

1 Using Deep Learning to Detect Polyethylene Terephthalate 2 (PET) Bottle Status for Recycling

3 Mpai Mokoena

4 Received: 10 December 2018 Accepted: 5 January 2019 Published: 15 January 2019

5

6 **Abstract**

7 Following the recent ban on plastic waste import by China, developed countries face
8 challenges with a high amount of plastic waste. Plastic waste has been diverted to developing
9 East-Asia countries like the Philippines, Vietnam, and Malaysia. The Malaysian government
10 has taken strict action to send back over 3000 tons of contaminated plastic waste. This paper
11 aims to establish mechanisms to detect the status of post-consumer PET bottles for recycling.
12 A research-based and experimental design approach was adopted to develop mechanisms to
13 detect PET bottle status to ensure high-quality bottles. A total of 1749 images were captured
14 using a Raspberry Pi camera, belonging to four different classes: seal, cap, seal cap, no seal,
15 cap content. Deep Learning technology (SqueezeNet) was used to train the PET bottle
16 images. The trained model achieved 98

17

18 **Index terms**— recyclable PET bottles, squeezenet, recycling, predictions, deep learning, incentives.

19 **1 Introduction**

20 urrently, recyclers are looking for more from shredders. According to Plastic Recycling Technology 2019, new ways
21 to boost productivity, quality and profitability are being sought. There is more demand for quality Polyethylene
22 Terephthalate (PET) bottles. "Purity rates of 98% are now being sought as standard, which means there's no
23 longer a place for contaminated plastics PET bottles. Furthermore over a million plastic bottles are bought every
24 minute globally, by 2021 this number is expected to increase by 20%. This means firms have to prioritize quality
25 PET bottles through reduce, reuse, recycle principles." Consequently, when the three principles of recycling are
26 not followed, over 8 million tonnes of plastic bottles enter the sea every year (Plastic Oceans, 2017). Thus, efforts
27 to collect the plastic waste have been expressed by many developing and developed countries to recycle the plastic
28 PET bottle waste.

29 According to The Guardian 2017, annual production of plastic bottles is expected to increase from 500 billion
30 to half a trillion by 2021(figure1). PET is the most widely produced, consumed and recycled plastic in the world.
31 Although PET is recyclable, a huge quantity is discarded. Consequently, the huge amount of PET that is not
32 recycled poses a threat to the environment, negatively affecting marine life and human health. As a result, this
33 paper proposes a solution that can ensure the quality PET bottles are collected and recycled.

34 **2 b) Objectives**

35 Based on the topic, the paper is guided by several research objectives:

36 ? To establish effective mechanisms for postconsumer PET bottles status recognition in real-time using reverse
37 vending machines. ? Build prediction system to recognize PET bottle status using sensors and deep learning.

38 **3 C**

39 Author ? : e-mails: hwaninitech@gmail.com, ? mandymkn4@gmail.com

8 PROPOSED SOLUTION A) HOW IT WORKS

40 4 Existing Solutions a) Overview

41 In this section, the paper compares several case studies in relation to plastic PET bottle waste management in
42 different countries. The cases are based on: 1) Successful models of reverse vending machines for post-consumer
43 PET bottle collection, case of Sweden; 2) The PETCO model by Plastic Recycling Company of South Africa; 3)
44 The case of Japan.

45 5 b) Returpack Sweden

46 The Returpack case study on Deposit Refund Systems is insightful. The system takes care of four types of
47 beverage containers PET bottles being one of them. The collection systems promote the collection of recyclables
48 and waste with the provision of economic incentives. There are established deposit refund systems in Sweden
49 and reward points collection systems in place. To have a clear understanding of how the deposit refund systems
50 work in Sweden, a research on Sweden Deposit Refund System has been done by way of interview and obtained
51 first-hand information from a resident citizen of Sweden.

52 According to the interview results, the consumers return the bottles to the drop-off points where the vending
53 machines are located. However, the system does not take into consideration the quality of bottles returned such
54 as the removal of cap, label or content or cleanliness. Upon returning the bottles, consumer gets a coupon which
55 can be redeemed at the stores. The vending machine scans the barcode of the bottle and it rejects any bottle
56 that is not Swedish. As a result, the system encourage recycling of PET bottles by providing rewards.

