by presenting the context of this research as
well as the status of the problem, the second section will review the related works, the third will present the
methodology, fourth section will show the simulation environment for experimentation, the fifth section will offer
the result and finally the sixth section will conclude this study.

2 1II.
3 Related Works

This section will rapidly review certain research works already realized to attempt to solve these two
aforementioned problems.

4 a) Data replication

Designing a RDBS pursue four majeure objectives, namely : improving data availability, improving performance,
ensuring scalability and users applications requirements. These purposes can be summarized as ”improving
consistency and/or reliability” [2], [3]. To ensure consistency between replicas, the synchronization procedure
uses the transaction running technique. A transaction is a collection of operations that transforms the database
from a consistent state to another consistent state [6], as illustrated in Fig. 3. A transaction has a Begin Of
Transaction (BOT) and an End Of Transaction (EOT). This End is managed by three different functions: either
a "commit” to validate, a "rollback” to cancel, or an ”"abort” to interrupt the execution of operations inside
the transaction. The consistency and/or reliability of a transaction are guaranteed by 4 properties: Atomicity,
Coherence, Isolation, Durability (ACID) that make the "acidity” of a transaction [2], [7]. As we are dealing
with data flow, our focus remains on the Structured Query Language (SQL) operators, especially the Data
Manipulation Language operators in most of DDBMSs, which contains [9]: The write operators (Insert, Update
and Delete SQL commands) and the read operator (Select SQL command). Typically, like the structuring of
instructions of a procedural language, a transaction ”T” can have the following structure:

Begin_ Of Transaction T Insert operator Update operator Delete operator Select operator
End_ Of Transaction T However, to solve the aforementioned main problem of data replication, i.e. the
synchronization of replicas, there already exits four replication strategies, resulting from the combination of two
factors: "when” and "where”. The "when” factor specifies when updates are broadcasted (synchronously/eagerly
or asynchronously/lazily), while the "where” factor indicate where updates occur on a centralized site (primary
copy/mono-master) or on decentralized sites (everywhere/multi-master) before being propagated. So when we
take the factor "where” in "when”, it emerges [1], [2], [3], [4], ??730], 7?33], [34]:

A. Synchronous or Eager Replication: All replicas must be updated before the transaction commit i.e. in
real-time. Here, the most up to date value of an item is guaranteed to the end user. There are two different
strategies in synchronous replication:

1) Eager centralized site: This method is beneficial in case where reads are much more frequent than writes.
It works under the principle "Read-One, Write-All (ROWA)”. After transaction commitment, any one of replicas
can be read; so the write process must update all replicas. 2) Eager decentralized sites: The principle is "update
everywhere”; in this logic every site is allowed to propagate updates to all sites in the same transaction, at the
same time so that on the end of the transaction updates become available on all sites.

102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

156
157
158
159

160

161
162
163

B. Asynchronous or Lazy Replication: Allows different replicas of the same object to have different values for
a short periods of time i.e. in near realtime. They are updated after a predefined interval of time. There are two
different strategies in asynchronous replication:

1) Lazy centralized site: It works with the principle such that one copy of replicas is assigned as the "primary
copy or mono-master” so that changes of data or writes are possible only on it. These changes are periodically
propagated to the secondary copies. The secondary copies of data can only be read. 2) Lazy decentralized sites:
Here the principle is so that changes can be performed ”everywhere or multi -master”; on each site. So these
changes are propagated independently to other sites sporadically.

These replication strategies, have already been implemented in most of modern DDBMSs [9]. It is largely the
centralized strategy that is much more wrapped in the replication models offered by almost all DBMSs. But,
although these modelling are done, there remains a problem to emphasize in eager centralized site approach such
that if there is a site unavailable during updates propagation by the master site, the transaction cannot commit.
So, some researches are already attempting to design an optimal algorithm that can allow the update transaction
commitment on the available sites and to update unavailable sites as soon as they become available again; hence
the approach "Read-One, Write-All Available (ROWA-A)” [2], [30], ??33]. In addition, one could expect the
problem related to the momentary interpolation of the line of communication between the master site and the
slave sites, because it is enough for example that the master site overlord or be inaccessible so that the slaves no
more access to updates [8]. Well, there is only the decentralized strategy that can clear this concern.

Nevertheless, eager decentralized sites experience the same problem as eager centralized site, whereby update
transactions that arise from all sites, if they find at least one site unavailable they abort. But to overcome
this problem, such kind of systems should be able first of all to commit transactions on only available sites and
so update unavailable sites as soon as they become available again; hence the approach "Update Everywhere
Available” [17]. So nowadays, some researches attempt to improve these algorithms by distributed voting
algorithm [4]. Thus, if the sites number quorum is reached the transaction commit on them; so afterwards,
when writing, update all fraction of the replicas and when reading, read enough replicas to ensure you get at
least one copy of the most recent value.

In view of the above, it seems that the lazy strategy is appropriate for P2P topology, especially since it allows
replicas of various sites to diverge for a given moment. So as in a P2P network, the participants (Peers) are
present or absent momentarily, updates propagation can be applicable on the present Peers while the absent
Peers will remain with non -updated replicas in order to receive their updates when they become available again
[10], ??733]. Thus, lazy centralized sites approach is appropriate for the centralized P2P topology because updates
are performed only on the central site and then forwarded to slave sites in near real-time while lazy decentralized
sites approach is the most appropriate for the materialization of replication on a decentralized P2P topology
because in near real-time, like centralized approach, updates can be performed everywhere, i.e. on each peer and
then be broadcasted to all others.

Referring on our problem concerning replication over a decentralized P2P architecture, the observation has
been that only a few of DDBMSs have already tried to implement the lazy decentralized strategy in order to
formalize the P2P replication; let us quote for instance SQL Server [13] and Oracle [14]. Unfortunately, the
particular problems of P2P replication still exist and will be developed in following lines:

? Transaction conflicts: Several updates carried by refreshing transactions, from different sites reach a
destination site at the same time but they cannot be performed on the same time, then reliability and consistency
will be lost and there will be the risk of transaction conflicts [2], [30],

[33], [35]. DDBMSs must ensure that transaction execution meets a set of properties that lead to the
consistency of distributed databases and conveniently summarized by the ACID, since when the execution is
always concurrent [6], [7]. Thus, several researches have already been undertaken to solv e the transaction
concurrency control problem. Concurrent execution without harmonization constraints poses a number of
problems, the most important of which is the loss of operations and incorrect readings. Therefore, it is necessary
to set the serializability, a property determining a correct execution of the completion of transactions [3]. ? Data
conflicts: P2P replication allows to perform changes on each peer in the topology and then forward them to other
peers. However, as changes are performed at different peers, probable data conflicts are to be pointing out when
modifications are being broadcasted [2],

[30], ?733]. Thus, in all DDBMSs which have already succeed to implement the lazy decentralized sites
approach to make it P2P replication, one can distinguish three types of data conflicts [13], [14],

[20], [21]: a) Primary key or uniqueness conflict: Occurs when a record with the same primary key has been
created and inserted at more than one peer in the topology. So when those peers need to exchange updates, it is
then impossible to violate the criterion of entity integrity; b) Foreign key conflict: Can occurs if in any case the
refresh transaction forward updates which contains a record with a foreign key column but whose primary key is
not yet forwarded to the destination peer. So it is then impossible to violate the criterion of referential integrity;

5 Data modifications conflicts:

? Update conflict: occurs when the same record has been updated on more than one peer; ? Insertion/Update
conflict: occurs when a record has been updated on a peer and the same record has been deleted and re-inserted
on another peer; 7 Insert/Delete conflict: occurs when a record has been deleted on a peer and the same record

164
165
166
167
168
169
170
171

172

174
175
176
177
178
179
180
181
182
183
184
185

187
188
189
190
191
192
193
194

196
197
198
199

201
202
203
204
205
206
207
208

210
211
212
213
214
215
216
217
218
219

220

221

222
223

8 METHODOLOGY

has been deleted and re-inserted on another peer; 7 Update/Delete conflict occurs when a record has been
updated on one peer and the same record has been deleted on another peer;

? Deletion conflict: occurs when a record has been deleted on more than one peer. Thus it is necessary to think
about a certain number of rules to warranty the conflict policy avoidance in the decentralized P2P replicated
environment. Apart from the inconsistency of data caused by transaction conflicts and data conflicts, there are
other phenomena which make the replicated data inconsistent. Thus, although the transaction that propagates
the updates is successfully committed, the data remains inconsistent. Hence, there is the need of an automatic
data reconciler.

6 b) Data reconciliation

Database reconciliation is a process of verifying data when there has been a migration or transfer of data from
a source database to a destination. The purpose of this process is to ensure that the migration has been done
accurately 7722]. In this logic, in a global manner, the data is the set of tables of a given database and in a basic
way, the set of records of definite tables which can be accessed by a certain selection criterion. In a replicated
Databases environment, updates broadcasting as well consists to migrate or to transfer data changes from a
Prima ry site toward Secondary sites [23].

