
Mediation of Lazy Update Propagation in a Replicated Database1

over a Decentralized P2P Architecture2

Katembo Kituta Ezechiel1, Shri Kant2 and Ruchi Agarwal33

1 Sharda University4

Received: 6 December 2018 Accepted: 4 January 2019 Published: 15 January 20195

6

Abstract7

While replicating data over a decentralized Peer-to- Peer (P2P) network, transactions8

broadcasting updates arising from different peers run simultaneously so that a destination9

peer replica can be updated concurrently, that always causes transaction and data conflicts.10

Moreover, during data migration, connectivity interruption and network overload corrupt11

running transactions so that destination peers can experience duplicated data or improper12

data or missing data, hence replicas remain inconsistent. Different methodological approaches13

have been combined to solve these problems: the audit log technique to capture the changes14

made to data; the algorithmic method to design and analyse algorithms and the statistical15

method to analyse the performance of new algorithms and to design prediction models of the16

execution time based on other parameters. A Graphical User Interface software as prototype,17

have been designed with C , to implement these new algorithms to obtain a database18

synchronizer-mediator. A stream of experiments, showed that the new algorithms were19

effective. So, the hypothesis according to which ?The execution time of replication and20

reconciliation transactions totally depends on independent factors.? has been confirmed.21

22

Index terms— peer-to-peer (P2P), database replication, data reconciliation, transaction serialization,23
synchronizer-mediator.24

1 Introduction25

n computing, a Distributed Database System (DDBS) is a database whose storage devices are not necessarily26
all linked to a common processing unit; but rather in this approach, the database can be stored on multiple27
computers, located in the same physical location or can be scattered on networked computers [1], [8]. The28
distribution transparency is the fundamental principle of the DDBS which consists of making a distributed29
system to appear similar to a centralized system to the users. The distribution transparency as well as the30
management of a DDBS are ensured by a program called Distributed Database Management System (DDBMS)31
[3]. The design of a DDBS requires that it be entirely resident on different sites of a computer network but not32
necessarily all. This means that at least two sites must host the database and not necessarily each site in the33
network, as depicted in the Fig. 1.34

Thus, there are two distribution strategies: data fragmentation and data allocation on the one hand and35
data replication on the other hand. So, to make a good design, all these strategies are compiled [2], [3], ??33].36
The fragmentation consists in splitting a relation (a table of a database) into a number of sub-relations, called37
fragments; which can be horizontal, vertical or hybrid. Horizontal fragments are subsets of tuples (table records),38
vertical fragments are subsets of attributes (table columns), and hybrid fragmentation consists of mixing the39
two preceding ones. In turn the allocation is nothing more than the assignment of fragments to the sites in an40
optimal way [2]. When allocated fragments have to share data among them, they need the replication procedure.41
However, this work focuses on the data replication strategy. The replication consists of duplication and storage42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

4 A) DATA REPLICATION

of multiple copies or replicas (at least two) of the same fragment or the entire relation (in the case of a fully43
replicated database) of a DDBS in multiple different sites. The replication is the strategy used to ensure the44
data exchange between fragments or relations in a fully replicated database [2], [3], [4], as illustrate in Fig. 2.45
In any case, the main problem of the data replication is the synchronization of replicas. Data synchronization46
is nothing than keeping consistent replicas in a Replicated Database System (RDBS) [5]. This means ens uring47
the exchange of updates between replicas. Nowadays P2P computer network is in full emergence. Comparatively48
to client/server model, in a P2P system, each client is itself a server. In this way replicating a Database over49
a P2P network require that all peers keep the same data copy. In the same way, the emergence of advanced50
applications of P2P systems, requiring general replication capabilities with different levels of granularity and51
multi-master mode [11], where each peer can transfer updates to all others and the same replica can be updated52
by several peers in a replicated databases environment [4], [10], the serialization of updates and the reconciliation53
of data turns out to be the particular P2P replication problems because those flows of updates (data) and refresh54
transactions conflict each other [8], ??30], ??33].55

For example, the operations on an account, of a customer, opened in a bank with multiple branches can be56
replicated by several branches of the same bank and must be able to be updated by any branch anytime, to57
acquire reception of a transfer, for a deposit to the account, a withdrawal from the account, etc. Concretely,58
changes made by refresh transactions from different peers reach a destination site at the same time and multiple59
updates of the same replicas by different peers break the reliability and the consistency of replicas [2]. This is60
why this study aims to introduce an effective approach to serialize refresh transactions and to reconcile replicas61
in the case of inconsistency. To overcome one of DDBS homogeneity aspects, namely the same DBMS, the result62
of this design needs to be implemented as a synchronizer-mediator for database replication in a Graphical User63
Interface (GUI) using lazy decentralized sites strategy on a P2P network. To reach this purpose, the structure64
of this paper is organized as follow: the first section introduced by presenting the context of this research as65
well as the status of the problem, the second section will review the related works, the third will present the66
methodology, fourth section will show the simulation environment for experimentation, the fifth section will offer67
the result and finally the sixth section will conclude this study.68

2 II.69

3 Related Works70

This section will rapidly review certain research works already realized to attempt to solve these two71
aforementioned problems.72

4 a) Data replication73

Designing a RDBS pursue four majeure objectives, namely : improving data availability, improving performance,74
ensuring scalability and users applications requirements. These purposes can be summarized as ”improving75
consistency and/or reliability” [2], [3]. To ensure consistency between replicas, the synchronization procedure76
uses the transaction running technique. A transaction is a collection of operations that transforms the database77
from a consistent state to another consistent state [6], as illustrated in Fig. 3. A transaction has a Begin Of78
Transaction (BOT) and an End Of Transaction (EOT). This End is managed by three different functions: either79
a ”commit” to validate, a ”rollback” to cancel, or an ”abort” to interrupt the execution of operations inside80
the transaction. The consistency and/or reliability of a transaction are guaranteed by 4 properties: Atomicity,81
Coherence, Isolation, Durability (ACID) that make the ”acidity” of a transaction [2], [7]. As we are dealing82
with data flow, our focus remains on the Structured Query Language (SQL) operators, especially the Data83
Manipulation Language operators in most of DDBMSs, which contains [9]: The write operators (Insert, Update84
and Delete SQL commands) and the read operator (Select SQL command). Typically, like the structuring of85
instructions of a procedural language, a transaction ”T” can have the following structure:86

Begin_Of_Transaction T Insert operator Update operator Delete operator Select operator87
End_Of_Transaction T However, to solve the aforementioned main problem of data replication, i.e. the88
synchronization of replicas, there already exits four replication strategies, resulting from the combination of two89
factors: ”when” and ”where”. The ”when” factor specifies when updates are broadcasted (synchronously/eagerly90
or asynchronously/lazily), while the ”where” factor indicate where updates occur on a centralized site (primary91
copy/mono-master) or on decentralized sites (everywhere/multi-master) before being propagated. So when we92
take the factor ”where” in ”when”, it emerges [1], [2], [3], [4], ??30], ??33], [34]:93

A. Synchronous or Eager Replication: All replicas must be updated before the transaction commit i.e. in94
real-time. Here, the most up to date value of an item is guaranteed to the end user. There are two different95
strategies in synchronous replication:96

1) Eager centralized site: This method is beneficial in case where reads are much more frequent than writes.97
It works under the principle ”Read-One, Write-All (ROWA)”. After transaction commitment, any one of replicas98
can be read; so the write process must update all replicas. 2) Eager decentralized sites: The principle is ”update99
everywhere”; in this logic every site is allowed to propagate updates to all sites in the same transaction, at the100
same time so that on the end of the transaction updates become available on all sites.101

2

B. Asynchronous or Lazy Replication: Allows different replicas of the same object to have different values for102
a short periods of time i.e. in near realtime. They are updated after a predefined interval of time. There are two103
different strategies in asynchronous replication:104

1) Lazy centralized site: It works with the principle such that one copy of replicas is assigned as the ”primary105
copy or mono-master” so that changes of data or writes are possible only on it. These changes are periodically106
propagated to the secondary copies. The secondary copies of data can only be read. 2) Lazy decentralized sites:107
Here the principle is so that changes can be performed ”everywhere or multi -master”, on each site. So these108
changes are propagated independently to other sites sporadically.109

These replication strategies, have already been implemented in most of modern DDBMSs [9]. It is largely the110
centralized strategy that is much more wrapped in the replication models offered by almost all DBMSs. But,111
although these modelling are done, there remains a problem to emphasize in eager centralized site approach such112
that if there is a site unavailable during updates propagation by the master site, the transaction cannot commit.113
So, some researches are already attempting to design an optimal algorithm that can allow the update transaction114
commitment on the available sites and to update unavailable sites as soon as they become available again; hence115
the approach ”Read-One, Write-All Available (ROWA-A)” [2], [30], ??33]. In addition, one could expect the116
problem related to the momentary interpolation of the line of communication between the master site and the117
slave sites, because it is enough for example that the master site overlord or be inaccessible so that the slaves no118
more access to updates [8]. Well, there is only the decentralized strategy that can clear this concern.119