57 From the research findings, Sweden depositrefund system is mandatory, it began in the 1970s in order to
58 achieve the 75% recycling rate indicated by the government. The key stakeholders of the system include the can
59 manufacturer, breweries and retailers who established a company by the name Returpack to set up collection and
60 recycling system for aluminium cans. Also, Returpack-PET (AB Svenska Returpack PET) was established for
61 PET bottles in 1994. ??Tojo, 2011). Prior to Sweden having its own PET recycling plant, the PET bottles were
62 sent to Germany for cleaning and recycling. In an effort to reduce PET bottle waste, a recycling company was
63 established in 2006-2007. As a result, Sweden achieved a recycling rate of 90% for pet bottles (The Locals.Se,
64 2018)

65 6 c) PETCO South Africa

66 PETCO is a South African company which was incorporated in 2004 to self-regulate recycling of postconsumer
67 PET bottles. PETCO is guided by the principle of Extended Producer Responsibility. It Involves various
68 stakeholders in its business model which makes it a success. Stakeholders involved are raw material producers,
69 converters, brand owners', retailers, consumers, recyclers and donors. Extended producer responsibility ensures
70 the end of life of the products which the companies produce.

71 The country's recycling rate exceeded expectations in increasing from 52% in 2015 to 55% in 2016(Post &
72 Number, 2018). In 2017, 2 billion PET bottles were recycled, the recycling rate was 65%. PETCO South Africa
73 has embraced a circular economy paying much attention to achieving the Sustainable Development Goals (SD
74 Goals: 14, 12, 6, and 3) as shown in figure 2.

75 Another contribution to PETCO South Africa success in recycling is the existence of state-of-the-art recycling
76 facilities. Also, recyclers can buy PET bottles from collectors with the fee collected from the voluntary fee paid
77 by importers and manufacturers of PET bottle products.

78 In a 2017 report by Plastics SA, the major challenge faced in the recycling of plastic bottle waste is getting
79 access to good quality, clean bottles before they reach the landfills. verify the solution which is the identification
80 of pet bottle status using deep learning.

81 7 d) Plastic Recycling in Japan

82 Waste management in Japan is successful due to waste separation practice. For example, the first house rules for
83 a tenant from a landlord is about waste separation. Kamikatsu in Japan has a collection centre for recyclables.
84 The consumers return bottles and are awarded points. After the points accumulate, the residents can enjoy
85 discounts for basic services such as housing, water, health etc.

86 IV.

87 8 Proposed Solution a) How it works

88 When the consumers finish with the pet bottles, they clean and return the empty bottles to a collection
89 centre/drop-off point, there the bottle is put in the reverse vending machine, the bottle status is identified
90 based on the following features; With seal or without seal, with cap or without cap, with cap and seal, or if it
91 has no cap, content and seal. Awarding of incentives depends on the status and for each status, amount awarded
92 varies.

93 Figure 3 shows bottle status recognition which varies from low incentives for not clean bottles to high incentives
94 for clean ones.

95 **9 b) Comparison and Originality of the proposed solution to
96 existing solutions**

97 Table 1 shows a comparison of the proposed solution to existing solutions. The originality of the proposed solution
98 is 1) it adopts divergent incentives (the amount of incentives is decided based on the bottle status), and 2) the
99 bottle status is recognized automatically.

100 V.

101 **10 Solution Development a) System configuration**

102 In the reverse vending machine, we have a range/object sensor, a camera sensor and controller raspberry pi.
103 When the bottle is put in the machine, the range sensor detects the bottle and triggers the camera to take
104 photos. Figure 4 shows an overview of reverse vending machine with PET bottle status recognition. During the
105 prediction process, the bottle put in the reverse vending machine is captured and its image is saved on SD card
106 in the raspberry pi. Using deep learning model (Squeeze Net) deployed on the raspberry pi, the bottle image is
107 predicted and results displayed on the dashboard as shown in figure 5. The configuration involves several devices.
108 There are requirements in order to configure all the devices to work well. Below is a list of the requirements:

109 1. Range sensor (HC-SR04) 2. Raspberry pi camera 3. The raspberry pi 2 model B 4. PCB (A circuit board)
110 5. Wires 6. Four 7. Four toggle switches corresponding to each LED Four toggle switches are connected to four
111 GPIOs of Raspberry pi, so that the software on Raspberry pi can sense the status of the switches. This is used
112 in the function of taking images for the training datasets. Four LEDs are connected to other four GPIOs of
113 Raspberry pi, so that the software on Raspberry pi can turn on or off individually. This is used in the function
114 of taking images for prediction to display the prediction result.