However, during data migration, errors may have occurred [12]. Most are like execution failures due to
network interruptions as well as network overload those end up corrupting transactions and causing data to be
lost or remain in an invalid state at the destination [8], [34]. These phenomena lead to a series of problems
such as: missing records, duplicate records, incorrect values, missing values, incorrectly formatted values, broken
relationships between tables in case of forced redundancy, etc.

[22]. But, some researches have already been undertaken to find solutions in several ways and some algorithms
are already implemented in DDBMs and particular software to reconcile data after migration process.

Oracle Corporation [24], possesses some databases reconciliation tools for their DDBMSs: Upgrade Recon-
ciliation Toolkit is used to compare the data on the Oracle DB source and Oracle DB destinations after data
migration and after running the parallel End Of Day (EOD) activities mostly for different branches of a bank.
This tool generates also the reconciliation report at the end of the process. Another tool is mysqldbcompare
especially for MySQL, this tool compares two databases by identifying differences between databases objects;
changed or missing rows of tables are shown in standard formats like grid, table, etc. It is going beyond the data
comparison; this utility compare also objects data definition of two databases [25]. Nevertheless, all these tools
run reconciliation between one source and one destination. The only one which can reconcile one source and
multiple destinations is Upgrade Reconciliation Toolkit for Oracle. Unfortunately, it is only limitated to Oracle
DB. The tools mysqldbcompare and MySQL_ Diff are also limitated to MySQL and they are not taking in to
account multiple destinations. The Tool LegiTest’s should be more interesting because it is able to reconcile
multi-DBM S databases, but it is also one source, one destination; and all others which have been listed in this
review present such kind of limitation.

Moreover, these data reconciliation tools rely on simple counting of records to keep track if the expected
number of records has been migrated. It can be esteemed that this was mainly due to the importance of the
processing of essential data to carry out field validation of a given data. Nowadays, for more accuracy, the data
migration algorithm should provide data reconciliation capabilities that allow the reconciliation of each data or
each field, i.e. at the intersection of each row an d each column (attributes by record) of each database table [12].

To preserve data inconsistency and to maintain acidity, all instructions of the replication procedure must be
wrapped in transactions [2], [7]. The instructions of a transaction are the commands or operators of the data
manipulation language. But, when an operator of the data modification language is executed on a site, some
time passes while waiting for the response. While a transaction may have more than one operator and the factors
are likely to be varied in a P2P environment, this phenomenon should greatly influence the temporal complexity
in the event of variation of different factors. So it is necessary to design a prediction model of replication and
reconciliation execution time.

The assumption of this study is formulated as follows: ”it seems that P2P replication systems experience the
weak performance, especially since the time to replicate and to reconcile data from a Master Peer to Slave Peers
dependent, if not totally, partially of certain factors, such as: the number of records in each table, the number
of tables whose data has changed, the number of peers connected during the propagation of updates and other
factors (number of columns per table, data types columns, etc.)”.

However, these problems deserve a special attention; that is why there is a reason to wonder about setting
up ”a synchronizer-mediator for lazy replicated databases over a decentralized P2P architecture”. This system
should be able to serialize updates performed simultaneously on different replicas of the same database and to
reconcile this replicas, effectively, over a decentralized P2P network.

7 III.
8 Methodology

To ensure strong replica consistency in a distributed database, traditionally the implementation of a syn chronous
or eager refresh algorithm which is specially Two -Phase-Commit (2PC) based technique is the unique gateway to

224
225
226
227
228
229
230

231

232
233
234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251
252

253

254
255
256

257

258
259

261
262
263
264
265
266
267
268

270
271
272
273
274
275
276
277

278
279
280
281

avoid discrepancies between replicas [2]. However, this solution is inapplicable in a P2P architecture because does
not guarantee the updates delivery to all peers as they are not all always available at the same time [15]. Thus,
asynchronous or lazy replication is more appropriate for P2P systems because it allows replicas to be updated
independently and to remain divergent until a refresh transaction takes place [16]. Modifications which have
been done to the local replica, by local transactions are captured and the refresh transaction propagates them to
remote replicas asynchronously i.e. in near real-time. The technique used in this work to capture modifications
is audit-log.

9 a) Audit-log technique

Almost all DDBMSs support this technique by running triggers belonging to a specific table in order to capture
data modifications. A trigger is attached to an event produced by an Insert or Update or Delete operator so
that it captures changes before or after the event has taken place in the database [5], ??33]. So, in this work the
interest is carried on after trigger. To achieve this, for each data-table the creation of one () C audit-table is
necessary. The audit-table is composed by the data-table primary key column, other data-table columns (apart
from the primary key), the updated column name, the audit action, the timestamp and the synchronization ID.
These elements are required for a record to do the comparison between data. Each table in the database would
need three triggers to run after Insert, after Update and after Delete. The flow chart, Fig. 4 here below illustrates
the audit-log creation. Suppose that the database is homogenous and full replicated, as soon as the audit log
creation of each data table completed, on each peer, for each SQL data modification operation, the DDBMS
performs following action accordingly:

? After each Insert operation in the data table, the ”insert trigger” captures the newly added record and
inserts it in the audit table, as shown in Fig. The column synchronisation ID (Sync_ID) in Audit -tables don’t
have same value; for a Master Peer Audit-table its content is "Local-Transaction”, value automatically provided
by the trigger procedure when the transaction is initiated locally by the user application whereas for a remote
transaction the synchronization procedure update automatically this column by the sync. ID provided by the
Sync. Mediator-System. So, the synchronization procedure select only data whose Sync_ID is equal to "Local-
Transaction” and whose Audit_ Timestamp is in the interval of begging date and time to ending date and time
and apply them to Slave Peers according to the Audit_ Action value. This technique permits us to resolve the
problem of the endless loop in the sync. procedure used two -ways or symmetrical replication which was knowing
old synchronizers [5].

10 b) Algorithmic method

The Algorithmic method will be used to design and to analyse instructions of algorithms and steps of a Peer-to-
Peer Synchronizer. This method will take in account the Circulatin g Token Ring Algorithm, the Decentralized
Peer-to-Peer Replication Algorithm and the Decentralized Peer-to-Peer Data Reconciliation Algorithm.

11 i. Network Topology and Algorithm

When a peer needs to broadcast its captured updates toward other peers, it needs a token which gives it the
state of a Master i.e. the permission to forward its updates and other peers become automatically Slaves. A
fully replicated P2P database system includes p peers and each peer has a complete copy of the database.
Peers communicate with each other by exchanging messages and forwarding updates or accessing peer data by
performing transactions [17]. In this way, updates will be applied according to a circulating token, as depicted
in Fig. 6, which determine transactions serialization order or one can give the privilege to updates from certain
sites considered to be mo re important or privileged.

Suppose a network consisting of four peers A, B, C and D all networked. The Fig. 6 below presents the
decentralized topology of peer-to-peer token ring network. A predefined order of releasing or getting the token,
since we are in a P2P network where a peer p may or may not be available, is not needed. The optimization
policy here is to give the token directly to a peer which needs it instead of going through a list of peers that we
are not sure of their availability at the time of the token release. So, transaction serialization is managed by the
new circulating token algorithms 1 and 2, successively for getting the token and releasing the token. Since when
a peer (p), which can be ”A” or "B” or ”"C” or "D” gets the token, it executes the transactions according to the
algorithm 3, 4 and 5 for data replication and 6 for data reconciliation. Consequently, all transactions performed
are accepted and none rejection because only a peer which possess the token can perform a transaction of its
updates broadcasting and reconcile other peers’ data with its updates. As soon as peer "A” finishes to perform
updates and reconciliations with peers "B, C and D”, it releases the token and other peers like ”B” or "C” or
”D” can randomly take it, but according to the token request minimum date and time, and do the same, unless
a privileged peer requests it.

12 ii. Replication Protocol and Algorithm

Assuming that the database is homogenous, full replicated and each Peer work under a Two-Phase-Locking (2PL)
concurrency control technique. The model of the lazy replication over a decentralized Peer-to-Peer Architecture
is presented as follows: let W(x) be a write transaction where x is a replicated data item at Peers A, B, C and

282
283

284

285
286
287
288
289
290
291
292
293
294
295
296
297
298

299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

335

336
337
338
339
340

15 SIMULATION ENVIRONMENT

D. The Fig. 7, here below depicts how transactions update different copies at all Peers and after commit the
refresh transaction, wrapped in the Sync. Mediator-System, forward updates to all peers.

13 iii. Reconciliation Protocol and Algorithm

After a large data transmission, to overcome the problem of data inconsistency due to untimely interruptions
of connectivity, network overload and other technical hazards, updates forwarded to each peer in the replication
procedure must be reconciled.

The model of the Decentralized Peer-to-Peer Data Reconciliation is presented as follows: let R(x) be a read
transaction where x is a replicated data item at Peers A, B, C and D. The Fig. 8, here below depicts how
reconciliation is performed on different copies of all peers. After the implementation of these algorithms presented
above, the main goal, according to which setting up a synchronizer-mediator for database replication being able to
serialize the propagation of updates and their reconciliation in a replicated databases system over a decentralized
P2P network is achieved. Although this goal be achieved, it is appropriate to know here that in computing
the performance of an algorithm is assessed on the basis of its complexity [18]. The analysis of the theoretical
complexity of this algorithm will be more concerned the time complexity than the space complexity especially
as the data will be momentarily transit through the buffer to the destination. Nevertheless, the practical time
that the execution of this algorithm takes will result from the simulation and will be calculated by the statistical
method.