Nevertheless, eager decentralized sites experience the same problem as eager centralized site, whereby update120
transactions that arise from all sites, if they find at least one site unavailable they abort. But to overcome121
this problem, such kind of systems should be able first of all to commit transactions on only available sites and122
so update unavailable sites as soon as they become available again; hence the approach ”Update Everywhere123
Available” [17]. So nowadays, some researches attempt to improve these algorithms by distributed voting124
algorithm [4]. Thus, if the sites number quorum is reached the transaction commit on them; so afterwards,125
when writing, update all fraction of the replicas and when reading, read enough replicas to ensure you get at126
least one copy of the most recent value.127

In view of the above, it seems that the lazy strategy is appropriate for P2P topology, especially since it allows128
replicas of various sites to diverge for a given moment. So as in a P2P network, the participants (Peers) are129
present or absent momentarily, updates propagation can be applicable on the present Peers while the absent130
Peers will remain with non -updated replicas in order to receive their updates when they become available again131
[10], ??33]. Thus, lazy centralized sites approach is appropriate for the centralized P2P topology because updates132
are performed only on the central site and then forwarded to slave sites in near real-time while lazy decentralized133
sites approach is the most appropriate for the materialization of replication on a decentralized P2P topology134
because in near real-time, like centralized approach, updates can be performed everywhere, i.e. on each peer and135
then be broadcasted to all others.136

Referring on our problem concerning replication over a decentralized P2P architecture, the observation has137
been that only a few of DDBMSs have already tried to implement the lazy decentralized strategy in order to138
formalize the P2P replication; let us quote for instance SQL Server [13] and Oracle [14]. Unfortunately, the139
particular problems of P2P replication still exist and will be developed in following lines:140

? Transaction conflicts: Several updates carried by refreshing transactions, from different sites reach a141
destination site at the same time but they cannot be performed on the same time, then reliability and consistency142
will be lost and there will be the risk of transaction conflicts [2], [30],143

[33], [35]. DDBMSs must ensure that transaction execution meets a set of properties that lead to the144
consistency of distributed databases and conveniently summarized by the ACID, since when the execution is145
always concurrent [6], [7]. Thus, several researches have already been undertaken to solv e the transaction146
concurrency control problem. Concurrent execution without harmonization constraints poses a number of147
problems, the most important of which is the loss of operations and incorrect readings. Therefore, it is necessary148
to set the serializability, a property determining a correct execution of the completion of transactions [3]. ? Data149
conflicts: P2P replication allows to perform changes on each peer in the topology and then forward them to other150
peers. However, as changes are performed at different peers, probable data conflicts are to be pointing out when151
modifications are being broadcasted [2],152

[30], ??33]. Thus, in all DDBMSs which have already succeed to implement the lazy decentralized sites153
approach to make it P2P replication, one can distinguish three types of data conflicts [13], [14],154

[20], [21]: a) Primary key or uniqueness conflict: Occurs when a record with the same primary key has been155
created and inserted at more than one peer in the topology. So when those peers need to exchange updates, it is156
then impossible to violate the criterion of entity integrity; b) Foreign key conflict: Can occurs if in any case the157
refresh transaction forward updates which contains a record with a foreign key column but whose primary key is158
not yet forwarded to the destination peer. So it is then impossible to violate the criterion of referential integrity;159

5 Data modifications conflicts:160

? Update conflict: occurs when the same record has been updated on more than one peer; ? Insertion/Update161
conflict: occurs when a record has been updated on a peer and the same record has been deleted and re-inserted162
on another peer; ? Insert/Delete conflict: occurs when a record has been deleted on a peer and the same record163

3

8 METHODOLOGY

has been deleted and re-inserted on another peer; ? Update/Delete conflict occurs when a record has been164
updated on one peer and the same record has been deleted on another peer;165

? Deletion conflict: occurs when a record has been deleted on more than one peer. Thus it is necessary to think166
about a certain number of rules to warranty the conflict policy avoidance in the decentralized P2P replicated167
environment. Apart from the inconsistency of data caused by transaction conflicts and data conflicts, there are168
other phenomena which make the replicated data inconsistent. Thus, although the transaction that propagates169
the updates is successfully committed, the data remains inconsistent. Hence, there is the need of an automatic170
data reconciler.171

6 b) Data reconciliation172

Database reconciliation is a process of verifying data when there has been a migration or transfer of data from173
a source database to a destination. The purpose of this process is to ensure that the migration has been done174
accurately ??22]. In this logic, in a global manner, the data is the set of tables of a given database and in a basic175
way, the set of records of definite tables which can be accessed by a certain selection criterion. In a replicated176
Databases environment, updates broadcasting as well consists to migrate or to transfer data changes from a177
Prima ry site toward Secondary sites [23].178

However, during data migration, errors may have occurred [12]. Most are like execution failures due to179
network interruptions as well as network overload those end up corrupting transactions and causing data to be180
lost or remain in an invalid state at the destination [8], [34]. These phenomena lead to a series of problems181
such as: missing records, duplicate records, incorrect values, missing values, incorrectly formatted values, broken182
relationships between tables in case of forced redundancy, etc.183

[22]. But, some researches have already been undertaken to find solutions in several ways and some algorithms184
are already implemented in DDBMs and particular software to reconcile data after migration process.185

Oracle Corporation [24], possesses some databases reconciliation tools for their DDBMSs: Upgrade Recon-186
ciliation Toolkit is used to compare the data on the Oracle DB source and Oracle DB destinations after data187
migration and after running the parallel End Of Day (EOD) activities mostly for different branches of a bank.188
This tool generates also the reconciliation report at the end of the process. Another tool is mysqldbcompare189
especially for MySQL, this tool compares two databases by identifying differences between databases objects;190
changed or missing rows of tables are shown in standard formats like grid, table, etc. It is going beyond the data191
comparison; this utility compare also objects data definition of two databases [25]. Nevertheless, all these tools192
run reconciliation between one source and one destination. The only one which can reconcile one source and193
multiple destinations is Upgrade Reconciliation Toolkit for Oracle. Unfortunately, it is only limitated to Oracle194
DB. The tools mysqldbcompare and MySQL_Diff are also limitated to MySQL and they are not taking in to195
account multiple destinations. The Tool LegiTest’s should be more interesting because it is able to reconcile196
multi-DBM S databases, but it is also one source, one destination; and all others which have been listed in this197
review present such kind of limitation.198

Moreover, these data reconciliation tools rely on simple counting of records to keep track if the expected199
number of records has been migrated. It can be esteemed that this was mainly due to the importance of the200
processing of essential data to carry out field validation of a given data. Nowadays, for more accuracy, the data201
migration algorithm should provide data reconciliation capabilities that allow the reconciliation of each data or202
each field, i.e. at the intersection of each row an d each column (attributes by record) of each database table [12].203

To preserve data inconsistency and to maintain acidity, all instructions of the replication procedure must be204
wrapped in transactions [2], [7]. The instructions of a transaction are the commands or operators of the data205
manipulation language. But, when an operator of the data modification language is executed on a site, some206
time passes while waiting for the response. While a transaction may have more than one operator and the factors207
are likely to be varied in a P2P environment, this phenomenon should greatly influence the temporal complexity208
in the event of variation of different factors. So it is necessary to design a prediction model of replication and209
reconciliation execution time.210

The assumption of this study is formulated as follows: ”it seems that P2P replication systems experience the211
weak performance, especially since the time to replicate and to reconcile data from a Master Peer to Slave Peers212
dependent, if not totally, partially of certain factors, such as: the number of records in each table, the number213
of tables whose data has changed, the number of peers connected during the propagation of updates and other214
factors (number of columns per table, data types columns, etc.)”.215

However, these problems deserve a special attention; that is why there is a reason to wonder about setting216
up ”a synchronizer-mediator for lazy replicated databases over a decentralized P2P architecture”. This system217
should be able to serialize updates performed simultaneously on different replicas of the same database and to218
reconcile this replicas, effectively, over a decentralized P2P network.219

7 III.220

8 Methodology221

To ensure strong replica consistency in a distributed database, traditionally the implementation of a syn chronous222
or eager refresh algorithm which is specially Two -Phase-Commit (2PC) based technique is the unique gateway to223