115 **11 c) Generating Training dataset**

116 The training dataset requires a label which corresponds to the status of the bottle for each image of the bottle,
117 because the supervised machine training is used. In the prototype, two toggle switches out of four are used to
118 indicate the label of the image. The status of bottles which must be recognized are the existence of seal, cap. So
119 the number of bottle status is four: a) only seal exists, b) both seal and cap exist, c) only cap exists, and d) no
120 seal and no cap exists. The four statuses are coded as binary values as a) 1000, b) 1100, c) 0100, d) 0000. Each
121 binary digit is assigned to each toggle switch, so the user of the prototype easily specify the state of the bottle
122 by setting the toggle switches. This feature is useful for speeding up the training dataset generation process.

123 Figure 6 shows the file directory structure of the image data for deep learning training. The directories "1000",
124 "1100", "0100" and "0000" correspond to the bottle status a) to d). The captured image data is automatically
125 saved to the corresponding directory. The images are saved in respective directories according to their classes.
126 For example images of seal, cap, cap and seal are saved in 1000, 0100, and 1100 respectively.

127 **12 Loss**

128 Model loss is a value that tells us how well or bad our model classifier performed at each iteration. The lower
129 the loss value the better the model performed and vice versa. It is easy for people to predict images with their
130 human eyes but in deep learning it is difficult due to various challenges. Therefore, the need to apply a loss
131 function in our model. There is no universal loss function that works for all classifications.

132 **13 Accuracy**

133 Accuracy of a model is determined after learning has taken place. Then the test samples are fed to our model to
134 determine the accuracy. Accuracy = No of correct predictions / Total no of predictions

135 The accuracy in the training of pet bottles is 83.7 % for 20 epochs. After increasing the number of epochs,
136 training accuracy improved. The results are 98% accuracy.

137 **14 b) Measuring the prediction performance**

138 The prediction results shown in table ?? shows the prediction performance on Intel CPU which were 0.022 seconds
139 in the 1st test and 0.018 seconds in the 2nd test. Since the raspberry pi CPU is 5 to 10 times slower than the
140 Intel CPU, the approximated delay time is 0.1 seconds to 0.25 seconds per prediction. ¹