14 c) Statistical method

The performance of a system depends on a certain number of factors. We have to determine the practical
time, that makes our system to execute successively transactions of updates propagation or replication (insert,
update and delete) and transactions of data reconciliation. To analyse this performance, we will use the linear
regression test with the random sampling technique. The linear regression test is a statistical analysis method
that describes the variations of an endogenous variable associated with the variations of one or more exogenous
variables i.e. the relation between an endogenous variable and one or more exogenous variables. In the case
where the study concerns an endogenous variable with one exogenous variable, it’s a simple regress ion and when
it’s an endogenous variable with more than one exogenous variable, it is a multiple regression [19]. This test will
be used not only to determine the execution time based on a certain sample, but also to make a linear regression
model that will be used to predict the execution time , which is the dependant factor or endogenous variable,
based on other independent factors or exogenous variables, namely the number of records, the number of tables
in the database and the number of Slave Peers. The following variables are selected:

? Y i: is a random variable to explain ”the time the synchronization algorithm takes to broadcast updates
and to reconcile replicas for an execution i”; 7 X il : is an explanatory variable “the number of records the
synchronization algorithm broadcast from a Master Peer to Slaves and reconcile between the Master and Slaves
for an execution i”; 7 X i2 : is an explanatory variable "the number of tables in the database whose records knew
updates which need to be broadcasted and reconciled with Slaves for an execution i” 7 X i3 : is an explanatory
variable ”the number of Slave Peers available to receive updates and to be reconciled for an execution i”. Given
a sample (Yi,Xil, X i2, X i3) whose i ? [1, n], we will try to explain, as precisely as possible, the values
taken by Y i, the so-called endogenous variable from a series of explanatory variables X il , X i2 , X i3 . The
model formulated in terms of random variables, takes the form: 77 7?7 =727 0 + 77 1 77 771 4 77 277 772 +
77 377 773 4+ 77 7?7 Where:

7i=1,2,...,n7 b0 is the constant term;

? b 1,b2andb 3 are coefficients of the regression to be estimated; ? 7 i: is the model error that expresses or
summarizes the missing information in the linear explanation of the values of Y i from X il , X i2 , X i3 (a random
variable of zero mathematical expectation in this model i.e. problem of specifications, variables not taken into
account, etc.). The intensity of the relation between the independent variables and the dependent variable will be
expressed by the correlation coefficient ”R”, which is the square root of the "R2”, the determination coefficient of
a linear regression model. The coefficient of correlation, will be used to determine the degree of linkage between
the independent variables and the dependent variable while the coefficient of determination will help to measure
the proportion of dependence of the dependent variable explained by independent variables. Thus, two sets
of hypothesises are evoked as follow: These hypotheses will be verified at the end of the results which will be
produced by a series of experiments perpetrated on a simulation environment which will be described in the
following section.

IV.

15 Simulation Environment

The implementation and experimentations will be run on a P2P network consisting of 4 traditional computers
depicted in the Fig. 9, with the following properties: Processor: Intel Core i5, CPU 2.40GHz, Memory (RAM):
8.00GB and Storage: 1TB. The network will be based on a desktop switch of 100 Mbps of transmission speed,
to establish a simple LAN using twisted -pair cables connection and RJ45 connectors. These computers will run
under Windows 10 Professional 64 bits and SQL Server Management Studio 2012 Express as DDBMS, to manage

341
342
343
344
345
346
347
348

349

350
351
352
353
354
355
356
357
358
359
360
361
362
363

364

365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

391

392
393
394
395
396
397

databases and establish the connectivity between them. According to this Fig. 9 above, a node is composed
by hardware and software as required previously. But in this same figure one can point out the presence of
a "Mediator” for each peer. The mediator is nothing else than the synchronization system, ”"Sync. Mediator-
System”, a C# software which has been designed and in which it has been implemente d algorithms, already
described in the methodology, to lead to a windows application running under a graphical user interface, as
presented in the Multiple-Document Interface (MDI) window here below in the Fig. 10. Thus this mediator
must be installed on each node to manage the replication transactions and the reconciliation of replicas. For the
execution to be effective, there are prerequisites to fulfil.

16 a) Prerequisites

When designing the global schema of the database, each table must have:

? The name such as ”"Data_ tbTableName” and the first column as its primary-key to identify data and to
make the difference between records. The creation of primary keys by automatic incremental systemprovided by
the DBMSs is disadvised, it is preferable to program an automatic primary key combined with the site number
to avoid redundancy;

? Bear in mind that the database is homogeneous i.e. the data structure of the replicated database must be
uniform on all peers. Before the actual processing phase begins, under expected replication, ”Sync. Mediator-
System” provides two procedures that must be performed automatically in advance for each table, as showed in
the window, Fig. 11: ? To create one audit table named ”Audit_ tbTableName”, to store changes captured by 3
triggers belonging to each table. Each audit table must have its next four last columns to store respectively the
updated column name, the audit action, the audit timestamp and the last column to store the synchronization
1D;

? To create three triggers to run after Insert, after Update and after Delete, to capture data changes and store
them in the specific audit table.

17 The new circulating token algorithm has two phases: i. Data
replication

Update transaction serialization: All update transactions must be executed in serial order. Before initiating a
refresh transaction, each peer must first receive a single token of a sequential series, to get the order in which the
transaction will be executed. Once a token has been assigned to a peer p, this last becomes directly a Master
so it performs update transactions to all connected Slave peers, as showed in the window, Fig. 12. Update
transaction performing: When a Slave peer receives an executing transaction, it places it according to its Master
peer’s token as well as its number (Sync_ID, in Fig. 5) and updates are performed to the Slave peer database.
As soon asthe transaction ends on each Slave peer, it sends an appropriate message to the Master peer to certify
the transaction commitment. The peers connected during the initiation of the transaction and whose transaction
has been aborting during transaction performing, due to any kind of issue to the site which host the peer, must
be mentioned in the pending list in order to be updated later in a new procedure reusing the same Sync_ ID.
Then the main transaction, initiated on the Master peer, ends when it has been executed on all peers and give
immediately the relay to the reconciliation procedure.

ii. Data reconciliation Reconciliation transaction serialization: Reconciliation in turn will benefit from the
serial order of their "Mather” update transactions. This phase must begin on the Master peer once the replication
is complete. The reconciliation procedure must also initiate transactions to read updates received by Slave peers.
These readings consist of a comparison between the data s ent by the Master peer and the data received by the
Slave peers. The comparison operation is performed according to data carrying the token of the same Master
initiator of the replication transactions, as revealed in the window, Fig. 12. All errors like missing records,
duplicate records, incorrect values, missing values, incorrectly formatted values are retained in order to be fixed.

Reconciliation transaction execution: This phase consists of fixing all retained errors so that missing records are
inserted, duplicate records are deleted, missing values are added to their respective fields, incorrectly formatted
values are replaced by correct values. Data reconciliation process can be however restarted if the first one done
didn’t put replicas in consistent state. So procedure can be repeated until all replicas become consistent, then
the Master peer can release the token. In the case where the inconsistency persists among data, probably it can
be caused by conflicts.

18 c¢) Conflicts avoidance rules

To avoid potential conflicts among data in the P2P replicated database environment, some rules must be
respected:

? When using the database, it is inadvisable not to update the value of the primary key; instead, it is
better to delete the entire record and re-insert it; 7 When designing an application which communicate with the
database, create procedures which cannot allow from a peer to update or to delete a record whose insertion was
not performed on that same peer i.e. the modification of a data must be done only and After the configuration

398
399
400

401

402
403
404

405

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

20 A) PERFORMANCE ANALYSIS

be performed as indicated in this section to simulate the replication process on a P2P network, the test and/or
experiment sets yielded the results which are presented in the next section.
V.

19 Result

This section is dedicated to testing this new synchronizer of databases, results and evaluating the performance
of the newly proposed algorithm. To achieve this, it is necessary to analyse the performance in order to jus tify
the effectiveness of the algorithm.

20 a) Performance analysis

Suppose that this algorithm has to broadcast updates emerging from the replicated database over 4 peers A, B,
C, and D, local servers of a bank branches. Being fully replicated and homogeneous, the physical schema of this
database consists of 3 tables, as presented in Fig. 13. So, for all cases, consider the sample of 12 executions, to
operate randomly and based on the reality of the replicated data manipulation in the distributed environment of
banking database. However, in all cases, insertions are greater than or equal to updates and deletes. But updates
can be more or less than deletions.

After the replication transaction has completed, if there has been an overload or interruption of the network
corrupting the replication transaction, then assume that the data that the destination peers have received has
experienced some inconsistencies with respect to those of the master peer. Fro m the total replicated data (inserts,
updates, and deletes), consider that 25% are missing records that require re-insertion, incorrect values, missing
values, and incorrectly formatted values which need to be updated and duplicate records that require deletion,
as typically data to be reconciled does not exceed % of that of replication [2], ??722]. Thus, it resorts the data
presented in the table 1 hereafter: For analysing the effectiveness of our algorithm, the experimentation will be
realized in four scenarios, namely:

1. Experimentation based one table stored on a master peer with two slave peers ; 2. Experimentation based
two tables stored on a master peer with two slave peers ; 3. Experimentation based one table stored on a master
peer with three slave peers; 4. Experimentation based two tables stored on a master peer with three slave peers.