4

avoid discrepancies between replicas [2]. However, this solution is inapplicable in a P2P architecture because does224
not guarantee the updates delivery to all peers as they are not all always available at the same time [15]. Thus,225
asynchronous or lazy replication is more appropriate for P2P systems because it allows replicas to be updated226
independently and to remain divergent until a refresh transaction takes place [16]. Modifications which have227
been done to the local replica, by local transactions are captured and the refresh transaction propagates them to228
remote replicas asynchronously i.e. in near real-time. The technique used in this work to capture modifications229
is audit-log.230

9 a) Audit-log technique231

Almost all DDBMSs support this technique by running triggers belonging to a specific table in order to capture232
data modifications. A trigger is attached to an event produced by an Insert or Update or Delete operator so233
that it captures changes before or after the event has taken place in the database [5], ??33]. So, in this work the234
interest is carried on after trigger. To achieve this, for each data-table the creation of one () C audit-table is235
necessary. The audit-table is composed by the data-table primary key column, other data-table columns (apart236
from the primary key), the updated column name, the audit action, the timestamp and the synchronization ID.237
These elements are required for a record to do the comparison between data. Each table in the database would238
need three triggers to run after Insert, after Update and after Delete. The flow chart, Fig. 4 here below illustrates239
the audit-log creation. Suppose that the database is homogenous and full replicated, as soon as the audit log240
creation of each data table completed, on each peer, for each SQL data modification operation, the DDBMS241
performs following action accordingly:242

? After each Insert operation in the data table, the ”insert trigger” captures the newly added record and243
inserts it in the audit table, as shown in Fig. The column synchronisation ID (Sync_ID) in Audit -tables don’t244
have same value; for a Master Peer Audit-table its content is ”Local-Transaction”, value automatically provided245
by the trigger procedure when the transaction is initiated locally by the user application whereas for a remote246
transaction the synchronization procedure update automatically this column by the sync. ID provided by the247
Sync. Mediator-System. So, the synchronization procedure select only data whose Sync_ID is equal to ”Local-248
Transaction” and whose Audit_Timestamp is in the interval of begging date and time to ending date and time249
and apply them to Slave Peers according to the Audit_Action value. This technique permits us to resolve the250
problem of the endless loop in the sync. procedure used two -ways or symmetrical replication which was knowing251
old synchronizers [5].252

10 b) Algorithmic method253

The Algorithmic method will be used to design and to analyse instructions of algorithms and steps of a Peer-to-254
Peer Synchronizer. This method will take in account the Circulatin g Token Ring Algorithm, the Decentralized255
Peer-to-Peer Replication Algorithm and the Decentralized Peer-to-Peer Data Reconciliation Algorithm.256

11 i. Network Topology and Algorithm257

When a peer needs to broadcast its captured updates toward other peers, it needs a token which gives it the258
state of a Master i.e. the permission to forward its updates and other peers become automatically Slaves. A259
fully replicated P2P database system includes p peers and each peer has a complete copy of the database.260
Peers communicate with each other by exchanging messages and forwarding updates or accessing peer data by261
performing transactions [17]. In this way, updates will be applied according to a circulating token, as depicted262
in Fig. 6, which determine transactions serialization order or one can give the privilege to updates from certain263
sites considered to be mo re important or privileged.264

Suppose a network consisting of four peers A, B, C and D all networked. The Fig. 6 below presents the265
decentralized topology of peer-to-peer token ring network. A predefined order of releasing or getting the token,266
since we are in a P2P network where a peer p may or may not be available, is not needed. The optimization267
policy here is to give the token directly to a peer which needs it instead of going through a list of peers that we268
are not sure of their availability at the time of the token release. So, transaction serialization is managed by the269
new circulating token algorithms 1 and 2, successively for getting the token and releasing the token. Since when270
a peer (p), which can be ”A” or ”B” or ”C” or ”D” gets the token, it executes the transactions according to the271
algorithm 3, 4 and 5 for data replication and 6 for data reconciliation. Consequently, all transactions performed272
are accepted and none rejection because only a peer which possess the token can perform a transaction of its273
updates broadcasting and reconcile other peers’ data with its updates. As soon as peer ”A” finishes to perform274
updates and reconciliations with peers ”B, C and D”, it releases the token and other peers like ”B” or ”C” or275
”D” can randomly take it, but according to the token request minimum date and time, and do the same, unless276
a privileged peer requests it.277

12 ii. Replication Protocol and Algorithm278

Assuming that the database is homogenous, full replicated and each Peer work under a Two-Phase-Locking (2PL)279
concurrency control technique. The model of the lazy replication over a decentralized Peer-to-Peer Architecture280
is presented as follows: let W(x) be a write transaction where x is a replicated data item at Peers A, B, C and281

5

15 SIMULATION ENVIRONMENT

D. The Fig. 7, here below depicts how transactions update different copies at all Peers and after commit the282
refresh transaction, wrapped in the Sync. Mediator-System, forward updates to all peers.283

13 iii. Reconciliation Protocol and Algorithm284

After a large data transmission, to overcome the problem of data inconsistency due to untimely interruptions285
of connectivity, network overload and other technical hazards, updates forwarded to each peer in the replication286
procedure must be reconciled.287

The model of the Decentralized Peer-to-Peer Data Reconciliation is presented as follows: let R(x) be a read288
transaction where x is a replicated data item at Peers A, B, C and D. The Fig. 8, here below depicts how289
reconciliation is performed on different copies of all peers. After the implementation of these algorithms presented290
above, the main goal, according to which setting up a synchronizer-mediator for database replication being able to291
serialize the propagation of updates and their reconciliation in a replicated databases system over a decentralized292
P2P network is achieved. Although this goal be achieved, it is appropriate to know here that in computing293
the performance of an algorithm is assessed on the basis of its complexity [18]. The analysis of the theoretical294
complexity of this algorithm will be more concerned the time complexity than the space complexity especially295
as the data will be momentarily transit through the buffer to the destination. Nevertheless, the practical time296
that the execution of this algorithm takes will result from the simulation and will be calculated by the statistical297
method.298

14 c) Statistical method299

The performance of a system depends on a certain number of factors. We have to determine the practical300
time, that makes our system to execute successively transactions of updates propagation or replication (insert,301
update and delete) and transactions of data reconciliation. To analyse this performance, we will use the linear302
regression test with the random sampling technique. The linear regression test is a statistical analysis method303
that describes the variations of an endogenous variable associated with the variations of one or more exogenous304
variables i.e. the relation between an endogenous variable and one or more exogenous variables. In the case305
where the study concerns an endogenous variable with one exogenous variable, it’s a simple regress ion and when306
it’s an endogenous variable with more than one exogenous variable, it is a multiple regression [19]. This test will307
be used not only to determine the execution time based on a certain sample, but also to make a linear regression308
model that will be used to predict the execution time , which is the dependant factor or endogenous variable,309
based on other independent factors or exogenous variables, namely the number of records, the number of tables310
in the database and the number of Slave Peers. The following variables are selected:311

? Y i : is a random variable to explain ”the time the synchronization algorithm takes to broadcast updates312
and to reconcile replicas for an execution i”; ? X i1 : is an explanatory variable ”the number of records the313
synchronization algorithm broadcast from a Master Peer to Slaves and reconcile between the Master and Slaves314
for an execution i”; ? X i2 : is an explanatory variable ”the number of tables in the database whose records knew315
updates which need to be broadcasted and reconciled with Slaves for an execution i” ? X i3 : is an explanatory316
variable ”the number of Slave Peers available to receive updates and to be reconciled for an execution i”. Given317
a sample (Y i , X i1 , X i2 , X i3) whose i ? [1, n], we will try to explain, as precisely as possible, the values318
taken by Y i , the so-called endogenous variable from a series of explanatory variables X i1 , X i2 , X i3 . The319
model formulated in terms of random variables, takes the form: ?? ?? = ?? 0 + ?? 1 ?? ??1 + ?? 2 ?? ??2 +320
?? 3 ?? ??3 + ?? ?? Where:321

? i = 1, 2, . . . , n ? b 0 is the constant term;322
? b 1 , b 2 and b 3 are coefficients of the regression to be estimated; ? ? i : is the model error that expresses or323

summarizes the missing information in the linear explanation of the values of Y i from X i1 , X i2 , X i3 (a random324
variable of zero mathematical expectation in this model i.e. problem of specifications, variables not taken into325
account, etc.). The intensity of the relation between the independent variables and the dependent variable will be326
expressed by the correlation coefficient ”R”, which is the square root of the ”R²”, the determination coefficient of327
a linear regression model. The coefficient of correlation, will be used to determine the degree of linkage between328
the independent variables and the dependent variable while the coefficient of determination will help to measure329
the proportion of dependence of the dependent variable explained by independent variables. Thus, two sets330
of hypothesises are evoked as follow: These hypotheses will be verified at the end of the results which will be331
produced by a series of experiments perpetrated on a simulation environment which will be described in the332
following section.333

