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1 I.24

Taxonomy of Schedulers lthough managing workload in a Cloud system is a modern challenge, scheduling25
strategies are a well-researched field as well as being an area where there has been considerable practical26
implementation. This background review started by analyzing deployed and actively used solutions and presents27
a taxonomy in which schedulers are divided into several hierarchical groups based on their architecture and28
design. While other taxonomies do exist (e.g., ??rauter et Tyagi and Gupta, 2018), this review has focused on29
the most important design factors that affect the throughput and scalability of a given solution, as well as the30
incremental improvements which bettered such an architecture.31

Figure 1 visualizes how the schedulers’ groups are split. The sections which follow discusses each of these32
groups separately.33

2 Metacomputing34

The concept of connecting computing resources has been an active area of research for some time. The term35
’metacomputing’ was established as early as 1987 (Smarr and Catlett, 2003) and since then the topic of scheduling36
has been the focus of many research projects, such as (i) service localizing idle workstations and utilizing their37
spare CPU cycles -HTCondor (Litzkow et al., 1988)38

3 ; (ii) the Mentat -a39

Author: Axis Applications Ltd, London, Uk. e-mail: Lsliwko@gmail.com parallel run-time system developed40
at the University of Virginia (Grimshaw, 1990); (iii) blueprints for a national supercomputer (Grimshaw et al.,41
1994), and (iv) the Globus metacomputing infrastructure toolkit (Foster and Kesselman, 1997).42
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7 B) SINGLE QUEUE

Before the work of Foster et al. (2001), there was no clear definition to what ’grid’ systems referred. Following43
this publication, the principle that grid systems should allow a set of participants to share several connected44
computer machines and their resources became established. A list of rules defines these shared system policies.45
This includes which resources are being shared, who is sharing these resources, the extent to which they can use46
those resources, and what quality of service they can expect.47

As shown in the following sections, the requirements of a load balancer in a decentralized system varies48
significantly compared to scheduling jobs on a single machine (Hamscher et al., 2000). One significant difference49
is the network resources, in that transferring data between machines is expensive because the nodes tend to be50
geographically distributed. In addition to the high-impact spreading of tasks across networked machines, the51
load balancer in Clusters generally provides a mechanism for faulttolerance and user session management. The52
sections below also explain the workings of several selected current and historical schedulers and distributed53
frameworks. If we can understand these, we will know more about how scheduling algorithms developed over54
time, as well as the different ways they have been conceptualized. This paper does not purport to be a complete55
taxonomy of all available designs, but rather presents an analysis of some of the most important concepts and56
aspects of the history of schedulers.57

4 III.58

5 OS Schedulers59

The Operating System (OS) Scheduler, also known as a ’short-term scheduler’ or ’CPU scheduler’, works within60
very short time frames, i.e., time-slices. During scheduling events, an algorithm must examine planned tasks61
and assign them appropriate CPU times (Bulpin, 2005; Arpaci-Dusseau and Arpaci- Dusseau, 2015). This62
setting requires schedulers to use highly optimized algorithms with very small overheads. Process schedulers face63
the challenge of how to maintain the balance between throughput and responsiveness (i.e., minimum latency).64
Prioritizing the execution of processes with a higher sleep/processing ratio is the way this is generally achieved65
(Pabla, 2009). At present, the most advanced strategies also take into consideration the latest CPU core where66
the process ran the previous time, which is known as ’Non-Uniform Memory Access (NUMA) awareness’. The aim67
is to reuse the same CPU cache memory wherever possible (Blagodurov et al., 2010). The memory access latency68
differences can be very substantial, for example ca. 3-4 cycles for L1 cache, ca. 6-10 cycles for L2 cache and69
ca. 40-100 cycles for L3 cache (Drepper, 2007). NUMA awareness also involves prioritizing the act of choosing a70
real idle core which must occur before its logical SMT sibling, also known as ’Hyper-Threading (HT) awareness’.71
Given this, NUMA awareness is a crucial element in the design of modern OS schedulers. With a relatively high72
data load to examine in a short period, implementation needs to be strongly optimized to ensure faster execution.73

OS Schedulers tend to provide only a very limited set of configurable parameters, wherein the access74
to modify them is not straightforward. Some of the parameters can change only during the kernel com-75
pilation process and require rebooting, such as compile-time options CONFIG_FAIR_USER_SCHED and76
CONFIG_FAIR_CGROUP_SCHED, or on the fly using the low-level Linux kernel’s tool ’sysctl’.77