To carry out the analysis of the performance, based on the prediction of the execution time according to the
data of the sample presented in the Table 1 above, it results the execution times obtained after experimentation
and presented successively in the tables and charts below: All basic factors remaining unchanged i.e. one table
stored on a master peer with two slave peers, replication and reconciliation models are successively presented
as follow : insert operator, Fig. 14(a By varying the factor number of tables, from one to two tables stored
on a master peer, dividing the number of records equitably between two tables and maintaining unchanged the
factor number of slave peers in "two (2) peers”, the replication and the reconciliation models are successively
given as follow: Year When we increase the number of tables from one to two, in 1 second, the prediction of the
execution time (y), during which this algorithm can successively replicate and reconcile the number of records
(x), is calculated from the following way:

? For insert operator ? In replication procedure (Fig. 16(a)) : 1 = 0.021 ?? ? 1.3366 770.021 7?7 =71.3366 7
7?7 =111.26 7 77 7 111 inserted records to be replicate in 1 second. So, as the coefficient of determination R?
= 0.9846 then the dependence degree of insertion execution time compared to the number of records is 98.46%
and as the coefficient of correlation R= 777 2 7 R = 70.9846 ? R = 0.9923 then the degree of linking between
the insertion execution time and the number of records is 99.23%.

? In reconciliation procedure (Fig. 17 The experimentation of this algorithm on a topology consisting of two
(2) slave peers proves that the variation of the number of tables containing data to replicate and reconcile in a
P2P replication system has a significant impact o nly for the replication transaction as illustrated in Fig. 18.
For all data modification operators , illustrated by graphs of Fig. 18(a), Fig. 18(b) and Fig. 18(c), successively,
taken into account in the replication process, the execution time, when record s originate from one (1) table, is
greater than the execution time when the same number of records emerge from two (2) different tables while for
reconciliation the impact is not too great.

Hence this variation has no significant effect on the execution time of data reconciliation because the number
of records to reconcile from one (1) table and average of execution time, calculated in Table 2, are not far different
from those to reconcile from two (2) tables and whose average of execution time is calculated in Table 3. This is
why the curves of the graphs depicted in Fig. 18(d So, partially we can conclude that this algorithm is efficient
for the replication of databases because generally a database does not have one table i.e. data to replicate are
scattered in several tables. As for reconciliation, since it takes place only when it is necessary and mostly data
to be reconciled do not exceed one quarter of that of replication, little importance should be attached to the
computational time of this phenomenon. Year This conclusion was obtained after varying the factor number of
tables. However, by keeping unchanged all other factors, except the number of slave peers that vary from two (2)
to three (3) peers, using the same sample in Keeping the factor number of table unchanged, one table stored on a
master peer with three slave peers, the replication and reconciliation models are successively presented as follow:
insert operator, Fig. 19 In 1 second (y) we predict that this algorithm can successively replicate and reconcile
following number of records (x):

458
459
460
461
462
463
464
465

467
468
469
470
471
472
473
474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

494

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

? For insert operator ? In replication procedure (Fig. 19 Varying the factor number of table stored on a
master peer with three slave peers, the replication and reconciliation models are successively presented as follow:
insert operator, Fig. 21 After increasing the number of tables from one to two, in 1 second, the prediction of the
execution time (y), during which this algorithm can successively replicate and reconcile the number of records
(x), is established as follows:

? For insert operator ? In replication procedure (Fig. 21 When running this algorithm on a topology consisting
of three (3) slave peers, the experimentation result proves that the variation in the number of tables containing
data to replicate and to reconcile in a P2P replication systemhas a significant impact on the execution time
of replication and reconciliation transactions, as shown in Fig. 23. Fig. 23: Effectiveness of replication and
reconciliation based one table stored on a master peer with three slave peers vs two tables stored on a master
peer with three slavepeers.

However, this impact is explained only by the comparison of averages, in Table 4 and 5 Mediation of Lazy
Update Propagation in a Replicated Database over a Decentralized P2P Architecture execution time with one
table. But, in terms of predictive models, we found that, when the records come from one table, the execution
time is greater than the execution time when the same number of records is split and comes from two different
tables. This phenomenon is clarified by the successive resolution of the prediction equations of the replication
and reconciliation models which proved that the number of records to replicate and reconcile to 1 second, with
two tables of origin is greater than those when there is only one table.

Thus, partially we can conclude that this algorithm is effective for the replication of databases, its performance
increases with the increase of the tables for a certain number of records. So, since the data to replicate is usually
scattered across multiple tables, we can count on its effectiveness. Fig. 24: Effectiveness of replication and
reconciliation based one table stored on a master peer with two slave peers vs one table sto red on a master peer
with three slave peers.

The result we have achieved so far comes from the analysis of performance by varying the numbers of tables
in which the data to be replicated and reconciled originate. Nevertheless, later on, we have to analyse the
performance of this algorith m starting from the variation of the slave peers. Thus, Fig. 24 and Fig. 25, show the
effectiveness result when increasing the number of slave peers but the data to replicate and reconcile successively
from a single table and two table. After increasing the number of slave peers, the execution time of the replication
transaction as well as the reconciliation of the data, successively from a table, as illustrated in Fig. 24 and two
tables, as shown in Fig. 25, knows a significant increase. This increase in execution time affects negatively the ?
Secondly by comparing the predicted values, in this case the prediction of the number of records to replicate and
reconcile to 1 second. After the successive resolution of the prediction models equations for replication and data
reconciliation, we found that the number of records to replicate and reconcile are declining after increasing a slave
peer. However, based on these observations from all the cases i.e. with the data to be replicated and reconciled
from one or two tables, we can partially conclude that the increase of the number of slave peers on a Replicated
Databases over a Decentralize d P2P topology is causing the loss of performance of the synchronization algorithm.

21 b) Result summary

In view of what we have just achieved as a result, it is necessary to summarize and give a general conclusion.
Thus, the Table 6 here below will first give a summary of the results. Starting from the results presented above
and summarizin g in Table 6, our first group of hypotheses of the significance test of each independent variable
gives the conclusion that each independent variable is a significant predictor of the dependent variable. In other
words, the number of records in each table (xil), the number of tables whose data has chan ged (xi2), the number
of peers connected during the propagation of updates (xi3) and other factors (?) like number of columns per
table, data types columns, etc., each taken separately predict significantly the execution time (y) of the replication
transaction as well as that of reconciliation because almost all coefficient of determination (R?) are greater than
or equal to the confidence level of 95%. In all the cases the execution time depend on other factors beyond 95%
and these factors correlate positiv ely and tightly of the totality. This means that the changes made to one of
these independent variables affect in 95% or more of the dependant variable and vice versa. Hence, we accept the
alternative hypothesis (H1) and thus reject the null hypothesis (H0). As for the second group of hypotheses, since
for all experimental scenarios all independent variables (the number of records in each table (xil), the number of
tables whose data has changed (xi2), the number of peers connected during the propagation of updates (xi3) and
other factors (7) like number of columns per table, data types columns, etc.,) are significant predictors of the
dependent variable which is the replication and reconciliation transaction execution time (y), the overall model
of the regression is significant, at the same thresholds significance derived from the combination of factors by the
experimental scenarios summarized in the Table 6 above.

The experimental results show that our algorithms are performant since when to 1 second, a time elementary
unity, it can replicate and reconcile a considerable number of records, like present the last column in the Table
6, for the present experimental environment. However, since the performance of a computer algorithm is due to
its execution time, this is how we assert our main hypothesis that P2P replicated databases systems experience
the weak performance, especially since the time of transmission of updates from a Master Peer toward Slave
Peers dependent in more than 95% of the number of records, the number of tables whose data know changes, the
number of peers connected during the propagation of updates and other factors.

520
521
522
523
524
525
526
527
528
529
530
531
532
533

534

535

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

23 CONCLUSION

Nevertheless, as we have just seen, when we take two by two experimental scenarios those can be noted
successively I: 1 and 2, II: 3 and 4, III: 1 and 3 and finally IV: 2 and 4 of Table 6 above, I made a good
performance, II also made a performance gain but not far from the average, III made a loss of performance and
IV made a loss as well. Taking III and IV it emerges the variation of number of peers connected whereas from I
and IT emerge the variation of the tables. During the experiment, it was found that the variation of number of
the tables did not lose the performance, contrariwise it improved it. Moreover, among the independent variables,
the number of records and the number of tables being factors directly related to the database before even hinting
at the data replication, it is clear that it is the growth of number of connected peers which is at the base of the
considerable loss of the performance i.e. the increase of the execution time of a synchronization algorithm of
distributed databases.