IV.334

15 Simulation Environment335

The implementation and experimentations will be run on a P2P network consisting of 4 traditional computers336
depicted in the Fig. 9, with the following properties: Processor: Intel Core i5, CPU 2.40GHz, Memory (RAM):337
8.00GB and Storage: 1TB. The network will be based on a desktop switch of 100 Mbps of transmission speed,338
to establish a simple LAN using twisted -pair cables connection and RJ45 connectors. These computers will run339
under Windows 10 Professional 64 bits and SQL Server Management Studio 2012 Express as DDBMS, to manage340

6

databases and establish the connectivity between them. According to this Fig. 9 above, a node is composed341
by hardware and software as required previously. But in this same figure one can point out the presence of342
a ”Mediator” for each peer. The mediator is nothing else than the synchronization system, ”Sync. Mediator-343
System”, a C# software which has been designed and in which it has been implemente d algorithms, already344
described in the methodology, to lead to a windows application running under a graphical user interface, as345
presented in the Multiple-Document Interface (MDI) window here below in the Fig. 10. Thus this mediator346
must be installed on each node to manage the replication transactions and the reconciliation of replicas. For the347
execution to be effective, there are prerequisites to fulfil.348

16 a) Prerequisites349

When designing the global schema of the database, each table must have:350
? The name such as ”Data_tbTableName” and the first column as its primary-key to identify data and to351

make the difference between records. The creation of primary keys by automatic incremental systemprovided by352
the DBMSs is disadvised, it is preferable to program an automatic primary key combined with the site number353
to avoid redundancy;354

? Bear in mind that the database is homogeneous i.e. the data structure of the replicated database must be355
uniform on all peers. Before the actual processing phase begins, under expected replication, ”Sync. Mediator-356
System” provides two procedures that must be performed automatically in advance for each table, as showed in357
the window, Fig. 11: ? To create one audit table named ”Audit_tbTableName”, to store changes captured by 3358
triggers belonging to each table. Each audit table must have its next four last columns to store respectively the359
updated column name, the audit action, the audit timestamp and the last column to store the synchronization360
ID;361

? To create three triggers to run after Insert, after Update and after Delete, to capture data changes and store362
them in the specific audit table.363

17 The new circulating token algorithm has two phases: i. Data364

replication365

Update transaction serialization: All update transactions must be executed in serial order. Before initiating a366
refresh transaction, each peer must first receive a single token of a sequential series, to get the order in which the367
transaction will be executed. Once a token has been assigned to a peer p, this last becomes directly a Master368
so it performs update transactions to all connected Slave peers, as showed in the window, Fig. 12. Update369
transaction performing: When a Slave peer receives an executing transaction, it places it according to its Master370
peer’s token as well as its number (Sync_ID, in Fig. 5) and updates are performed to the Slave peer database.371
As soon asthe transaction ends on each Slave peer, it sends an appropriate message to the Master peer to certify372
the transaction commitment. The peers connected during the initiation of the transaction and whose transaction373
has been aborting during transaction performing, due to any kind of issue to the site which host the peer, must374
be mentioned in the pending list in order to be updated later in a new procedure reusing the same Sync_ID.375
Then the main transaction, initiated on the Master peer, ends when it has been executed on all peers and give376
immediately the relay to the reconciliation procedure.377

ii. Data reconciliation Reconciliation transaction serialization: Reconciliation in turn will benefit from the378
serial order of their ”Mather” update transactions. This phase must begin on the Master peer once the replication379
is complete. The reconciliation procedure must also initiate transactions to read updates received by Slave peers.380
These readings consist of a comparison between the data s ent by the Master peer and the data received by the381
Slave peers. The comparison operation is performed according to data carrying the token of the same Master382
initiator of the replication transactions, as revealed in the window, Fig. 12. All errors like missing records,383
duplicate records, incorrect values, missing values, incorrectly formatted values are retained in order to be fixed.384

Reconciliation transaction execution: This phase consists of fixing all retained errors so that missing records are385
inserted, duplicate records are deleted, missing values are added to their respective fields, incorrectly formatted386
values are replaced by correct values. Data reconciliation process can be however restarted if the first one done387
didn’t put replicas in consistent state. So procedure can be repeated until all replicas become consistent, then388
the Master peer can release the token. In the case where the inconsistency persists among data, probably it can389
be caused by conflicts.390

18 c) Conflicts avoidance rules391

To avoid potential conflicts among data in the P2P replicated database environment, some rules must be392
respected:393

? When using the database, it is inadvisable not to update the value of the primary key; instead, it is394
better to delete the entire record and re-insert it; ? When designing an application which communicate with the395
database, create procedures which cannot allow from a peer to update or to delete a record whose insertion was396
not performed on that same peer i.e. the modification of a data must be done only and After the configuration397

7

20 A) PERFORMANCE ANALYSIS

be performed as indicated in this section to simulate the replication process on a P2P network, the test and/or398
experiment sets yielded the results which are presented in the next section.399

V.400

19 Result401

This section is dedicated to testing this new synchronizer of databases, results and evaluating the performance402
of the newly proposed algorithm. To achieve this, it is necessary to analyse the performance in order to jus tify403
the effectiveness of the algorithm.404

20 a) Performance analysis405

Suppose that this algorithm has to broadcast updates emerging from the replicated database over 4 peers A, B,406
C, and D, local servers of a bank branches. Being fully replicated and homogeneous, the physical schema of this407
database consists of 3 tables, as presented in Fig. 13. So, for all cases, consider the sample of 12 executions, to408
operate randomly and based on the reality of the replicated data manipulation in the distributed environment of409
banking database. However, in all cases, insertions are greater than or equal to updates and deletes. But updates410
can be more or less than deletions.411

After the replication transaction has completed, if there has been an overload or interruption of the network412
corrupting the replication transaction, then assume that the data that the destination peers have received has413
experienced some inconsistencies with respect to those of the master peer. Fro m the total replicated data (inserts,414
updates, and deletes), consider that 25% are missing records that require re-insertion, incorrect values, missing415
values, and incorrectly formatted values which need to be updated and duplicate records that require deletion,416
as typically data to be reconciled does not exceed ¼ of that of replication [2], ??22]. Thus, it resorts the data417
presented in the table 1 hereafter: For analysing the effectiveness of our algorithm, the experimentation will be418
realized in four scenarios, namely:419

1. Experimentation based one table stored on a master peer with two slave peers ; 2. Experimentation based420
two tables stored on a master peer with two slave peers ; 3. Experimentation based one table stored on a master421
peer with three slave peers; 4. Experimentation based two tables stored on a master peer with three slave peers.422

To carry out the analysis of the performance, based on the prediction of the execution time according to the423
data of the sample presented in the Table 1 above, it results the execution times obtained after experimentation424
and presented successively in the tables and charts below: All basic factors remaining unchanged i.e. one table425
stored on a master peer with two slave peers, replication and reconciliation models are successively presented426
as follow : insert operator, Fig. 14(a By varying the factor number of tables, from one to two tables stored427
on a master peer, dividing the number of records equitably between two tables and maintaining unchanged the428
factor number of slave peers in ”two (2) peers”, the replication and the reconciliation models are successively429
given as follow: Year When we increase the number of tables from one to two, in 1 second, the prediction of the430
execution time (y), during which this algorithm can successively replicate and reconcile the number of records431
(x), is calculated from the following way:432

? For insert operator ? In replication procedure (Fig. 16(a)) : 1 = 0.021 ?? ? 1.3366 ??0.021 ?? =?1.3366 ?433
?? =111.26 ? ?? ? 111 inserted records to be replicate in 1 second. So, as the coefficient of determination R²434
= 0.9846 then the dependence degree of insertion execution time compared to the number of records is 98.46%435
and as the coefficient of correlation R= ??? 2 ? R = ?0.9846 ? R = 0.9923 then the degree of linking between436
the insertion execution time and the number of records is 99.23%.437

? In reconciliation procedure (Fig. 17 The experimentation of this algorithm on a topology consisting of two438
(2) slave peers proves that the variation of the number of tables containing data to replicate and reconcile in a439
P2P replication system has a significant impact o nly for the replication transaction as illustrated in Fig. 18.440
For all data modification operators , illustrated by graphs of Fig. 18(a), Fig. 18(b) and Fig. 18(c), successively,441
taken into account in the replication process, the execution time, when record s originate from one (1) table, is442
greater than the execution time when the same number of records emerge from two (2) different tables while for443
reconciliation the impact is not too great.444