Humans produce almost 20,000 plastic bottles every second

Global PET plastic bottle production

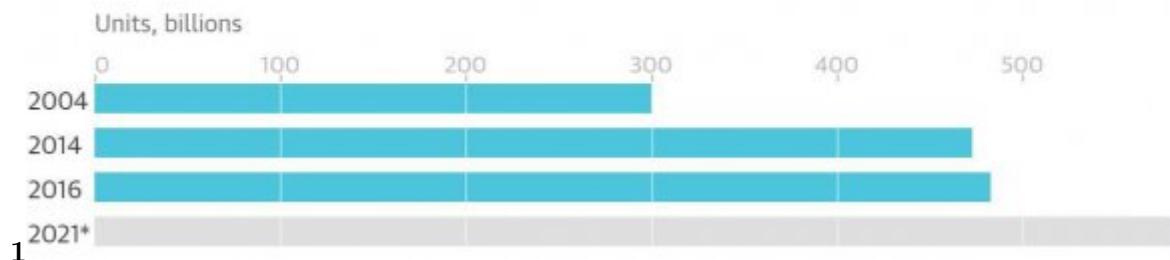


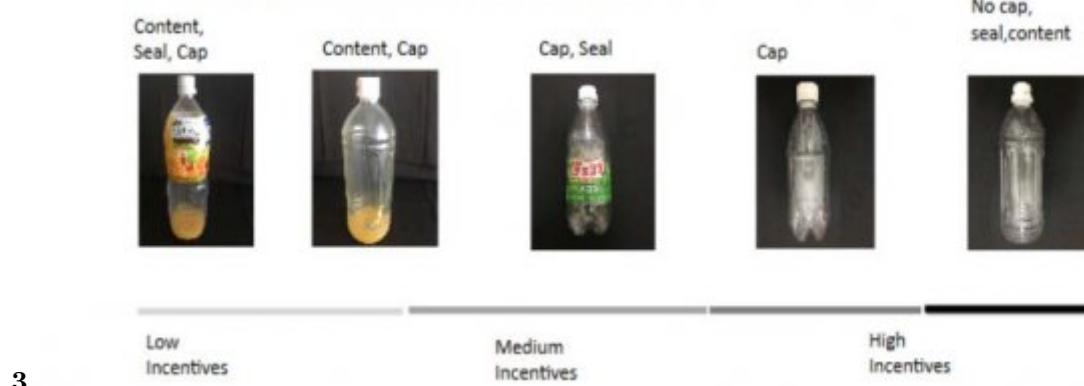
Figure 1: Figure 1 :

Figure 2: Figure 2 :

Features	RVM-Sweden	Zero Waste - Kamikatsu	Petco-South Africa	Proposed Solution
Collection	RVM	Human action	Human action	RVM
Bottle Status Judgement	According to origin	none	none	Automatically by bottle status
Drop-off points	yes	yes	yes	yes
Incentives	Based on amount	Based on amount	Based on amount	Based on the amount and bottle status

Figure 3: Using

Use deep learning to predict the status of bottles.

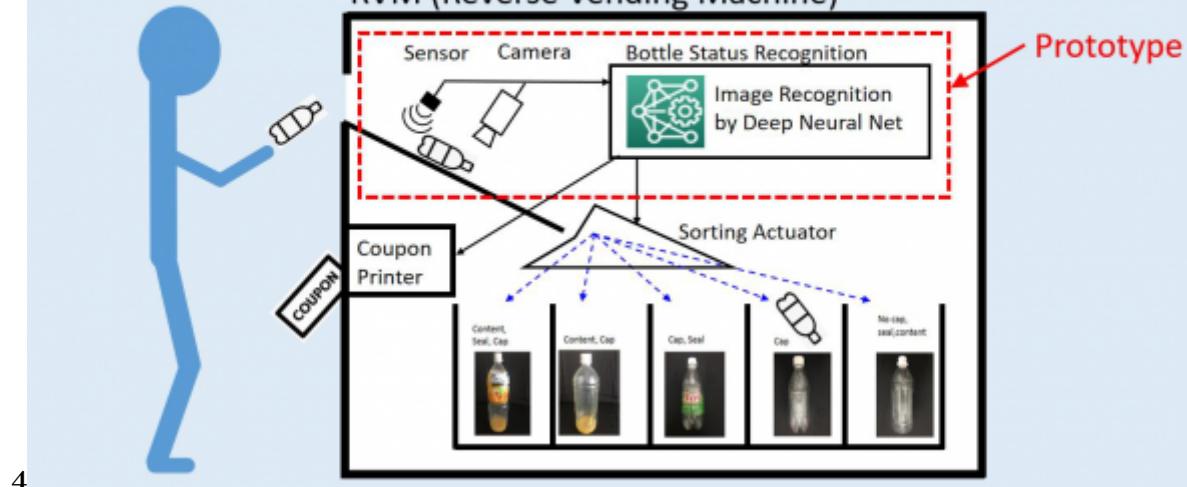


3

Figure 4: Figure 3 :

RVM and PROTOTYPE

RVM (Reverse Vending Machine)



4

Figure 5: Figure 4 :