Thus, as a future work to be carried out, as part of improving the performance of this proposed algorithm,
the thought will revolve around synchronization algorithm for replicated databases over a decentralized P2P
architecture with supernodes or super-peers [31], [32] belonging to peers clusters in order to reduce execution
time of transactions and to reach load balancing during data transmission [35].

22 VI.
23 Conclusion

This article proposes a prototype of a synchronizer-mediator for lazy replicated databases over a decentralized
P2P architecture in a Graphical User Interface. The motivation arises from the common problem of databases
replication consisting to maintain consistent replicated databases over a decentralized P2P network.

However, two specific problems caught our attention: transactions broadcasting updates from different peers
are performed concurrently on a destination peer replica, which always causes transactions conflicts and data
conflicts. Moreover, during data migration, connectivity interruptions and network overload corrupt transactions
so that destination peer databases can contract duplicated records, unsuitable data o r missing records which make
replicas inconsistent. Differen t methodologies have been used to solve these problems : the audit log technique
to capture and store data changes in audit tables; the algorithmic method to design and analyse algorithms
for transactions serialization, for data replication transactions and the replicas reconciliation transactions end
finally the statistical method to analyse the performance of algorithms and to produce prediction models of the
execution time.

The C # prototype software has been designed to implement algorithms and permit to execute the test in order
to make out the effectiveness of each experimental scenarios. Afterwards it has been shown that the algorithm
has a good performance because it can replicate and reconcile a considerable number of records to 1 second.
Finally, the assumption according to which "The execution time of replication and reconciliation transactions
totally depends on independent factors” has been affirmed. B

1@ 2019 Global Journals
20 2019 Global JournalsMediation of Lazy Update Propagation in a Replicated Database over a Decentralized
P2P Architecture

10

Shte 1

Shte 2

T T

DBz

DB1

Parant Replica Site

|:'l"i'|. :.": E
[

Sita 5

[
T

Figure 1: Fig. 1:

Changes/Updates

Synchronlzation

Figure 2: Fig. 2 :

11

Child Replica Site

23 CONCLUSION

Database in
consistent state

Temporarily the
Database maybe in
inconsistent state

Transaction running

Database in
consistent state

gBegin Of Transaction

Figure 3: Fig. 3:

12

End Of Transaction

Select Table

> |-
>

Get column (1) name of
selected Table and

respective data type

Next column (i++)

v
Column names and types |

.

Running ‘Create Table’
query based getting
columns names and types

v

Trigger
type="Insert"

Yes |

Running ‘Create Trigger
for Insert’ query

'

“After insert trigger
created successfullyl”

“Audit table created

successiuliyl™

L[]

Trigger
type="Delete"

Running ‘Create Trigger
for Delete query

'

Query
execution

“After delete trigger

Trigger
type="Update"

Running ‘Create Trigger
for Update’ query

v

“After update trigger
created successfullyl”

created successfullyl”

13

—3

23 CONCLUSION

| Tl TramsDune

L

Data-table
v

TrdWoucheitie TiansWording

PONZ-A 2010-07-S000C000M00 V-DOITA-J008 Gk depost
FOOISA 2OTA-OT-G7 COOOO0M00 VDML Withdamal

Thesze are required columns to compare record:

- UpdatedCol_Mame: to retain the name of the

column whose data knew changes;
- Audit_Action: to store the trigger type action;

B0l-A DOTE-O7-08 SORD0e00 00 W-00215- 204K Tesnphar 8o Maida Branch
i PP R M ek - Audit_Timestamp; to capture the last date and time
l ke y on which the transaction takes place,
- Sync_ID: to store the record transaction dentifier
' provided by the Sync.-System.
Prmary Key Other data-table columns
TrarhD Trenalate Traeaemchertite TransWiording UpdsiedCol Mame hudi_Action Audn_ Timestamp. Syme 10 Master

b PODILA JOI007-00 OOOOQOM00 W.ONTIA018 Cash depesd o Cimeted 2018007 THIBIAZTY Locat-Tursacion PEET Audil-
eORrT-B 2018-07-00 OROGD0.000 N-00Xk-2010 ©axh dagasid Iriptad SO18-08-15 1 ETRM QLN Locsl-Tesnpaction table
POOTS-A Z0TB-07.07 OGROGOOO00 W-D0IS4-2018 Withdrwwal ibted DOTR08-25 IZVRIZNT Locsb Teansactin
PODHI-A 018-07-08 0OOGO0H00 V-0OIF-2010 Teanster imeted 2018-08-23 LHIRELATY Locak Trancaction
PO DO8-O7-08 De0OD0000 - 003002004 Cavh dapaait TeaansVoucheeblbs Updated D800 T8 1L TRMLIT LocskTranuschen
PODKS-A J018-07-10 0KOGOA000 ¥-D0I4-2018 Cash deposn imeted 20180828 123011950 Locak Transaction
PO0dt-A POE-07-08 DO 00000 ¥-002 52014 Taaneder TondVouchashite Upcated 280815 123)T 0 Locad-Tranuachion
FOGEY A BO18-07-10 (00000000 D004 2013 Cash degain Drebrtedl B0 805 7Y 1200087 Local Transachan
POSHIE 918-07-00 CGOGNI00 WCONO-J Cashdepend Drieies 186854 10T Locet Tamaction 1EVE PlEET
PODME.A DO1B-07-08 D:00O0008 V.DRMS-201 Taansier ts Noida Branch TesniWoiding Updated 2018.08.3% 130137307 LocsbTunseion Alldil-table

YT TR T ML oL ML ML ML [

] POd-& AI-07-03 De0000.000 -0 14-2000 Cohy depose Ingered FE-08-25 1245570 SvRC-MAasTER -PUER-001-00000F
POGTI-B 20180700 0000000 W-0O23S-2008 sk depasi iseed HIB-03-25 123345600 SYNC-MASTER-PEER-001-000003
POOESA 201E.07-07 OROBO0000 W-DOIS4.2018 Withehawad famted 201B-09-2% 123345503 SYNC-MASTER. PEER.001 000003
POGHI-A Z0TE-D7-08 0GO000.000 WDOISS-2018 Tramsfer Waerted ZMB<09-25 123345501 SYNC-MASTER.PEER-001 000003
BOCds-A 1E-O7- 50 D0e00-00.000 -DO308- 2018 Caks deposi Ingarted E-08-25 120345610 SWRC-MASTER-PEER-001-000003
POGEI-E Z018-07-03 OOGH0.000 W-00M0-2018 Cash depost TansVoucherble Updated 2018-05-25 123031,601 SYMC-MASTER-FEER-001-000003
PODEI-A 2015-07-08 00000000 W-D0I15-2018 Transler TunsVoucheble Updated 201B-05-2% 129347609 SYMC-MASTER-PEER-001-000003
POOEN-4 20180708 D0:00:00.000 Y-00215-2018 Tramder 1o Moda Brasch Tranitordng Updated 2018-09-2% 123 5,607 SWRC -MASTER-PEER-0D1 - 000003
POOES-A P01E-O7- 40 D0-00:00.000 -D0304-2018 Caik depoiit Diifatad J18-09-25 123355030 SWMC-MASTER-PEER-001- 000003
eocli-E MIB-07-03 0000000 W-00200- 2018 Cothy depose Deteted SE-08-25 1R RS RIR SYRC-MASTER -PEER-001 00000
NULL NULL WULL NULL NULL NiEL WL MLL

Figure 5: Fig. 5:

14

Peer A

.
Peer B

Figure 6: Fig. 6 :

15

23 CONCLUSION

USER APPLICATION
Write Transaction Write Transaction
Wi(x) ... Commit Wi(x) ... Commit
1 4
(1) (2) (1) (2)
(3)
3)

1 w i

®
Wi(x) ... Commit Wi(x) ... Commit

Write Transaction Write Transaction

Figure 7: Algorithm 1 :

16

SYNC. MEDIATOR-SYSTEM

Read Transaction

R[x) ... Commit
] T *.

Read Transaction

R(x) ... Commit

(1) : (3)

M1

L4 O] e — —— -

[- |

giElE

(3)

=9 --

(3)

-

3
|
4

M|

e v
R(x) ... Commit

Read Transaction

'Y

R(x) ... Commit

Read Transaction

Figure 8: Fig. 7:

17

23 CONCLUSION

Figure 9: Figure legend

Figure 10: 1.

18

— K5

Agidlt Log Craation

Syne. Mediator-System

Tahie Mane @ -I]III._IH'H:IH-!Hkaaﬂ.II'l Ciolwmnn Hbr. 2 4

‘“MHIH Tabie Colamm Tyer
¥

Cimitiame
Cumliiess
CumlianelEr

Figure 11: Fig. 8 :

E4I1 i

e, 1D E VR EALTER-SEE 000 0000 RaEET Pee 1P LIRT T

Begrming ataTioms [0 11900 | ot [InbieM | Master Feer Logh: asmin

Do CwleTime | [WQUTS/BNN ~| ot Dol Pad | B Peer Ped . sssesssesees

b Pimne B e Can. Type LT R

Figure 12: Figure legend 1 .