Hence this variation has no significant effect on the execution time of data reconciliation because the number445
of records to reconcile from one (1) table and average of execution time, calculated in Table 2, are not far different446
from those to reconcile from two (2) tables and whose average of execution time is calculated in Table 3. This is447
why the curves of the graphs depicted in Fig. 18(d So, partially we can conclude that this algorithm is efficient448
for the replication of databases because generally a database does not have one table i.e. data to replicate are449
scattered in several tables. As for reconciliation, since it takes place only when it is necessary and mostly data450
to be reconciled do not exceed one quarter of that of replication, little importance should be attached to the451
computational time of this phenomenon. Year This conclusion was obtained after varying the factor number of452
tables. However, by keeping unchanged all other factors, except the number of slave peers that vary from two (2)453
to three (3) peers, using the same sample in Keeping the factor number of table unchanged, one table stored on a454
master peer with three slave peers, the replication and reconciliation models are successively presented as follow:455
insert operator, Fig. 19 In 1 second (y) we predict that this algorithm can successively replicate and reconcile456
following number of records (x):457

8

? For insert operator ? In replication procedure (Fig. 19 Varying the factor number of table stored on a458
master peer with three slave peers, the replication and reconciliation models are successively presented as follow:459
insert operator, Fig. 21 After increasing the number of tables from one to two, in 1 second, the prediction of the460
execution time (y), during which this algorithm can successively replicate and reconcile the number of records461
(x), is established as follows:462

? For insert operator ? In replication procedure (Fig. 21 When running this algorithm on a topology consisting463
of three (3) slave peers, the experimentation result proves that the variation in the number of tables containing464
data to replicate and to reconcile in a P2P replication systemhas a significant impact on the execution time465
of replication and reconciliation transactions, as shown in Fig. 23. Fig. 23: Effectiveness of replication and466
reconciliation based one table stored on a master peer with three slave peers vs two tables stored on a master467
peer with three slavepeers.468

However, this impact is explained only by the comparison of averages, in Table 4 and 5 Mediation of Lazy469
Update Propagation in a Replicated Database over a Decentralized P2P Architecture execution time with one470
table. But, in terms of predictive models, we found that, when the records come from one table, the execution471
time is greater than the execution time when the same number of records is split and comes from two different472
tables. This phenomenon is clarified by the successive resolution of the prediction equations of the replication473
and reconciliation models which proved that the number of records to replicate and reconcile to 1 second, with474
two tables of origin is greater than those when there is only one table.475

Thus, partially we can conclude that this algorithm is effective for the replication of databases, its performance476
increases with the increase of the tables for a certain number of records. So, since the data to replicate is usually477
scattered across multiple tables, we can count on its effectiveness. Fig. 24: Effectiveness of replication and478
reconciliation based one table stored on a master peer with two slave peers vs one table sto red on a master peer479
with three slave peers.480

The result we have achieved so far comes from the analysis of performance by varying the numbers of tables481
in which the data to be replicated and reconciled originate. Nevertheless, later on, we have to analyse the482
performance of this algorith m starting from the variation of the slave peers. Thus, Fig. 24 and Fig. 25, show the483
effectiveness result when increasing the number of slave peers but the data to replicate and reconcile successively484
from a single table and two table. After increasing the number of slave peers, the execution time of the replication485
transaction as well as the reconciliation of the data, successively from a table, as illustrated in Fig. 24 and two486
tables, as shown in Fig. 25, knows a significant increase. This increase in execution time affects negatively the ?487
Secondly by comparing the predicted values, in this case the prediction of the number of records to replicate and488
reconcile to 1 second. After the successive resolution of the prediction models equations for replication and data489
reconciliation, we found that the number of records to replicate and reconcile are declining after increasing a slave490
peer. However, based on these observations from all the cases i.e. with the data to be replicated and reconciled491
from one or two tables, we can partially conclude that the increase of the number of slave peers on a Replicated492
Databases over a Decentralize d P2P topology is causing the loss of performance of the synchronization algorithm.493

21 b) Result summary494

In view of what we have just achieved as a result, it is necessary to summarize and give a general conclusion.495
Thus, the Table 6 here below will first give a summary of the results. Starting from the results presented above496
and summarizin g in Table 6, our first group of hypotheses of the significance test of each independent variable497
gives the conclusion that each independent variable is a significant predictor of the dependent variable. In other498
words, the number of records in each table (xi1), the number of tables whose data has chan ged (xi2), the number499
of peers connected during the propagation of updates (xi3) and other factors (?) like number of columns per500
table, data types columns, etc., each taken separately predict significantly the execution time (y) of the replication501
transaction as well as that of reconciliation because almost all coefficient of determination (R²) are greater than502
or equal to the confidence level of 95%. In all the cases the execution time depend on other factors beyond 95%503
and these factors correlate positiv ely and tightly of the totality. This means that the changes made to one of504
these independent variables affect in 95% or more of the dependant variable and vice versa. Hence, we accept the505
alternative hypothesis (H1) and thus reject the null hypothesis (H0). As for the second group of hypotheses, since506
for all experimental scenarios all independent variables (the number of records in each table (xi1), the number of507
tables whose data has changed (xi2), the number of peers connected during the propagation of updates (xi3) and508
other factors (?) like number of columns per table, data types columns, etc.,) are significant predictors of the509
dependent variable which is the replication and reconciliation transaction execution time (y), the overall model510
of the regression is significant, at the same thresholds significance derived from the combination of factors by the511
experimental scenarios summarized in the Table 6 above.512

The experimental results show that our algorithms are performant since when to 1 second, a time elementary513
unity, it can replicate and reconcile a considerable number of records, like present the last column in the Table514
6, for the present experimental environment. However, since the performance of a computer algorithm is due to515
its execution time, this is how we assert our main hypothesis that P2P replicated databases systems experience516
the weak performance, especially since the time of transmission of updates from a Master Peer toward Slave517
Peers dependent in more than 95% of the number of records, the number of tables whose data know changes, the518
number of peers connected during the propagation of updates and other factors.519

9

23 CONCLUSION

Nevertheless, as we have just seen, when we take two by two experimental scenarios those can be noted520
successively I: 1 and 2, II: 3 and 4, III: 1 and 3 and finally IV: 2 and 4 of Table 6 above, I made a good521
performance, II also made a performance gain but not far from the average, III made a loss of performance and522
IV made a loss as well. Taking III and IV it emerges the variation of number of peers connected whereas from I523
and II emerge the variation of the tables. During the experiment, it was found that the variation of number of524
the tables did not lose the performance, contrariwise it improved it. Moreover, among the independent variables,525
the number of records and the number of tables being factors directly related to the database before even hinting526
at the data replication, it is clear that it is the growth of number of connected peers which is at the base of the527
considerable loss of the performance i.e. the increase of the execution time of a synchronization algorithm of528
distributed databases.529

Thus, as a future work to be carried out, as part of improving the performance of this proposed algorithm,530
the thought will revolve around synchronization algorithm for replicated databases over a decentralized P2P531
architecture with supernodes or super-peers [31], [32] belonging to peers clusters in order to reduce execution532
time of transactions and to reach load balancing during data transmission [35].533

22 VI.534

23 Conclusion535

This article proposes a prototype of a synchronizer-mediator for lazy replicated databases over a decentralized536
P2P architecture in a Graphical User Interface. The motivation arises from the common problem of databases537
replication consisting to maintain consistent replicated databases over a decentralized P2P network.538

However, two specific problems caught our attention: transactions broadcasting updates from different peers539
are performed concurrently on a destination peer replica, which always causes transactions conflicts and data540
conflicts. Moreover, during data migration, connectivity interruptions and network overload corrupt transactions541
so that destination peer databases can contract duplicated records, unsuitable data o r missing records which make542
replicas inconsistent. Differen t methodologies have been used to solve these problems : the audit log technique543
to capture and store data changes in audit tables; the algorithmic method to design and analyse algorithms544
for transactions serialization, for data replication transactions and the replicas reconciliation transactions end545
finally the statistical method to analyse the performance of algorithms and to produce prediction models of the546
execution time.547

The C # prototype software has been designed to implement algorithms and permit to execute the test in order548
to make out the effectiveness of each experimental scenarios. Afterwards it has been shown that the algorithm549
has a good performance because it can replicate and reconcile a considerable number of records to 1 second.550
Finally, the assumption according to which ”The execution time of replication and reconciliation transactions551
totally depends on independent factors” has been affirmed. 1 2552

1© 2019 Global Journals
2© 2019 Global JournalsMediation of Lazy Update Propagation in a Replicated Database over a Decentralized

P2P Architecture

10

1

Figure 1: Fig. 1 :

2

Figure 2: Fig. 2 :

11

23 CONCLUSION

3

Figure 3: Fig. 3 :

12

4

Figure 4: Fig. 4 :

13

23 CONCLUSION

5

Figure 5: Fig. 5 :

14

6

Figure 6: Fig. 6 :

15

23 CONCLUSION

1

Figure 7: Algorithm 1 :

16

7

Figure 8: Fig. 7 :

17

23 CONCLUSION

Figure 9: Figure legend

1

Figure 10: 1 .