6 a) Cooperative Multitasking78

Early multitasking Operating Systems, such as Windows 3.1x, Windows 95, 96 and Me, Mac OS before X, adopted79
a concept known as Cooperative Multitasking or Cooperative Scheduling (CS). In early implementations of CS,80
applications voluntarily ceded CPU time to one another. This was later supported natively by the OS, although81
Windows 3.1x used a nonpre-emptive scheduler which did not interrupt the program, wherein the program needed82
to explicitly tell the system that it no longer required the processor time. Windows 95 introduced a rudimentary83
pre-emptive scheduler, although this was for 32-bit applications only (Hart, 1997). The main issue in CS is84
the hazard caused by the poorly designed program. CS relies on processes regularly giving up control to other85
processes in the system, meaning that if one process consumes all the available CPU power then all the systems86
will hang.87

7 b) Single Queue88

Before Linux kernel version 2.4, the simple Circular Queue (CQ) algorithm was used to support the execution of89
multiple processes on the available CPUs. A Round Robin policy informed the next process run (Shreedhar, 1995).90
In kernel version 2.2, processes were further split into non-real/real-time categories, and scheduling classes were91
introduced. This algorithm was replaced by O(n) scheduler in Linux kernel versions 2.4-2.6. In O(n), processor92
time is divided into epochs, and within each epoch every task can execute up to its allocated time slice before93
being pre-empted. At the beginning of each epoch, the time slice is given to each task; it is based on the task’s94
static priority added to half of any remaining time-slices from the previous epoch (Bulpin, 2005). Thus, if a95
task does not use its entire time slice in the current epoch, it can execute for longer in the next one. During a96
scheduling event, an O(n) scheduler requires iteration through all the process which are currently planned (Jones,97
2009), which can be seen as a weakness, especially for multi-core processors.98

Between Linux kernel versions 2.6-2.6.23 came the implementation of the O(1) scheduler. O(1) further splits99
the processes list into active and expired arrays. Here, the arrays are switched once all the processes from the100
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active array have exhausted their allocated time and have been moved to the expired array. The O(1) algorithm101
analyses the average sleep time of the process, with more interactive tasks being given higher priority to boost102
system responsiveness. The calculations required are complex and subject to potential errors, where O(1) may103
cause non-interactive behavior from an interactive process (Wong et al., 2008;Pabla, 2009).104

8 c) Multilevel Queue105

With Q(n) and O(1) algorithms failing to efficiently support the applications’ interactivity, the design of OS106
Scheduler evolved into a multilevel queue. In this queue, repeatedly sleeping (interactive) processes are pushed107
to the top and executed more frequently. Simultaneously, background processes are pushed down and run less108
frequently, although for extended periods.109

Perhaps the most widespread scheduler algorithm is Multilevel Feedback Queue (MLFQ), which is implemented110
in all modern versions of Windows NT (2000, XP, Vista, 7 and Server), Mac OS X, NetBSD and Solaris kernels111
(up to version 2.6, when it was replaced with O(n) scheduler). MLFQ was first described in 1962 in a system112
known as the Compatible Time-Sharing System (Corbató et al., 1962). Fernando Corbató was awarded the113
Turing Award by the ACM in 1990 ’for his pioneering work organizing the concepts and leading the development114
of the general-purpose, large-scale, time-sharing and resource-sharing computer systems, CTSS and Multics’.115
MLFQ organizes jobs into a set of queues Q 0 , Q 1 , ?, Q i wherein a job is promoted to a higher queue if it116
does not finish within 2 i time units. The algorithm always processes the job from the front of the lowest queue,117
meaning that short processes have preference. Although it has a very poor worst-case scenario, MLFQ turns out118
to be very efficient in practice (Becchetti et al., 2006).119