19

23 CONCLUSION

Data_tb3ImputationAccount Data_tb1CustomerAccount
% ImplD ¥ AccNbr
ImpDebit CustMNames
ImpCredit CustAdress
T AccNbr e —— CustPhoneMbr
? TranslD o
Data_tb2TransactionAccount
Lol | ¥ TransiD
TransDate
TransVoucherMbr
TransWording
9
Figure 13: Fig. 9 :
1) i
E 12 ~ =% L = -
&" im N :
1= = an
E t 3 5'_:\ - ; -
E) i g s ® i
» - .
o 3 .'Iu- . 3 e
" .-.. AR el iak " g 0 300 4O 800 B0 MO0 1XH 1400 0 W 40 D M0 1000 1AM 340
] i # il M0 §aS0 T i
Brvordy mumhrt Frcordy rumie)
. % . @ incorert, Mipting 208 ingprmecth darmarted S
§ = O -0 OFFF :"::“* Oal e Mo e Oafory P —— P T R mr:‘m:;‘ b
R = 05T e flali g e 85 TR DA kBT o s Livear (ncomect, Moong, and Iscomectly Fo e Lorerar [Tuzbrate rocords arse e i o
psrvmE v e v Tl vl O R £ M i) s nicn Hims|
10 lal bl I¢1
Figure 14: Fig. 10 :
130 Fti) o -
160 . 130 - 180
7 L] 7 LEd T 180 4
f :4: E 140 s i:qn
W & 120 120
i Jiz P £ 100 . - e
Here HE==s HES2
a " . £aw - & a0 -
m H 0
] "‘] "‘ o #.
[1000 3000 3000 4000 SO00 GO0 [0l AMD 300G 4000 SOO0 BOOD 1] ool 300 3000 SO0 500D BOOD
Recomds mumbssr Recounds mumiber Eacoids numbsr
poommregams | oon Eremtm tme poO0iifx dapi4 0 CPSMEEmeCUbn me = 056 - 3,528 Ll
¥ = 09685 Linsir [ron execstian bire| W = 0ATAS Lissar [Update s outicn lims) B3 = 09661 Lirseir | Dt smecution tims|
13l (k) 18]

Figure 15:

20

11

12

Ewmsciithen Hivss [In S60.]

Eserathon Time fin Sec)

£
100 .
A
' B |
e
L] -
] el
0 "
o &
o 1003 3000 3000 4000 000 G000
Becordy number
yoOO0ZIRE- 13366 % Iiston essculion lims
M i —— Linszar [inse rikon eseostion time|
la)
Tl
ot -
i o
™ d
E]
]
1 e
2 w'}..
[
a
0 0 AWM BN D 10N 130 1400
Renids rusber
#4000 - DR ¥ Placing recor reconciistion meetion
B nees b
Linmar (Wi otirg secarde recone mton
emtulianSec)
lal
]
it]
1o
Lo
—a—irmrior
1 mmcEtion tme
- ————
- —— R
- R
E it e
a
1Tma5a 7 YHNR
Humbar ot ssensiom
La]
11
(5]
™ ——tping e ETE
[] L]
eattEln B
L] bith o dmled
. —S—thuing recorin
econclation
2 LR B
i th em sl
L]
13045 678 RI00LED
Mumbser ol prsotions
L1}

-

Emetation Vi fin S)

Envrution Gime {in S

oo sgasEEE

9 L0 0D E00 4000 5000 SDI0
Recr s numbes

® Ugdabe sxsculion time
— Linar [Update weotion tim]

¥ O02E - 20549
A= 05832

L

Figure 16: Fig. 11 :

"]

=
[

i
& -
i
im f-.-*- .

11 _,4--""

0 l'-"‘p

4 M0 AN SN B0 SO0 1IN0 0

Bpczrdi isrnkes

& incormect, Maseg snd ncowecity formstted
wlus recoad keson ssecution tire

Linsar |ircowmedt, M inung. aad incoimediiy
i § vk r

0 DS - DATRE

B nseal

(L]

[}

Figure 17: Fig. 12 :

&
H
Emmxcuithan Himes [in Sec.]
o EEEEEEEERE

1234538 T3 21MLR
Fiarrbier o puanationg

L]

P2 046676 Fi0ddIT
Mamier ol peecstions

]

Figure 18:

21

i
)
Eessation fimie in Sec.|

EEEEH

aMEs EE

L
-
iFa
- -
ibm -
& m -
fe .
-
§ - _ -
.‘f
o ‘
o
md OO0 2000 3000 4000 S000 6000
Beconds numer

= 00233 - 24175

& Daabele saiculon lise

Rt 05811 —— Linaar [Debebe axeostion EmE)
(el
m
13 "
ju —
14 L
s i3 - -
i e
k %
6 Pre
L) -
]
L]
@ MW@ 4D ED MDD 100 NSO
Fepmatdn rmiBar
eoards
¥ =003 - D178 S
M —— Lisear (Dupb ple recne s recirakains
wmcuticn ima)
Ie)
== Ogbohe grerabion
e [wikth cra
k]
—— b A TN
e [wth o
L]
1T 3483068 T83W0N1LE
Humbes ol seEruEian.
el
o DT TR
Pepankarn
emution e
ot o= bable
=S Dugiicais revorcy
recanciabion
B ko e
[
17 A4 F 674N
Mamber ol eeostions
il

23 CONCLUSION

] o Ha
sy - i
]’ 6y - i’ 30 -]]
S 5 - E .
un o L0
§ oo . i i
j o - ﬂ] - F -
0 - -
& -] sy
m e -~ ": -~ B
[} o @
O T R PR T e O @ I RS ENG A OO0 RS
‘Records rmbsar Rriirib Frarribeei Racords rrember
¥ s BT - Y
\"u:“h'ﬂ-'-'m & enrSns peoosios G & Ugiaie cepoetion fise A= TS & Uit oareaios s
i e (rsesfion sarLuties Gk i i gl L [thetet e certion. fene] Vinpeps {Uirbese raryuthon Saned
13 ah [ich
Figure 19: Fig. 13 :
b » =
14 - - = -
= -
E = I = hl i "
a4 e s .
i- - I - an »
; L] . !m
L] - B -
- s - =
il ..—- o - Chad g ..
e e o P 8 L8 30 mse sss mes mm A0 dam .-“. N LI AR, 2Tt 1
Mg i Fand L e
o - L Alimsing ared by | el - d
¥ "":'::";u ™ 'm-uh-wdﬂ.-nmnlnm il B m-“_":.ml rlu--u-vulr.-hm ¥ “.E"_":"'"‘L""“ - hm-—ndl.m.u_-u-_-lu
e Cy———— i L Precnevecr. Winsieg. srd incmrsctly [Ty S a———
el appeca L o aisss Latt A i s
(] (] el
Figure 20:
00
3 o - P -l! R 'I
i » § e i =
! o] * 5 &m0
150 .
i i J e ’
L]
00 = - l e - -
A
50 | w0 & ™
: et . o 2P
0 MED N 000 4000 SO0 oo L B bl D00 000 S000 S0 G060
Racoiids nusshar Raxir iy retibens Agarda numbar
o D53 2o4ay * Mneeion eeasion fme yo O dmg * Updas cstion lme = ELCbE - 55373 T Rp————
B = T ——— Linsar [Ireeciion @ secution bivs| = A ——— Lt JLipdane enguthon e AT =040 Lveaw {Delete encrution dmes]
14 12} k] il
Figure 21: Fig. 14 :
] £ k]
- * o~
- = : » -
= =
jmw E T i .
i l » . im
'i - M e i " -
i .
1 . 1.. > iu.
L] o 5 - Ll
i - = > (1] L -.-‘.
il a =
P M0 AN M0 B0 MO0 N0 1AW
@ M0 MO M0 0 W00 1NN N0 £t &
: i . 06 a6 M0 MO W0 iW0 e
& jpcones. Wasng and ncoreertly fermafied
* Mg ey reoncilaton s, QEMY ek mornckintion monefion Hre PO SR R—— e p————
v Loy

- “;_qw;}w e (Wi recards ecaralanan

S s e |

15

Lal

o CUSdds - O TTES
Ll Lirssar [recrvmct, Wnubng. ane lnaciecty LRl 1 i)
s 1 e ill o

il

Figure 22: Fig. 15 :

22

tiew
Lirsber R LS FRCTN S SR
s v

el

16

17

B
i!'ﬂ
=a
£
o i TS
i O BT
I 1543 e o s abin|
i 10a (i
rarruting B
& W farth bar i
a
IR N R
Reirabai of gasitiani.
il
=
iﬂ
i m =g mreorth
Il ikt
I-'-" winr e v
[t cmse sk}
- e
(LT
L Futi B
3 i ps bl
1P34%8 TN
Femiar ol sopcaticny
1
wn
_ i
PR
a laa e PRV
i e jarh ane
I 1B tthn - w ke |
o
L]]
- e fueh e
prd tathe Brox
i s
TR AR R P RIEEELY
Wumbe ot asgowtions
=)
1
"
IH’ bl e
[——
l n L L h
.I_] i e Lk
o thaeee|
= — e UL SRS
4 (L LS T
¥ v R
fwie par nbie
L] 1bener shywen]
1FT 48R TRAMNE
]
i

o
EM
i‘m i L a8 AL R
i 153 :1:“5-1 i
i ———

i

fidaynrarmun
Mty of oatabiasi

Ll

Enwpartion e (v fae |
o w BEOHBODEBEA

1?34 45%8T87WIILE
Pembar ol sxecetions

1el

Figure 23: Fig. 16 :

E E ¥
i
£
i
L
i
i
i

k
i
T
#
i

Frametime o o= e |
i
T
1
i

o
I N A I T EEEES

Peambar ol gegoutaey

]

Frimpuiae Vi (s |
ow B F T N BB

1238834 THYBHD
Parmbars =l meeridorn—

(]

Figure 24: Fig. 17 :

23

]
IW
lau
e —— bl Arntal
i W [ah e
iLH RL-TH
!m == Dbt futiatann
L] e paith e
- 5 i)
L]
lLidaswvaspuyg
M ol gastutiont
14}
=
iﬂl
T B S A —
m e lprinn
neriuios e
= [l e Bl |
10 e Cuphramm oo
reancikition
L] RS B
i i s G|
12368 aFAswnn
‘Humber of sescuniam
U]
150
]

|
!