18

8

Figure 11: Fig. 8 :

1

Figure 12: Figure legend 1 .

19

23 CONCLUSION

9

Figure 13: Fig. 9 :

10

Figure 14: Fig. 10 :

Figure 15:

20

11

Figure 16: Fig. 11 :

12

Figure 17: Fig. 12 :

Figure 18:

21

23 CONCLUSION

13

Figure 19: Fig. 13 :

Figure 20:

14

Figure 21: Fig. 14 :

15

Figure 22: Fig. 15 :

22

16

Figure 23: Fig. 16 :

17

Figure 24: Fig. 17 :

23

23 CONCLUSION

Figure 25:

() C
concerned record, with the new data that has just
been set, and inserts it in the audit table, as
shown in Fig. 6, row 6 to 8 in Slave Peer Audit-
table;
© 2019 Global Journals

[Note: 6, row 1 to 5 in Slave Peer Audit-table; ? After each Update operation of a column of data table, the
”update trigger” captures the Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized
P2P Architecture]

Figure 26: ?

24

Algorithm 3: P2P Replication Algorithm for Data Insertion
Input: Master peer inserted records
Output: Transaction Commitments or Abortions Algorithm 5: P2P Replication Algorithm for Data Delete begininsertFunction() Input: Master peer deleted records 1: begininsertMainTransaction 2: Output: Transaction Commitments or Abortions selectall Available Slave Peers 3: begindeleteFunction() for(p ?0 toNumberOfAvailableSlavePeers -1)do 4: 1: begindeleteMainTransaction begininsertSubTransactionPeer(p) 5: 2: selectall Available Slave Peers selectall Audit Table Names in Mater Peer Database 6: 3: for(p ?0 toNumberOfAvailableSlavePeers -1)do selectall Data Table Names in Slave Peer(p) Database 7: 4: begindeleteSubTransactionPeer(p) for(ts?0 toNumberOfDataTableNamesInSlavePeer(p)Database -1)do 8: selectall Rows in Audit Table(ts) of Master Peer Databasewhere AuditAction = ’Inserted’ 5:

Year
2
019

9: 10: and AuditTimeStamp ?BeginningDateAndTime and AuditTimeStamp?EndingDateAndTime for(rtm?0 toRowsInAuditTable(ts)OfMasterPeerDatabase -1)do selectall Column Names in Data Table(ts) of Slave Peer(p) Database

12 11: 12: for(cts?0 to NumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database -1)do ColumnNames?ColumnNames&ColumnNames[cts]
13: Values ?Values & Row[rtm]Column[cts]
14: end for cts
15: insert in toDataTableNames(ts)InSlavePeer(p)Database (ColumnNames)values(Values)
16: end for rtm
17: end for ts
20: endinsertSubTransaction(Commit or Abort)
21: end for p
22: endinsertMainTransaction(Commit or Abort)
23: returnTransaction Commitments or Abortions
endinsertFunction
After records which have been inserted be which

has
the
in-
struc-
tions
in
trans-
ac-
tions
of
the

replicated to slave peers, the algorithm 4 here below, update
func-
tion,
also
runs
in
turn.

(
)
C

Algorithm 4: P2P Replication Algorithm for Data Update Input: Master peer updated records

Output: Transaction Commitments or Abortions
beginupdateFunction()
1: beginupdateMainTransaction
2: selectall Available Slave Peers
3: for(p ?0 toNumberOfAvailableSlavePeers -1)do
4: beginupdateSubTransactionPeer(p)
5: selectall Audit Table Names in Mater Peer Database
6: selectall Data Table Names in Slave Peer(p) Database
7: for(ts?0 toNumberOfDataTableNamesInSlavePeer(p)Database -1)do
8: selectall Rows in Audit Table(ts) of Master Peer Databasewhere AuditAction = ’Updated’

and AuditTimeStamp?BeginningDateAndTime and
AuditTimeStamp?EndingDateAndTime

9: for(rtm?0 toRowsInAuditTable(ts)OfMasterPeerDatabase -1)do
10: selectall Column Names in Data Table(ts) of Slave Peer(p) Database
11: for(cts?0 toNumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database -1) do
12: if(ColumnName(cts)InDataTable(ts)OfSlavePeer(p)Database =

UpdatedColumnName)then
13: updateDataTable(ts)OfSlavePeer(p)DatabasesetColumnName(cts)InDataTable(ts)Of

SlavePeer(p)Database ?’Row[rtm]Column[cts]’
whereColumnName(0)InDataTable(ts)OfSlavePeer(p)Database =
’Row[rtm]Column[0]’

14: end if
15: end for cts
16: end for rtm
17: end for ts
20: endupdateSubTransaction(Commit or Abort)
21: end for p
22: endupdateMainTransaction(Commit or Abort)
23: returnTransaction Commitments or Abortions
endupdateFunction
© 2019 Global Journals

[Note: selectall Audit Table Names in Mater Peer Database 6: selectall Data Table Names
in Slave Peer(p) Database 7: for(ts?0 toNumberOfDataTableNamesInSlavePeer(p)Database -1)do 8:
selectall Rows in Audit Table(ts) of Master Peer Databasewhere AuditAction = ’Deleted’ and
AuditTimeStamp?BeginningDateAndTime and AuditTimeStamp?EndingDateAndTime 9: for(rtm?0 to
RowsInAuditTable(ts)OfMasterPeerDatabase-1) do 10: selectall Column Names in Data Table(ts) of Slave
Peer(p) Database 11: deletefromDataTable(ts)OfSlavePeer(p)DatabasewhereColumnName(0)InDataTable(ts) Of-
SlavePeer(p)Database = ’Row[rtm]Column[0]’ 12: end forrtm 13: end for ts 14: enddeleteSubTransac-
tion(Commit or Abort) 15: end for p 16: enddeleteMainTransaction(Commit or Abort) 17: returnTransaction
Commitments or Abortions enddeleteFunction]

Figure 27:

25

23 CONCLUSION

Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture Mediation of Lazy Update Propagation in a Replicated Database over a Decentralized P2P Architecture
Year
2
019

2. Processing: ? Reading forwarded to other replicas by the refresh of updates independently transactions (in (2) dashed arrows); ? Comparison with the Master data read in (1) undashed arrows; ? Reconciliation is written to the Slave peers (in (2) undashed arrows). 3. The commitment (or cancelation) of a reconciliation transaction makes replicas consistent. 41: 42: else //Call function to delete duplicated records function of the algorithm 6 here below: 43: deleteDuplicatedRecordFunction(arguments) 44: end if end if instructions in transactions of the reconciliation 40: startSlaveLoop?rts + 1 The whole reconciliation process is established by 32: startSlaveLoop?0 33: Input: DataTableName(ts)OfSlavePeer(p)Database, UpdatedColumnName, cts, rtm for(rtm ? 0 toNumberOfRowsInAudit Table(ts)OfMasterPeerDatabase -1)do 34: Output: Nothing for(rts ? startSlaveLooptoNumberOfRowsInAudit Table(ts)OfSlavePeer(p)Database -beginupdateIncorrectValuesFunction(args) 1)do 35: 1: if(ColumnName(cts)InDataTable(ts)OfSlave Peer(p)Database=UpdatedColumnName)then if(Row[rtm]Column[0]InAudit Table(ts)OfMasterPeerDatabase = 2: updateDataTable(ts)OfSlavePeer(p)DatabasesetColumnName(cts)InDataTable(ts)OfSlave Row[rts]Column[0]InAuditTable(ts)OfSlavePeer(p)Database)then 36: Peer(p)Database = ’Row[rtm]Column[cts]’whereColumnName(0)InDataTable(ts)OfSlave if(rtm<NumberOfRowsInAudit Table(ts)OfMasterPeerDatabase -1)then 37: Peer(p)Database = ’Row[rtm]Column[0]’ startSlaveLoop?rts + 1 38: 3: end if end for rts 39: else endupdateIncorrectValuesFunction Year
2
019
Year
2
019