Staircase Scheduler (Corbet, 2004), Staircase Deadline Scheduler (Corbet, 2007), Brain F. Scheduler (Groves120
et al., 2009) and Multiple Queue Skiplist Scheduler (Kolivas, 2016) constitute a line of successive schedulers121
developed by Con Kolivas since 2004 which are based on a design of Fair Share Scheduler from Kay and Lauder122
(1988). None of these schedulers have been merged into the source code of mainstream kernels. They are123
available only as experimental ’-ck’ patches. Although the concept behind those schedulers is similar to MLFQ,124
the implementation details differ significantly. The central element is a single, ranked array of processes for each125
CPU (’staircase’). Initially, each process (P1, P2, ?) is inserted at the rank determined by its base priority;126
the scheduler then picks up the highest ranked process (P) and runs it. When P has used up its time slice, it127
is reinserted into the array but at a lower rank, where it will continue to run but at a lower priority. When128
P exhausts its next time-slice, its rank is lowered again. P then continues until it reaches the bottom of the129
staircase, at which point it is moved up to one rank below its previous maximum and is assigned two time-slices.130
When P exhausts these two time-slices, it is reinserted once again in the staircase at a lower rank. When P131
once again reaches the bottom of the staircase, it is assigned another time-slice and the cycle repeats. P is also132
pushed back up the staircase if it sleeps for a predefined period. The result of this is that that interactive tasks133
which tend to sleep more often should remain at the top of the staircase, while CPU-intensive processes should134
continuously expend more time-slices but at a lower frequency. Additionally, each rank level in the staircase has135
its quota, and once the quota is expired all processes on that rank are pushed down.136

Most importantly, Kolivas’ work introduced the concept of ’fairness’. What this means is that each process137
gets a comparable share of CPU time to run, proportional to the priority. If the process spends much of its138
time waiting for I/O events, then its spent CPU time value is low, meaning that it is automatically prioritized139
for execution. When this happens, interactive tasks which spend most of their time waiting for user input get140
execution time when they need it, which is how the term ’sleeper fairness’ derives. This design also prevents a141
situation in which the process is ’starved’, i.e., never executed.142

9 d) Tree-Based Queue143

While the work of Con Kolivas has never been merged into the mainstream Linux kernel, it has introduced the144
central concept of ’fairness’, which is the crucial feature of the design of most current OS schedulers. At the time145
of writing, Linux kernel implements Completely Fair Scheduler (CFS), which was developed by Ingo Molnár and146
introduced in kernel version 2.6.23. A central element in this algorithm is a self-balancing red-black tree structure147
in which processes are indexed by spent processor time. CFS implements the Weighted Fair Queueing (WFQ)148
algorithm, in which the available CPU time-slices are split between processes in proportion to their priority149
weights (’niceness’). WFQ is based on the idea of the ’ideal processor’, which means that each process should150
have an equal share of CPU time adjusted for their priority and total CPU load (Jones, 2009;Pabla, 2009). Lozi151
et al. (2016) presents an in-depth explanation of the algorithm’s workings, noting potential issues regarding the152
CFS approach. The main criticism revolves around the four problematic areas:153

? Group Imbalance -The authors’ experiments have shown that not every core of their 64-core machine is154
equally loaded: some cores run only one process or sometimes no processes at all, while the rest of the cores155
were overloaded. It seems that the scheduler was not balancing the load because of the hierarchical design and156
complexity of the load tracking metric. To limit the complexity of the scheduling algorithm, the CPU cores are157
grouped into scheduling groups, i.e., nodes. When an idle core attempts to steal work from another node, it158
compares only the average load of its node with that of its victim’s node. It will steal work only if the average159
load of its victim’s group is higher than its own. The result is inefficiency since idle cores will be concealed by160
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12 A) MONOLITHIC SCHEDULER

their nodes’ average load. ? Scheduling Group Construction -This concern relates to the way scheduling groups161
are constructed which is not adapted to modern NUMA machines. Applications in Linux can be pinned to a162
subset of available cores. CFS might assign the same cores to multiple scheduling groups with those groups then163
being ranked by distance. This could be nodes one hop apart, two hops apart and so on. This feature was164
designed to increase the probability that processes would remain close to their original NUMA node. However,165
this could result in the application being pinned to particular cores which are separated by more than one hop,166
with work never being migrated outside the initial core. This might mean that an application uses only one167
core. ? Overload-on-Wakeup -This problem occurs when a process goes to sleep on a particular node and is then168
awoken by a process on the same node. In such a scenario, only cores in this scheduling group will be considered169
to run this process. The aim of this optimization is to improve cache utilization by running a process close to170
the waker process, meaning that there is the possibility of them sharing the last-level memory cache. However,171
the might be the scheduling of a process on a busy core when there are idle cores in alternative nodes, resulting172
in the severe underutilization of the machine. ? Missing Scheduling Domains -This is the result of a line of173
code omission while refactoring the Linux kernel source code. The number of scheduling domains is incorrectly174
updated when a particular code is disabled and then enabled, and a loop exits early. As a result, processes can175
be run only on the same scheduling group as their parent process.176