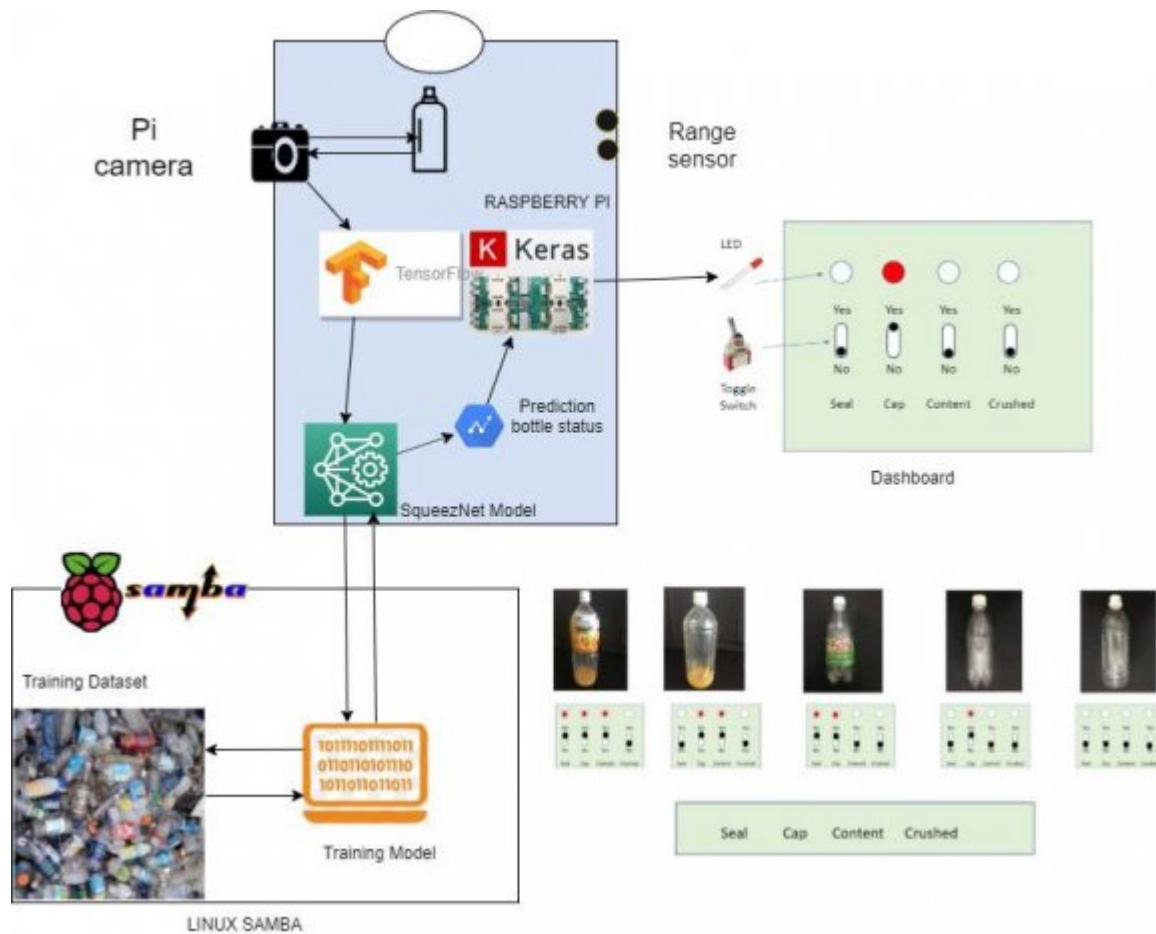
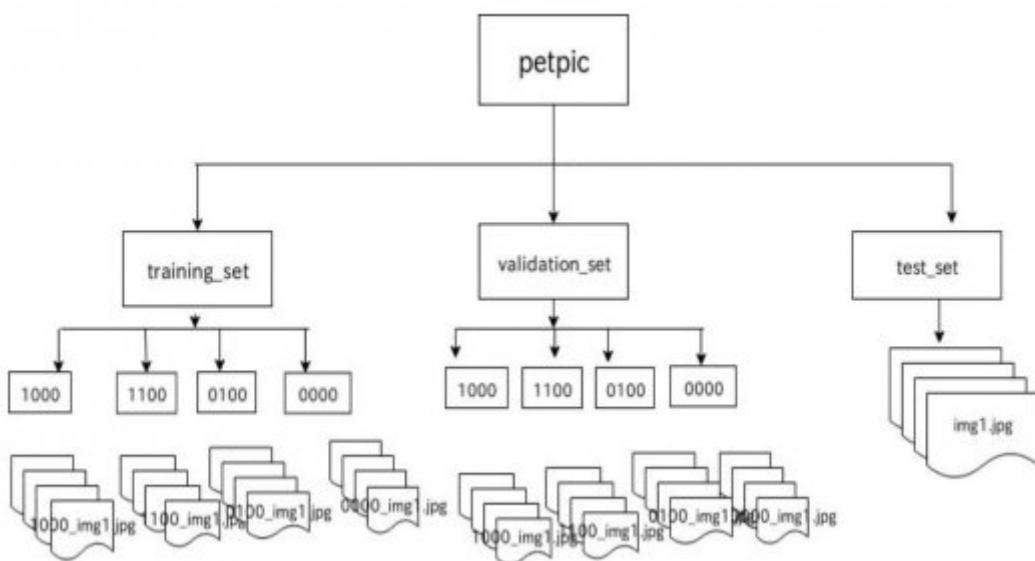
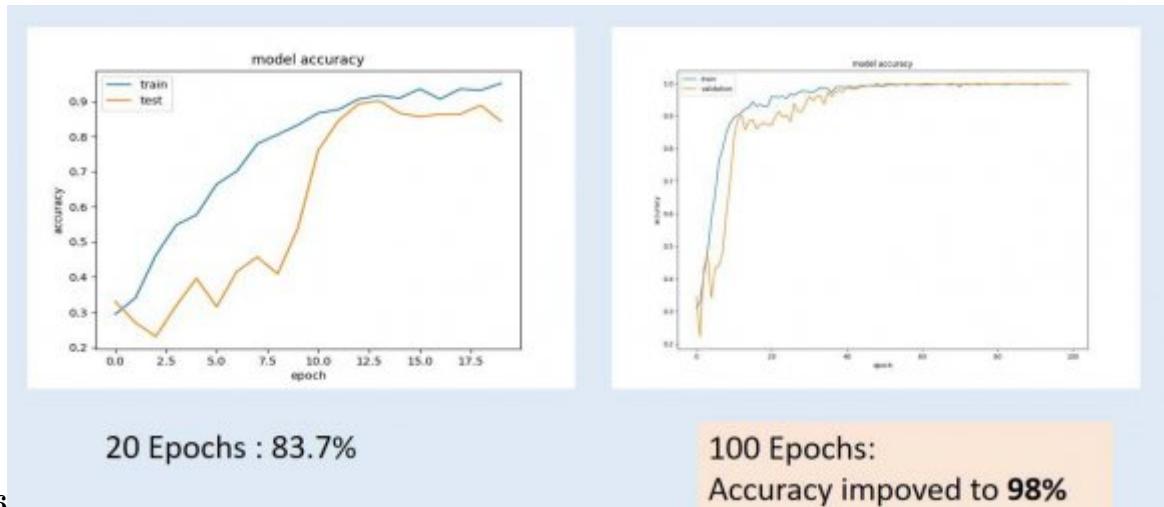