14 Algorithm 6: P2P Algorithm for Data Reconciliation 45: end for rts 46: end for rtm Input: Master peer replicated (inserted, updated and deleted) records 47: else Output: Transaction Commitments or Abortions //Reconcile incorrect, missing and incorrectly formatted values process start beginreconcileFunction() 48: for (rtm = 0 to NumberOfRowsInAudit Table(ts)OfMasterPeerDatabase -1)do 1: beginreconcileMainTransaction 2: 49: for (cts = 0 to NumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database -selectall Available Slave Peers 3: 1)do for(p ?0 toNumberOfAvailableSlavePeers -1)do 4: 50: if (Row[rtm]Column[cts]InAudit Table(ts)OfMasterPeerDatabase ? beginreconcileSubTransactionPeer(p) 5: Row[rtm]Column[cts]InAuditTable(ts)OfSlavePeer(p)Database) then selectall Audit Table Names in Mater Peer Database //Call function to update Incorrect values, missing values, incorrectly formatted 6: values 13
51: updateIncorrectValuesFunction(arguments)
52: end

if
53: end

for
cts

(
)
C

11: 12: 13: 14: endreconcileFunction Table(ts)OfMasterPeerDatabase -1)then if(NumberOfRowsInAudit Table(ts)OfSlavePeer(p)Database -1 <NumberOfRowsInAudit 60: returnTransaction Commitments or Abortions sortRows of Audit Table(ts) of Slave Peer(p) Database 59: endreconcileMainTransaction(Commit or Abort) sortRows of Audit Table(ts) of Master Peer Database 58: end for p selectall Column Names in Data Table(ts) of Slave Peer(p) Database 57: endreconcileSubTransaction(Commit or Abort) ’Remote’ 54: end for rtm 55: end if 56: end for ts (
)
C
(
)
C

15: To insert missing records, the algorithm 7 here is called. rts?0 //Reconcile
miss-
ing
records
pro-
cess
start

16: Algorithm 7: Function to insert missing records for(rtm?0 toNumberOfRowsInAuditTable(ts)OfMasterPeerDatabase -1)do
17: Input: DataTable(ts)OfSlavePeer(p)Database, cts, rtm repeat
18: Output: Nothing if(rts?NumberOfRowsInAudit

Ta-
ble(ts)OfSlavePeerDatabase
-
1)then

19: begininsertMissingRecordFunction(args) if(Row[rtm]Column[0]InAudit Table(ts)OfMasterPeerDatabase =
Row[rts]Column[0]InAuditTable(ts)OfSlavePeer(p)Database)then 1: for(cts?0 to NumberOfColumnNamesInDataTable(ts)OfSlavePeer(p)Database -1)do
20: 2: Continue(rts ++) ColumnNames?ColumnNames&ColumnNames[cts]
21: 3: end repeat Values ?Values & Row[rtm]Column[cts]
22: 4: end for cts else
//Call function to insert missing records 5: insert in toDataTableNames(ts)InSlavePeer(p) Database (ColumnNames) values (Values)
23: endinsertMissRecordFunction insertMissingRecordFunction(arguments)
24: 25: To delete duplicated records, the algorithm 8 here is called. end if else
//Call function to insert missing records Algorithm 8: Function to delete duplicated records 26: insertMissingRecordFunction(arguments) 27: Input: DataTable(ts)OfSlavePeer(p)Database, rtm end repeat 28: Output: Nothing end if 29: begindeleteDuplicatedRecordFunction(args) until(Row[rtm]Column[0]InAudit Table(ts)OfMasterPeerDatabase = 1: deletefromDataTable(ts)OfSlavePeer(p)DatabasewhereColumnName(0)InDataTable(ts)OfSlave Row[rts]Column[0]InAuditTable(ts)OfSlavePeer(p)Database) 30: Peer(p)Database = ’Row[rtm]Column[0]’ end for rtm 31: else if(NumberOfRowsInAudit Table(ts)OfSlavePeer(p)Database -1 enddeleteDuplicatedRecordFunction
>NumberOfRowsInAuditTable(ts)OfMasterPeerDatabase -1)then To update incorrect values, the algorithm 9 is called.

//Reconcile
du-
pli-
cated
records
pro-
cess
start

© 2019 Global Journals ©
2019
Global
Jour-
nals
©
2019
Global
Jour-
nals

[Note: selectall Audit Table Names in Slave Peer(p) Database 7: selectall Data Table Names in Slave Peer(p)
Database 8: for(ts?0 toNumberOfDataTableNamesInSlavePeer(p)Database -1)do 9: selectall Rows in Audit Ta-
ble(ts) of Master Peer Database where TransactionType = ’Local’ and AuditTimeStamp?BeginningDateAndTime
and AuditTimeStamp?EndingDateAndTime 10: selectall Rows in Audit Table(ts) of Slave Peer(p) Database where
TransactionType =]

Figure 28:

26

1

Nbr. Number of rows Number of rows
Obs. to replicate to reconcile
1. 723 181
2. 900 225
3. 120 30
4. 2500 625
5. 1253 313
6. 80 20
7. 3000 750
8. 5000 1250
9. 450 113
10. 4860 1215
11. 600 150
12. 235 59
Mean 1643.42 410.92
Total 19721 4931

Figure 29: Table 1 :

2

Sample Insert execution Update execution Delete execution
numbering time (in Sec.) time (in Sec.) time (in Sec.)
Nbr. MasterRepli Reconci Repli Reconci Repli Reconci
Obs. Peer cation liation cation liation cation liation
1. B 19 2 19 3 20 2
2. A 24 2 24 4 24 2
3. C 3 0 3 1 4 0
4. C 67 5 68 12 69 8
5. A 35 3 35 5 36 4

Figure 30: Table 2 :

2

Figure 31: Table 2 ,

27

23 CONCLUSION

3

Sample Insert execution Update execution Delete execution
numbering time (in Sec.) time (in Sec.) time (in Sec.)
Nbr. MasterRepli Reconci Repli Reconci Repli Reconci
Obs. Peer cation liation cation liation cation liation
1. B 12 2 12 3 11 2
2. A 15 2 15 4 16 3
3. C 2 0 2 1 3 1
4. C 45 5 47 11 46 7
5. A 24 3 24 5 25 4
6. A 1 0 2 0 2 1
7. B 61 7 61 9 63 10
8. B 104 12 110 24 116 18
9. A 12 1 12 2 12 1
10. C 115 11 121 23 125 16
11. C 16 1 16 2 16 1
12. B 7 1 6 1 7 1
Mean 34.50 3.75 35.67 7.08 36.83 5.42
Total 414 45 428 85 442 65

Figure 32: Table 3 :

1

Sample Insert execution Update execution Delete execution
numbering time (in Sec.) time (in Sec.) time (in Sec.)
Nbr. MasterRepli Reconci Repli Reconci Repli Reconci
Obs. Peer cation liation cation liation cation liation
1. B 22 2 23 3 23 2
2. A 28 2 28 5 28 2
3. C 3 0 3 1 5 0
4. C 78 6 79 14 80 11
5. D 41 3 41 6 42 5
6. A 3 0 2 0 3 0
7. B 97 8 97 17 101 15
8. D 185 14 200 30 218 21
9. A 17 1 16 2 16 1
10. C 165 12 170 27 172 20
11. D 28 2 28 3 29 3
12. B 12 1 11 1 12 1
Mean 56.58 4.25 58.17 9.08 60.75 6.75
Total 679 51 698 109 729 81

Figure 33: Table 1 ,

4

() C

Figure 34: Table 4 :

28

4

Figure 35: Table 4 ,

5

Sample Insert execution Update execution Delete execution
numbering time (in Sec.) time (in Sec.) time (in Sec.)
Nbr. Master Repli Reconci Repli Reconci Repli Reconci
Obs. Peer cation liation cation liation cation liation
1. B 22 3 19 5 18 3
2. A 26 3 28 6 28 5
3. C 6 0 7 1 6 2
4. C 90 8 93 18 92 15
5. D 58 5 51 8 76 6
6. A 6 0 6 0 6 0
7. B 188 12 181 13 180 23

Figure 36: Table 5 :

29

23 CONCLUSION

6

Experimental
scenarios

T
rans-
ac-
tion

Operator Model R² R Prediction
(to
1
Sec.)

1. Experimen-
tation based
one table
stored on a
master peer
with two slave
peers

Replication
Rec-
on-
cilia-
tion

Insert
Up-
date
Delete
Insert
Up-
date
Delete

??=0.0302???0.5595+?
??=0.0318???2.0714+? ?? = 0.0336??
? 2.528 + ? ??=0.0093???0.0777+?
??=0.0208???0.4639+?
??=0.0148???0.4124+?