E
!

E
i
H
i

EE @ d % e Ewibiial

SMumbar of meendtiony
(=3
"
k)
i e {gliC ceCareS
£ -
L] smrmon nTe
I ek o e
u Ted el
— gt ST
5 cernilisbing
el
o db o by
a T |
PF D48 ETE NI
Fimrrizer = wwmd e
m

23 CONCLUSION

Wk - Wk

e — R T 1 e — U PR R

e ['Sy 24 1R el R

o

= T — e

T i o
w T s a2
P
. a
15N A AT R PRaS A E e VA E A TR WIS
Parmirar of anscusarn Munbesr of assoutiem Peamizar of esrsbar
[ibh ich

" - n
i o 1 _—
i ;P 1.
&= i .
] = e L] §=
E. | I i Pt 1
E Iun toes thawes] §v

] . .
i ! = i
- - 4 §

a u a

188488 F 00 I01N 1 paasa TR amER
Mumbar of aspouitens Humbas of asscantarn
il lul L]

Figure 25:

()C

concerned record, with the new data that has just
been set, and inserts it in the audit table, as
shown in Fig. 6, row 6 to 8 in Slave Peer Audit-
table;

© 2019 Global Journals

[Note: 6, row 1 to 5 in Slave Peer Audit-table; ? After each Update operation of a column of data table, the
“update trigger” captures the Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized
P2P Architecture]

Figure 26: ?

24

Algorithm 3: P2P Replication Algorithm for Data Insertion
Input: Master peer inserted records
Output: Transaction Commitments or Abortions Algorithm 5: P2P Replication Algorithm for Data Dele

Yedk: 10: and AuditTimeStamp ?BeginningDateAndTime and AuditTime!
2
019
12 11: 12: for(cts?0 to NumberOfColumnNamesInDataTable(ts) OfSlavePee
13: Values ?Values & Row[rtm]Column|cts]
14: end for cts
15: insert in toDataTableNames(ts)InSlavePeer(p)Database (Colum:
16: end for rtm
17: end for ts
20: endinsertSubTransaction(Commit or Abort)
21: end for p

22: endinsertMainTransaction(Commit or Abort)

23: returnTransaction Commitments or Abortions

endinsertFunction

After records which have been inserted be which
has
the

struc-
tions
in
trans-
ac-
tions
of
the
replicated to slave peers, the algorithm 4 here below, update

func-
tion,
also
runs
in
turn.

(Algorithm 4: P2P Replication Algorithm for Data Update Input: Master peer updated records

Output: Transaction Commitments or Abortions
beginupdateFunction()

1: beginupdateMainTransaction

2: selectall Available Slave Peers

3: for(p 70 toNumberOfAvailableSlavePeers -1)do

4: beginupdateSubTransactionPeer(p)

o selectall Audit Table Names in Mater Peer Database

6: selectall Data Table Names in Slave Peer(p) Database

7 for(ts?0 toNumberOfDataTableNamesInSlavePeer(p)Database -1

8: selectall Rows in Audit Table(ts) of Master Peer Databasewhere
and AuditTimeStamp?BeginningDateAndTime and
AuditTimeStamp?EndingDateAndTime

9: for(rtm?0 toRowsInAuditTable(ts) OfMasterPeerDatabase -1)do

10: sglpctall Column Names in Data Table(ts) of Slave Peer(p) Data

11: for(cts?0 toNumberOfColumnNamesInDataTable(ts) OfSlavePeer

12: if(ColumnName(cts)InDataTable(ts) OfSlavePeer(p) Database =

UpdatedColumnName)then

23 CONCLUSION

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture -
Ye&r Processing: 7 Reading forwarded to other replicas by the refresh of updates independently transaction
2
019

14 Algorithm 6: P2P Algorithm for Data Reconciliation 45: end for rts 46: end for rtm Input: Master peer 1

51: updatelncorrect ValuesFu
52: end

if
53: end

for

cts

(11: 12: 13: 14: endreconcileFunction Table(ts)OfMasterPeerDatabase -1)then if(NumberOfRowsInAudit ’

15: To insert missing records, the algorithm 7 here is called. rts?0

16: Algorithm 7: Function to insert missing records for(rtm?0 toNumberOfRowsInAuditTable(ts) OfMaste

17: Input: DataTable(ts)OfSlavePeer(p)Database, cts, rtm repeat

18: Output: Nothing if(rts?NumberOfRowsIn 2
Ta-
ble(ts)OfSlavePeerDatab.
1)then

19: begininsertMissingRecordFunction(args) if(Row[rtm]Column[0]InAudit Table(ts)OfMasterPeerDataba

Row|rts]Column[0]InAudit Table(ts) OfSlavePeer(p)Database)then 1: for(cts?0 to NumberOfColumnName:

20: 2: Continue(rts ++) ColumnNa
21: 3: end repeat Values ?Values &
22: 4: end for cts else

//Call function to insert missing records 5: insert in toDataTableNames(ts)InSlavePeer(p) Database (Col
23: endinsertMissRecordFunction insertMissingRecordFunction(arguments)
24: 25: To delete duplicated records, the algorithm 8 here is called. end if else
//Call function to insert missing records Algorithm 8: Function to delete duplicated records 26: insertMi
>NumberOfRowsInAudit Table(ts)OfMasterPeerDatabase -1)then To update incorrect values, the algoritt
//Reconcile
du-
pli-
cated
records
pro-
cess
start
© 2019 Global Journals 26 ©
2019
Global

Jour-

Nbr.
Obs.

O NSO W=

— = = O
o= o

Mean
Total

Sample

numbering

Nbr.
Obs.

U W

Number of rows
to replicate
723

900

120

2500

1253

80

3000

5000

450

4860

600

235
1643.42
19721

Figure 29: Table 1 :

Insert execution
time (in Sec.)

Master Repli

Peer cation

B 19 2
A 24 2
C 3 0
C 67 5
A 35 3

Figure 30: Table 2 :

Figure 31: Table 2 ,

Update execution
time (in Sec.)

Reconci Repli
liation cation

19
24
3

68
35

27

Number of rows
to reconcile
181

225

30

625

313

20

750

1250

113

1215

150

59

410.92
4931

3 20
4 24
1 4

12 69
) 36

Delete execution
time (in Sec.)
Reconci Repli
liation cation

Reconci
liation

= 00 O NN

23 CONCLUSION

Sample
numbering

Nbr.
Obs.

© 00N oA WD =

[
o = O

Mean
Total

Sample
numbering

Nbr.
Obs.

© 00N oA WD =

e
CRS

Mean
Total

Insert execution
time (in Sec.)

MasterRepli

Peer

TooaQar@mIErrQQF>W

cation

12
15
2
45
24
1
61
104
12
115
16
7
34.50
414

Insert execution
time (in Sec.)

MasterRepli

Peer

ToaQrOW00QQW

cation

22
28
3
78
41
3
97
185
17
165
28
12
56.58
679

time (in Sec.)
Reconci Repli
liation cation
12
15
2
47
24
2
61
110
12
121
16
6
35.67
428

\)

B W R R R PR R0 WwWotdo NN
[Sr —

\]

ot

Figure 32: Table 3 :

time (in Sec.)
Reconci Repli
liation cation

2 23
2 28
0 3

6 79
3 41
0 2

8 97
14 200
1 16
12 170
2 28
1 11
4.25 58.17
o1 698

Figure 33: Table 1 ,

Figure 34: Table 4 :

28

Update execution

Reconci

liation

7.08
85

Update execution

Reconci
liation
3

5

1

14

6

0

17

30

2

27

3

1

9.08
109

Delete execution
time (in Sec.)

Repli Reconci
cation liation
11 2

16 3

3 1

46 7

25 4

2 1

63 10

116 18

12 1

125 16

16 1

7 1
36.83 5.42
442 65

Delete execution
time (in Sec.)

Repli Reconci
cation liation
23 2

28 2

5 0

80 11

42 5

3 0

101 15

218 21

16 1

172 20

29 3

12 1
60.75 6.75
729 81

Figure 35: Table 4 ,

Sample Insert execution Update execution Delete execution
numbering time (in Sec.) time (in Sec.) time (in Sec.)