Figure 6:



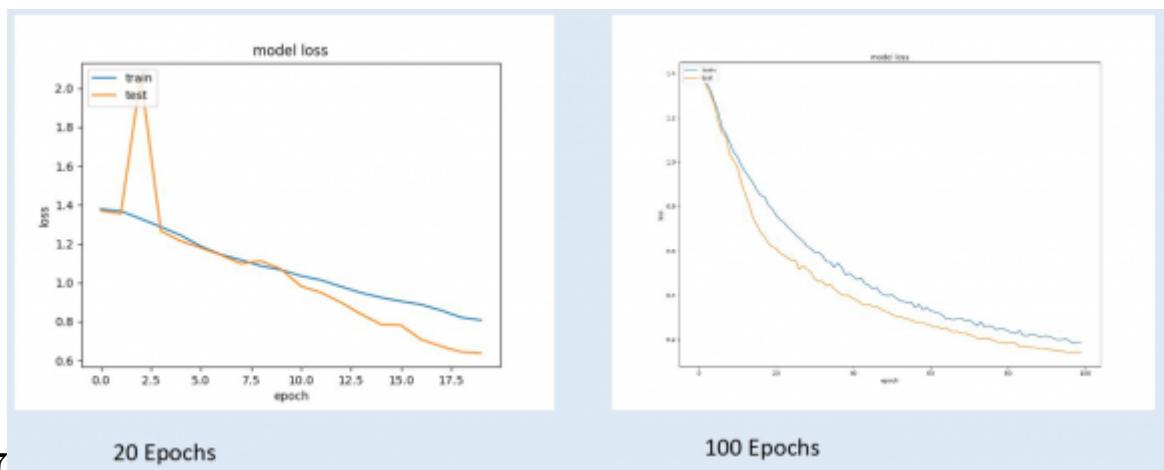
5

Figure 7: Figure 5 :