98.65% 99.34% 52 records 97.89% 98.94% 97 records 96.63% 96.63% 105 records 98.76% 99.38% 116 records 99.56% 99.78% 70 records 99.22% 99.61% 95 records

2. Experimen-
tation based
two tables
stored on a
master peer
with two slave
peers

Replication
Rec-
on-
cilia-
tion

Insert
Up-
date
Delete
Insert
Up-
date
Delete

??=0.0210???1.3366+? ??=0.0230???2.0949+? ??=0.0239???2.4175+? ??=0.0093???0.0671+? ?? = 0.0184?? ? 0.4798 + ? 98.32% 99.16% 80 records 98.46% 99.23% 111 records 99.25% 99.63% 135 records 98.32% 99.16% 143 records 96.91% 98.44% 115 records ?? = 0.0136?? ? 0.1746 + ? 98.59% 99.29% 86 records

3. Experimen-
tation based
one table
stored on a
master peer
with three
slave peers

Replication
Rec-
on-
cilia-
tion

Insert
Up-
date
Delete
Insert
Up-
date
Delete

?? = 0.0348?? ? 0.5762 + ? 99.14% 99.57% 45 records ?? = 0.0368?? ? 2.3047 + ? 99.05% 99.52% 52 records ?? = 0.0387?? ? 2.8053 + ? 98.49% 99.24% 98 records ?? = 0.0106?? ? 0.0883 + ? 99.64% 99.82% 103 records ?? = 0.0235?? ? 0.5576 + ? 97.35% 98.67% 66 records ?? = 0.0176?? ? 0.4611 + ? 98.48% 99.24% 83 records

4. Experimen-
tation based
two tables
stored on a
master peer
with three
slave peers

Replication
Rec-
on-
cilia-
tion

Insert
Up-
date
Delete
Insert
Up-
date
Delete

?? = 0.0539?? ? 2.9424 + ? 94.95% 97.44% 73 records ?? = 0.0527?? ? 4.3298 + ? 96.22% 98.09% 101 records ?? = 0.0566?? ? 5.5273 + ? 97.05% 98.51% 115 records ?? = 0.0206?? ? 1.0387 + ? 95.93% 97.94% 99 records ?? = 0.0293?? ? 0.8713 + ? 97.09% 98.53% 64 records ?? = 0.0266?? ? 0.7763 + ? 98.12% 99.05% 67 records

Figure 37: Table 6 :

30

.1 Acknowledgement

.1 Acknowledgement553

Firstly, we are grateful to the Grace of Almighty God. We would also like to thank the academic corps of554
the Butembo (D. R. Congo) Institute of Building and Public Works for their encouragement and follow-up of555
our investigations. On finish, we thank the Research Technology and Development Centre (RTDC) of Sharda556
University, for its facilities to realize this work.557

[Oracle Corporation web site ()] , Oracle Corporation web site 2018.558

[Oracle Corporation web site ()] , Oracle Corporation web site 2018.559

[ApexSQL LLC web site ()] , ApexSQL LLC web site 2018.560

[Zhang ()] ‘A Novel Replication Model with Enhanced Data Availability in P2P Platforms’. T Zhang .561
International Journal of Grid and Distributed Computing 2016. 9 (4) p. .562

[Kituta et al. ()] ‘A systematic review on distributed databases systems and their techniques’. K Kituta , S Kant563
, R Agarwal . Journal of T heoretical and Applied Information Technology 2019. 96 (1) p. .564

[Kudo ()] ‘An implementation of concurrency control between batch update and online entries’. T Kudo . 18 th565
International Conference on Knowledge-Based and Intelligent Information & Engineering Systems -KES2014,566
Procedia Computer Science, 2014. 35 p. .567

[George and Balakrishnan ()] ‘An optimized strategy for replication in peer-to-peer distributed databases’. A568
George , C Balakrishnan . IEEE International Conference on Computational Intelligence and Computing569
Research, 2012.570

[Kituta et al. ()] ‘Analysis of database replication protocols’. K Kituta , S Kant , R Agarwal . International571
Journal of Latest T rends in Engineering and T echnology 2018. 2018. p. . (Special Issue ICRMR)572

[Filip et al. ()] ‘Considerations about an Oracle Database Multi-Master Replication’. I Filip , C Vasar , R Robu573
. IEEE 5th International Symposium on Applied Computational Intelligence and Informatics, 2009.574

[Souri et al. ()] ‘Consistency of data replication protocols in database systems: A review’. A Souri , S Pashazadeh575
, A Navin , H . International Journal on Information Theory (IJIT) 2014. 3 (4) p. .576

[Cormen ()] T Cormen , H . Introduction to Algorithms, (London, England) 2012. The MIT Press. (4th ed.)577

[Fatos ()] ‘Data Replication in Collaborative Systems’. X Fatos . IEEE Seventh International Conference on P2P,578
Parallel, Grid, Cloud and Internet Computing, 2012.579

[T Ing and Yu ()] ‘Database Replication T echnology having high Consistency Requirements’. Z T Ing , W Yu .580
IEEE Third International Conference on Information Science and Technology, 2013.581

[Database Schema Difference Reconciliation ()] https://www.perpetual-beta.org/weblog/582
mysql-diff.html Database Schema Difference Reconciliation, (Jonathan, H., MySQL_Diff) 2018.583
2018.584

[Silberschatz et al. ()] Database system concepts, A Silberschatz , H F Korth , S Sudarshan . 1997. New York:585
McGraw-Hill.586

[Diallo et al. ()] ‘Distributed Database Management T echniques for Wireless Sensor Networks’. O Diallo , Joel587
Rodrigues , J Sene , M Lloret , J . IEEE T ransactions on Parallel and Distributed Systems 2015. 26 (2) p. .588

[Shahin et al. ()] Dynamic Data Allocation with Replication in Distributed Systems. 30 th IEEE International589
Performance Computing and Communications Conference, K Shahin , G Pedram , D Khuzaima . 2011.590

[Mansouri and Buyya ()] ‘Dynamic replication and migration of data objects with hot -spot and coldspot statuses591
across storage data centers’. Y Mansouri , R Buyya . Journal of Parallel and Distributed Computing 2018.592
126 p. . (Publisher: Elsivier)593

[Santana and Francesc ()] ‘Evaluation of database replication techniques for cloud systems’. M Santana , Enrique594
, J Francesc , D . Computing and Informatics 2015. 34 p. .595

[Experian Ltd web site ()] Experian Ltd web site, https://www.edq.com/uk/glossary/596
data-reconciliation/ 2018.597

[Sebastian ()] Fundamentals of SQL Server, M Sebastian . 2012. 2013. New York, United States of America:598
Simple T alk Publishing.599

[Pandey and Shanker ()] ‘IDRC: A Distributed Real-T ime Commit Protocol’. S Pandey , U Shanker . th600
International Conference on Smart Computing and Communications ICSCC 2017, 2017. 125 p. . (Publisher:601
Elsivier)602

[Kothari and Garg ()] ‘In-House’. C Kothari , R Garg , G . Research methodology methods and techniques, 2014.603
2018. 20. (Microsoft Corporation web site)604

[Kirtikumar ()] Oracle Streams 11g Data Replication, D Kirtikumar . 2011. New York, United States of America:605
McGraw-Hill.606

[Vu et al. ()] Peer-to-Peer Computing -Principles and Applications, Q Vu , M Lupu , C Ooi . 2010. Springer.607

31

https://www.perpetual-beta.org/weblog/mysql-diff.html
https://www.perpetual-beta.org/weblog/mysql-diff.html
https://www.perpetual-beta.org/weblog/mysql-diff.html
https://www.edq.com/uk/glossary/data-reconciliation/
https://www.edq.com/uk/glossary/data-reconciliation/
https://www.edq.com/uk/glossary/data-reconciliation/

23 CONCLUSION

[Pragmatic Works Inc. web site ()] https://dbconvert.com/30 Pragmatic Works Inc. web site, 2018. 2018.608

[Spaho ()] E Spaho . Modeling and Processing for Next -Generation Big-Data T echnologies. Modeling and609
Optimization in Science and Technologies, F Xhafa, L Barolli, A Barolli, P Papajorgji (ed.) 2015. Springer.610
4 p. . (P2P Data Replication: T echniques and Applications)611

[Kituta et al.] ‘Synchronous and Asynchronous Replication’. K Kituta , R Agarwal , B Kaushik . International612
Conference on Machine Learning and Computational Intelligence, 2017. (International)613

[Gudakesa et al. ()] ‘T woways database synchronization in homogeneous DBMS using audit log approach’. R614
Gudakesa , M Sukarsa , G Sasmita . Journal of T heoretical and Applied Information Technology 2014. 65 p.615
.616

[Magdalena ()] ‘The Replication Technology in E-learning Systems’. N Magdalena , I . Procedia -Social and617
Behavioral Sciences 2011. 28 p. . (Publisher: Elsivier)618

[Wiesmann ()] ‘Understanding Replication in Databases and Distributed Systems’. M Wiesmann . IEEE 20th619
International Conference on Distributed Computing Systems, 2002.620

[Özsu and Valduriez ()] M T Özsu , P Valduriez . Principles of Distributed Database Systems, (New York, USA)621
2011. Springer Science & Business + Media. (3rd ed.)622

32

https://dbconvert.com/30