Lozi et al. ( ??016) have provided a set of patches for the above issues and have presented experimental results177
after applying fixes. They have also made available a set of tools on their site which could be used to detect those178
glitches early in the Linux kernel lifecycle. Moreover, it has been argued that the sheer number of optimizations179
and modifications implemented into CFS scheduler changed the initially simple scheduling policy into one which180
was very complex and bug-prone. As of 12 th February 2019, there had been780 commits to CFS source code181
(’fair.c’ file in github.com/torvalds/linux repository) since November 2011. As such, an alternative approach is182
perhaps required, such as a scheduler architecture based on pluggable components. This work demonstrates the183
immerse complexity of scheduling solutions catering to the complexities of modern hardware.184

10 IV.185

11 Cluster Schedulers186

There are many differences between distributed computing and traditional computing. For example, the physical187
size of the system means that there may be thousands of machines involved, with thousands of users being served188
and millions of API calls or other requests needing processing. While responsiveness and low overheads are often189
the focus of process schedulers, the focus of cluster schedulers is to focus upon high throughput, fault-tolerance,190
and scalability. Cluster schedulers usually work with queues of jobs spanning to hundreds of thousands, and191
indeed sometimes even millions of jobs. They also seem to be more customized and tailored to the needs of the192
organization which is using them.193

Cluster schedulers often provide complex administration tools with a wide spectrum of configurable parameters194
and flexible workload policies. All configurable parameters can generally be accessed via configuration files or the195
GUI interface. However, it appears that site administrators seldom stray from a default configuration (Etsion196
and Tsafrir, 2005). The most used scheduling algorithm is simply a First-Come-First-Serve (FCFS) strategy197
with backfilling optimization. Another challenge, although one which is rarely tackled by commercial schedulers,198
is minimizing total power consumption. Typically, idle machines consume around half of their peak power199
(McCullough et al., 2011). Therefore, a Data Center can decrease the total power it consumes by concentrating200
tasks on fewer machines and powering down the remaining nodes (Pinheiro et al., 2001;Lang and Patel, 2010).201

The proposed grouping of Cluster schedulers loosely follows the taxonomy presented in Schwarzkopf et al.202
(2013).203

12 a) Monolithic Scheduler204

The earliest Cluster schedulers had a centralized architecture in which a single scheduling policy allocated all205
incoming jobs. The tasks would be picked from the head of the queue and scheduled on system nodes in a206
serial manner by an allocation loop. Examples of centralized schedulers include Maui (Jackson et al., 2001)207
and its successor Moab (Adaptive Computing, 2015), Univa Grid Engine (Gentzsch, 2001) Monolithic schedulers208
implement a wide array of policies and algorithms, such as FCFS, FCFS with backfilling and gang scheduling,209
Shortest Job First (SJF), and several others. The Kubernetes (Greek: ’??????????’) scheduler implements a range210
of scoring functions such as node or pod affinity/anti-affinity, resources best-fit and worst-fit, required images211
locality, etc. which can be additionally weighted and combined into node’s score values (Lewis and Oppenheimer,212
2017). As an interesting note -one of the functions (Balanced Resource Allocation routine) implemented in213
Kubernetes evaluates the balance of utilized resources (CPU and memory) on a scored node.214

Monolithic schedulers often face a ’head-ofqueue’ blocking problem, in which shorter jobs are held when a215
long job is waiting for a free node. To try and counter this problem, the schedulers often implement ’backfilling’216
optimization, where shorter jobs are allowed to execute while the long job is waiting. Perhaps the most widespread217
scheduler is Simple Linux Utility for Resource Management (SLURM) ??Yoo et al., 2003). SLURM uses a best-218
fit algorithm which is based on either Hilbert curve scheduling or fat tree network topology; it can scale to219
thousands of CPU cores (Pascual, 2009). At the time of writing, the fastest supercomputer in the world is220
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Sunway TaihuLight (Chinese: ’???????’), which uses over 40k CPU processors, each of which contains 256 cores.221
Sunway TaihuLight’s workload in managed by SLURM (TOP500 Project, 2017).222