Nbr. Master Repli Reconci Repli Reconci Repli Reconci
Obs. Peer cation liation cation liation cation liation
1. B 22 3 19) 18 3

2. A 26 3 28 6 28 5

3. C 6 0 7 1 6 2

4. C 90 8 93 18 92 15

5. D 58 5 51 8 76 6

6. A 6 0 6 0 6 0

7. B 188 12 181 13 180 23

Figure 36: Table 5 :

29

23 CONCLUSION

6

Experimental
scenarios

1. Experimen-
tation based
one table
stored on a
master peer
with two slave
peers

2. Experimen-
tation based
two tables
stored on a
master peer
with two slave
peers

3. Experimen-
tation based
one table
stored on a
master peer
with three
slave peers

4. Experimen-
tation based
two tables
stored on a
master peer
with three
slave peers

T Operator Model R?
rans-

ac-

tion

Replicatimert 77=0.03027770.5595+7

Rec- Up- 77=0.03187772.0714+7 77 = 0.033677
on- date ? 2.528 + 7 77=0.00937770.0777+7

cilia- Delete
tion Insert

Up-

date

Delete
Replicatimert
Rec- Up-
on- date

cilia- Delete
tion Insert

Up-

date

Delete
Replicalimert
Rec- Up-
on- date

cilia- Delete
tion Insert

Up-

date

Delete
Replicalimert
Rec- Up-
on- date

cilia- Delete

tion Insert
Up-
date
Delete

77=0.02087770.4639+7
77=0.01487770.4124+7

R Prediction

(to
1
Sec.)

98.65% 99.34% 52 records

77=0.02107771.3366+7 77=0.02307772.0949+7 77=0.02397772.4175+47 77-

7?7 = 0.034877 ? 0.5762 + ? 99.14% 99.57% 45 records ?? = 0.036877 ? 2

7?7 = 0.053977 7 2.9424 + ? 94.95% 97.44% 73 records ?? = 0.052777 ? 4

Figure 37: Table 6 :

30

553
554
555
556
557

558

559

560

561
562

563
564

565
566
567

568
569
570

571
572

573
574

575
576

577

578
579

580
581
582
583
584

585
586

587
588

589
590

591
592
593

594
595

59€
597

598
599

600
601
602

603
604

605
606

607

.1 Acknowledgement

.1 Acknowledgement

Firstly, we are grateful to the Grace of Almighty God. We would also like to thank the academic corps of
the Butembo (D. R. Congo) Institute of Building and Public Works for their encouragement and follow-up of
our investigations. On finish, we thank the Research Technology and Development Centre (RTDC) of Sharda
University, for its facilities to realize this work.

[Oracle Corporation web site ()] , Oracle Corporation web site 2018.

[Oracle Corporation web site ()] , Oracle Corporation web site 2018.

[ApexSQL LLC web site ()] , ApexSQL LLC web site 2018.
[

Zhang ()] ‘A Novel Replication Model with Enhanced Data Availability in P2P Platforms. T Zhang .
International Journal of Grid and Distributed Computing 2016. 9 (4) p. .

[Kituta et al. ()] ‘A systematic review on distributed databases systems and their techniques’ K Kituta , S Kant
, R Agarwal . Journal of T heoretical and Applied Information Technology 2019. 96 (1) p. .
[Kudo ()] ‘An implementation of concurrency control between batch update and online entries’. T Kudo . 18 th

International Conference on Knowledge-Based and Intelligent Information € Engineering Systems -KES2014,
Procedia Computer Science, 2014. 35 p. .

[George and Balakrishnan ()] ‘An optimized strategy for replication in peer-to-peer distributed databases’ A
George , C Balakrishnan . IEEFE International Conference on Computational Intelligence and Computing
Research, 2012.

[Kituta et al. ()] ‘Analysis of database replication protocols’ K Kituta , S Kant , R Agarwal . International
Journal of Latest T rends in Engineering and T echnology 2018. 2018. p. . (Special Issue ICRMR)

[Filip et al. ()] ‘Considerations about an Oracle Database Multi-Master Replication’. I Filip , C Vasar , R Robu
. IEEE 5th International Symposium on Applied Computational Intelligence and Informatics, 2009.

[Souri et al. ()] ‘Consistency of data replication protocols in database systems: A review’. A Souri, S Pashazadeh
, A Navin , H . International Journal on Information Theory (IJIT) 2014. 3 (4) p. .

[Cormen ()] T Cormen , H . Introduction to Algorithms, (London, England) 2012. The MIT Press. (4th ed.)

[Fatos ()] ‘Data Replication in Collaborative Systems’. X Fatos . IEEE Seventh International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, 2012.

[T Ing and Yu ()] ‘Database Replication T echnology having high Consistency Requirements’. Z T Ing , W Yu .
IEEE Third International Conference on Information Science and Technology, 2013.

[Database Schema Difference Reconciliation ()] https://www.perpetual-beta.org/weblog/
mysgl-diff.html Database Schema Difference Reconciliation, (Jonathan, H., MySQL_ Diff) 2018.
2018.

[Silberschatz et al. ()] Database system concepts, A Silberschatz , H F Korth , S Sudarshan . 1997. New York:
McGraw-Hill.

[Diallo et al. ()] ‘Distributed Database Management T echniques for Wireless Sensor Networks’. O Diallo , Joel
Rodrigues , J Sene , M Lloret , J . IEEE T ransactions on Parallel and Distributed Systems 2015. 26 (2) p. .

[Shahin et al. ()] Dynamic Data Allocation with Replication in Distributed Systems. 30 th IEEE International
Performance Computing and Communications Conference, K Shahin , G Pedram , D Khuzaima . 2011.

[Mansouri and Buyya ()] ‘Dynamic replication and migration of data objects with hot -spot and coldspot statuses
across storage data centers’. Y Mansouri , R Buyya . Journal of Parallel and Distributed Computing 2018.
126 p. . (Publisher: Elsivier)

[Santana and Francesc ()] ‘Evaluation of database replication techniques for cloud systems’. M Santana , Enrique
, J Francesc , D . Computing and Informatics 2015. 34 p. .

[Experian Ltd web site ()] FEzperian Ltd web site, https://www.edq.com/uk/qglossary/
data-reconciliation/ 2018.

[Sebastian ()] Fundamentals of SQL Server, M Sebastian . 2012. 2013. New York, United States of America:
Simple T alk Publishing.

[Pandey and Shanker ()] ‘IDRC: A Distributed Real-T ime Commit Protocol. S Pandey , U Shanker . th
International Conference on Smart Computing and Communications ICSCC 2017, 2017. 125 p. . (Publisher:
Elsivier)

[Kothari and Garg ()] ‘In-House’. C Kothari , R Garg , G . Research methodology methods and techniques, 2014.
2018. 20. (Microsoft Corporation web site)

[Kirtikumar ()] Oracle Streams 11g Data Replication, D Kirtikumar . 2011. New York, United States of America:
McGraw-Hill.

[Vu et al. ()] Peer-to-Peer Computing -Principles and Applications, Q Vu , M Lupu , C Ooi . 2010. Springer.

31

https://www.perpetual-beta.org/weblog/mysql-diff.html
https://www.perpetual-beta.org/weblog/mysql-diff.html
https://www.perpetual-beta.org/weblog/mysql-diff.html
https://www.edq.com/uk/glossary/data-reconciliation/
https://www.edq.com/uk/glossary/data-reconciliation/
https://www.edq.com/uk/glossary/data-reconciliation/

608

609
610
611

612
613

614
615
616

617
618

619
620

621
622

23 CONCLUSION

[Pragmatic Works Inc. web site ()] https://dbconvert.com/36 Pragmatic Works Inc. web site, 2018. 2018.

[Spaho ()] E Spaho . Modeling and Processing for Next -Generation Big-Data T echnologies. Modeling and
Optimization in Science and Technologies, F Xhafa, L Barolli, A Barolli, P Papajorgji (ed.) 2015. Springer.
4 p. . (P2P Data Replication: T echniques and Applications)

[Kituta et al.] ‘Synchronous and Asynchronous Replication’. K Kituta , R Agarwal , B Kaushik . International
Conference on Machine Learning and Computational Intelligence, 2017. (International)

[Gudakesa et al. ()] ‘T woways database synchronization in homogeneous DBMS using audit log approach’ R
Gudakesa , M Sukarsa , G Sasmita . Journal of T heoretical and Applied Information Technology 2014. 65 p.

[Magdalena ()] ‘The Replication Technology in E-learning Systems’ N Magdalena , I . Procedia -Social and
Behavioral Sciences 2011. 28 p. . (Publisher: Elsivier)

[Wiesmann ()] ‘Understanding Replication in Databases and Distributed Systems’. M Wiesmann . IEEE 20th
International Conference on Distributed Computing Systems, 2002.

[Ozsu and Valduriez ()] M T Ozsu , P Valduriez . Principles of Distributed Database Systems, (New York, USA)
2011. Springer Science & Business + Media. (3rd ed.)

32

https://dbconvert.com/30