6

Figure 8: Figure 6 :



7

Figure 9: Figure 7 :

1

Figure 10: Table 1 :

141 [Camera Exposure matrix] *Camera Exposure matrix*, <https://publiclab.org/notes/MaggPi/07-02-2018/camera-exposure-matrix>

142

143 [Rawat and Wang ()] 'Deep convolutional neural networks for image classification: A comprehensive review'. W Rawat , Z Wang . *Neural computation* 2017. 29 (9) p. .

144

145 [Rawat and Wang ()] *Deep convolutional neural networks for image classification: A comprehensive review* *Neural computation*, W Rawat , Z Wang . 2017.

146

147 [Gopalakrishnan et al. ()] 'Deep Convolutional Neural Networks with transfer learning for computer visionbased data-driven pavement distress detection'. K Gopalakrishnan , S K Khaitan , A Choudhary , A Agrawal . *Construction and Building Materials* 2017. 157 p. .

148

149

150 [Lecun et al. ()] 'Deep learning'. Y Lecun , Y Bengio , G Hinton . *nature* 2015. 521 (7553) p. 436.

151 [Voulodimos et al. ()] 'Deep learning for computer vision: A brief review'. A Voulodimos , N Doulamis , A Doulamis , E Protopapadakis . *Computational intelligence and neuroscience* 2018. 2018.

152

153 [Pi ()] *GPIO Interface library for the Raspberry Pi*, W Pi . <http://wiringpi.com/> 2017. p. .

154 [Hardware/Software Codesign and System Synthesis Companion] *Hardware/Software Codesign and System Synthesis Companion*, ACM. p. 1.

155

156 [Chollet ()] *Keras: Deep learning library for theano and tensor flow*, F Chollet . <https://keras.io/k> 2015.

157 7 p. T1.

158 [Bengio ()] 'Learning deep architectures for AI'. Y Bengio . *Machine Learning*, 2009. 2 p. .

159 [David ()] *PET recycling -a means to save the planet*, Arun David , Ambrose . 2017.

160 [Gay ()] 'Pi Camera'. W Gay . *Advanced Raspberry Pi*, (Berkeley, CA) 2018. Apress. p. .

161 [Jambeck et al. ()] 'Plastic waste inputs from land into the ocean'. J R Jambeck , R Geyer , C Wilcox , T R Siegler , M Perryman , A Andrade , R Narayan , K L Law . *Science* 2015. 347 (6223) p. .

162

163 [Setting up a samba server as a stand-alone server] *Setting up a samba server as a stand-alone server*, <https://www.theguardian.com/environment/2017/jun/28/a-million-a-minute-worlds-plastic-bottle-binge-as-dangerous-as-climate-change>

164

165

166 [Iandola and Keutzer (2017)] 'Small neural nets are beautiful: enabling embedded systems with small deep-neural-network architectures'. F Iandola , K Keutzer . *Proceedings of the Twelfth IEEE/ACM/IFIP International Conference on*, (the Twelfth IEEE/ACM/IFIP International Conference on) 2017. October.

167

168

169 [Iandola et al. ()] *Squeeze Net: Alex Net-level accuracy with 50x fewer parameters and< 0.5 MB model size*, F N Iandola , S Han , M W Moskewicz , K Ashraf , W J Dally , K Keutzer . arXiv:1602.07360. 2016. (Ar Xiv preprint)

170

171

172 [That's pant! The story behind Sweden's bottle recycling scheme ()] *That's pant! The story behind Sweden's bottle recycling scheme*, <https://www.thelocal.se/20180328/thats-pant-the-story-behind-swedens-bottle-recycling-system> 2019. (The Locals se)

173

174