The Fuxi (Chinese: ’??’) scheduler presents a unique strategy in that it matches newly-available resources223
against the backlog of tasks rather than matching tasks to available resources on nodes. This technique allowed224
Fuxi to achieve very high utilization of Cluster resources, namely 95% utilization of memory and 91% utilization225
of CPU. Fuxi has been supporting Alibaba’s workload since 2009, and it scales to ca. 5k nodes (Zhang et al.,226
2014).227

While Cluster scheduler designs have generally moved towards solutions which are more parallel, as228
demonstrated in the next subsection, centralized architecture is still the most common approach in High-229
Performance Computing. Approximately half the world’s supercomputers use SLURM as their workload manager,230
while Moab is currently deployed on about 40% of the top 10, top 25 and top 100 on the TOP500 list (TOP500231
Project, 2017).232

13 b) Concurrent Scheduling233

Historically, monolithic schedulers were frequently built on the premise of supporting a single ’killer-application’234
(Barroso et al., 2003). However, the workload of the data center has become more heterogeneous as systems235
and a modern Cluster system runs hundreds of unique programs with distinctive resource requirements and236
constraints. A single code base of centralized workload manager means that it is not easy to add a variety237
of specialized scheduling policies. Furthermore, as workload size is increased, the time to reach a scheduling238
decision is progressively limited. The result of this is a restriction in the selection of scheduling algorithms to239
less sophisticated ones, which affects the quality of allocations. To tackle those challenges, the Cluster schedulers240
developed designs which are more parallel.241

14 i. Statically Partitioned242

The solution to the numerous policies and the lack of parallelism in central schedulers was to split Cluster into243
specialized partitions and manage them separately. Quincy (Isard et al., 2009), a scheduler managing workload244
of Microsoft’s Dryad, follows this approach.245

The development of an application for Dryad is modeled as a Directed Acyclic Graph (DAG) model in which246
the developer defines an application dataflow model and supplies subroutines to be executed at specified graph247
vertices. The scheduling policies and tuning parameters are specified by adjusting weights and capacities on a248
graph data structure. The Quincy implements a Greedy strategy. In this approach, the scheduler assumes that249
the currently scheduled job is the only job running on a cluster and so always selects the best node available.250
Tasks are run by remote daemon services. From time to time these services update the job manager about the251
execution status of the vertex, which in the case of failure might be reexecuted. Should any task fail more than252
a configured number of times, the entire job is marked as failed (Isard et al., 2007).253

Microsoft has built several frameworks on top of Dryad, such as COSMOS ??Helland and The main criticism254
of the static partitioning is inflexibility, that is, the exclusive sets of machines in a Cluster are dedicated to255
certain types of workload. That might result in a part of scheduler being relatively idle, while other nodes are256
very active. This issue leads to the Cluster’s fragmentation and the suboptimal utilization of available nodes257
since no machine sharing is allowed.258

15 ii. Two-Level Hierarchy259

The solution to the inflexibility of static partitioning was to introduce two-level architecture in which a Cluster260
is partitioned dynamically by a central coordinator. The actual task allocations take place at the second level of261
architecture in one of the specialized schedulers. The first two-level scheduler was Mesos (Hindman et al., 2011).262
It was developed at the University of California (Berkeley) and is now hosted in the Apache Software Foundation.263
Mesos was a foundation base for other Cluster systems such as Twitter’s Aurora (Aurora, 2018) and Marathon264
(Mesosphere, 2018).265

Mesos introduces a two-level scheduling mechanism in which a centralized Mesos Masteracts as a resource266
manager. It dynamically allocates resources to different scheduler frameworks via Mesos Agents, e.g., Hadoop,267
Spark and Kafka. Mesos Agents are deployed on cluster nodes and use Linux’s cgroups or Docker container268
(depending upon the environment) for resource isolation. Resources are distributed to the frameworks in the269
form of ’offers’ which contain currently unused resources. Scheduling frameworks have autonomy in deciding270
which resources to accept and which tasks to run on them.271

Mesos is most effective when tasks are relatively small, short-lived and have a high resource churn rate, i.e., they272
relinquish resources more frequently. In the current version (1.4.1), only one scheduling framework can examine273
a resource offer at any given time. This resource is effectively locked for the duration of a scheduling decision,274
meaning that concurrency control is pessimistic. Campbell (2017) presents several practical considerations for275
using Mesos in the production environment, in addition to advice on best practice. Two-level schedulers offered276
a working solution to the lack of parallelization found in central schedulers and the low efficiency of statically277
partitioned Clusters. Nevertheless, the mechanism used causes resources to remain locked at the same time a278
specialized scheduled examines the resources offer. This means the benefits from parallelization are limited due to279
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18 C) BIG DATA SCHEDULERS

pessimistic locking. Furthermore, the schedulers do not coordinate with each other and must rely on a centralized280
coordinator to make them offers. This further restricts their visibility of the resources in a Cluster.281

16 iii. Shared State282

To address the limited parallelism of the twolevel scheduling design, the alternative approach taken by some283
organizations was to redesign schedulers’ architecture into several schedulers, all working concurrently. The284
schedulers work on a shared Cluster’s state information and manage their resources’ reservations using an285
optimistic concurrency control method. A sample of such systems includes: Microsoft’s Apollo ??Boutin et286
By default, Nomad runs one scheduling worker per CPU core. Scheduling workers pick job submissions from287
the broker queue and then submit it to one of the three schedulers: a long-lived services scheduler, a short-lived288
batch jobs scheduler and a system scheduler, which is used to run internal maintenance routines. Additionally,289
Nomad can be extended to support custom schedulers. Schedulers process and generate an action plan, which290
constitutes a set of operations to create new allocations, or to evict and update existing ones (HashiCorp, 2018).291

Microsoft’s Apollo design seems to be primarily tuned for high tasks churn, and at peak times is capable of292
handling more than 100k of scheduling requests per second on a ca. 20k nodes cluster. Apollo uses a set of293
per-job schedulers called Job Managers (JM) wherein a single job entity contains a multiplicity of tasks which294
are then scheduled and executed on computing nodes. Tasks are generally short-lived batch jobs (Boutin et al.,295
2014). Apollo has a centralized Resource Monitor (RM), while each node runs its Process Node (PN) with a296
queue of tasks. Each PN is responsible for local scheduling decisions and can independently reorder its job queue297
to allow smaller tasks to be executed immediately, while larger tasks wait for resources to become available.298
In addition, PN computes a wait-time matrix based on its queue which publicizes the future availability of the299
node’s resources. Scheduling decisions are made optimistically by JMs based on the shared cluster’s resource300
state, which is continuously retrieved and aggregated by RM.301

Furthermore, Apollo categorizes tasks as ’regular’ and ’opportunistic’. Opportunistic tasks are used to fill302
resource gaps left by regular tasks. The system also prevents overloading the cluster by limiting the total number303
of regular tasks that can be run on a cluster. Apollo implements locality optimization by taking into consideration304
the location of data for a given task. For example, the system will score nodes higher if the required files are305
already on the local drive as opposed to machines needing to download data (Boutin et al., 2014).306

Historically, Omega was a spinoff from Google’s Borg scheduler. Despite the various optimizations acquired307
by Borg over the years, including internal parallelism and multi-threading, to address the issues of head-of-line308
blocking and scalability problems, Google decided to create an Omega scheduler from the ground up (Schwarzkopf309
et al., 2013). Omega introduced several innovations, such as storing the state of the cluster in a centralized Paxos-310
based store that was accessed by multiple components simultaneously. Optimistic locking concurrency control311
resolved the conflicts which emerged. This feature allowed Omega to run several schedulers at the same time and312
improve the throughput. Many of Omega’s innovations have since been folded into Borg (Burns et al., 2016).313

Omega’s authors highlight the disadvantages of the shared state and parallel reservation of resources, namely:314
(i) the state of a node could have changed considerably when the allocation decision was being made, and it315
is no longer possible for this node to accept a job; (ii) two or more allocations to the same node could have316
conflicted and both scheduling decisions are nullified; and (iii) this strategy introduces significant difficulties317
when gang-scheduling a batch of jobs as (i) or (ii) are happening (Schwarzkopf et al., 2013).318

In this research, Google’s Borg received special attention, as one of the most advanced and published schedulers.319
Moreover, while other schedulers are designed to support either a high churn of short-term jobs, e.g., Microsoft’s320
Apollo (Boutin et al., 2014), Alibaba’s Fuxi (Zhang et al., 2014), or else a limited number of long-term services,321
such as Twitter’s Aurora (Aurora, 2018), Google’s engineers have created a system which supports a mixed322
workload. Borg has replaced two previous systems, Babysitter and the Global Work Queue, which were used323
to manage longrunning services and batch jobs separately (Burns et al., 2016). Given the significance of Borg’s324
design for this research, it is discussed separately in section 2.4.325

17 iv. Decentralised Load Balancer326

The research (Sliwko, 2018) proposes a new type of Cluster’s workload orchestration model in which the actual327
scheduling logic is processed on nodes themselves. This is a significant step towards completely decentralized328
Cluster orchestration. The cluster state is retrieved from a subnetwork of BAs, although this system does not329
rely on the accuracy of this information and uses it exclusively to retrieve an initial set of candidate nodes where330
a task could potentially run. The actual task to machine matching is performed between the nodes themselves.331
As such, this design avoids the pitfalls of the concurrent resource locking, which includes conflicting scheduling332
decisions and the non-current state of nodes’ information. Moreover, the decentralization of the scheduling logic333
also lifts complexity restrictions on scheduling logic, meaning that a wider range of scheduling algorithms can be334
used, such as metaheuristic methods.335

18 c) Big Data Schedulers336

In taxonomy presented in this paper, Big Data schedulers are visualized as a separate branch from Cluster337
Schedulers. Although Big Data Schedulers seem to belong to one of the Cluster schedulers designs discussed338
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previously, this separation signifies their overspecialization, and that only a very restricted set of operations339
is supported (Isard et al., 2007;Zaharia et al., 2010). The scheduling mechanisms are often intertwined with340
the programming language features, with Big Data frameworks often providing their own API (Zaharia et al.,341
2009;White, 2012) and indeed sometimes even their own custom programming language, as seen with Skywriting342
in CIEL (Murray et al., 2011).343

Generally speaking, Big Data frameworks provide very fine-grained control over how data is accessed and344
processed over the cluster, such as Spark RDD objects persist operations or partitioners (Zaharia et al., 2012).345
Such a deep integration of scheduling logic with applications is a distinctive feature of Big Data technology. At346
the time of writing, Big Data is also the most active distributed computing research area, with new technologies,347
frameworks and algorithms being released regularly.348

Big Data is the term which describes the storage and processing of any data sets so large and complex that349
they become unrealistic to process using traditional data processing applications based on relational database350
management systems. It depends on the individual organization as to how much data is described as Big Data.351
The following examples provide an idea of scale: produces about fifteen petabytes of data per year (White, 2012).352
As a result of a massive size of the stored and processed data, the central element of a Big Data framework is353
its distributed file system, such as Hadoop Distributed File System (Gog, 2012), Google File System (Ghemawat354
et al., 2003) and its successor Colossus (Corbett et al., 2013). The nodes in a Big Data cluster fulfill the dual355
purposes of storing the distributed file system parts, usually in a few replicas for fault-tolerance means, and also356
providing a parallel execution environment for system tasks. The speed difference between locally-accessed and357
remotely stored input data is very substantial, meaning that Big Data schedulers are very focused on providing358
’data locality’, which means running a given task on a node where input data are stored or are in the closest359
proximity to it. The origins of the Big Data technology are in the ’MapReduce’ programming model, which360
implements the concept of Google’s inverted search index. Developed in 2003 (Dean and Ghemawat, 2010) and361
later patented in 2010 (U.S. Patent 7,650,331), the Big Data design has evolved significantly in the years since.362
It is presented in the subsections below.363

19 i. Mapreduce364

MapReduce is the most widespread principle which has been adopted for processing large sets of data in parallel.365
Originally, the name MapReduce only referred to Google’s proprietary technology, but the term is now broadly366
used to describe a wide range of software, such as Hadoop, CouchDB, Infinispan, and MongoDB. The most367
important features of MapReduce are its scalability and fine-grained fault-tolerance. The ’map’ and ’reduce’368
operations present in Lisp and other functional programming languages inspired the original thinking behind369
MapReduce (Dean and Ghemawat, 2010):370

? ’Map’ is an operation used in the first step of computation and is applied to all available data that performs371
the filtering and transforming of all keyvalue pairs from the input data set. The ’map’ operation is executed372
in parallel on multiple machines on a distributed file system. Each ’map’ task can be restarted individually,373
and a failure in the middle of a multi-hour execution does not require restarting the whole job from scratch.374
? The ’Reduce’ operation is executed after the ’map’ operations complete. It performs finalizing operations,375
such as counting the number of rows matching specified conditions and yielding fields frequencies. The ’Reduce’376
operation is fed using a stream iterator, thereby allowing the framework to process the list of items one at the377
time, thus ensuring that the machine memory is not overloaded (Dean and Ghemawat, 2010;Gog, 2012).378

Following the development of the MapReduce concept, Yahoo! engineers began the Open Source project379
Hadoop. In February 2008, Yahoo! announced that its production search index was being generated by a 10k-380
core Hadoop cluster (White, 2012). Subsequently, many other major Internet companies, including Facebook,381
LinkedIn, Amazon and Last.fm, joined the project and deployed it within their architectures. Hadoop is currently382
hosted in the Apache Software Foundation as an Open Source project.383

As in Google’s original MapReduce, Hadoop’s users submit jobs which consist of ’map’ and ’reduce’ operation384
implementations. Hadoop splits each job into multiple ’map’ and ’reduce’ tasks. These tasks subsequently process385
each block of input data, typically 64MB or 128MB (Gog, 2012). Hadoop’s scheduler allocates a ’map’ task to386
the closest possible node to the input data required -so-called ’data locality’ optimization. In so doing, we can387
see the following allocation order: the same node, the same rack and finally a remote rack (Zaharia et al., 2009).388
To further improve performance, the Hadoop framework uses ’backup tasks’ in which a speculative copy of a389
task is run on a separate machine. The purpose of this is to finish the computation more quickly. If the first390
node is available but behaving poorly, it is known as a ’straggler’, with the result that the job is as slow as391
the misbehaving task. This behavior can occur for many reasons, such as faulty hardware or misconfiguration.392
Google estimated that using ’backup tasks’ could improve job response times by 44% (Dean and Ghemawat,393
2010).394

At the time of writing, Hadoop comes with a selection of schedulers, as outlined below: ? ’FIFO Scheduler’395
is a default scheduling system in which the user jobs are scheduled using a queue with five priority levels.396
Typically, jobs use the whole cluster, so they must wait their turn. When another job scheduler chooses the397
next job to run, it selects jobs with the highest priority, resulting in low-priority jobs being endlessly delayed398
(Zaharia et al., 2009;White, 2012). ? ’Fair Scheduler’ is part of the cluster management technology Yet Another399
Resource Negotiator (YARN) (Vavilapalli et al., 2013), which replaced the original Hadoop engine in 2012. In400
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22 III. DISTRIBUTED STREAM PROCESSING

Fair Scheduler, each user has their own pool of jobs, and the system focuses on giving each user a proportional401
share of cluster resources over time. The scheduler uses a version of ’max-min fairness’ (Bonald et al., 2006)402
with minimum capacity guarantees that are specified as the number of ’map’ and ’reduce’ task slots to allocate403
tasks across users’ job pools. When one pool is idle, and the minimum share of the tasks slots is not being used,404
other pools can use its available task slots. ? ’Capacity Scheduler’ is the second scheduler introduced within405
the YARN framework. Essentially, this scheduled is a number of separate MapReduce engines, which contains406
FCFS scheduling for each user or organization. Those queues can be hierarchical, with a queue having children407
queues, and with each queue being allocated task slots capacity which can be divided into ’map’ and ’reduce’408
tasks. Task slots allocation between queues is similar to the sharing mechanism between pools found in Fair409
Scheduler (White, 2012).410

The main criticism of MapReduce is the acyclic dataflow programming model. The stateless ’map’ task must411
be followed by a stateless ’reduce’ task, which is then executed by the MapReduce engine. This model makes it412
challenging to repeatedly access the same dataset, a common action during the execution of iterative algorithms413
(Zaharia et al., 2009).414

20 ii. Iterative Computations415

Following the success of Apache Hadoop, several alternative designs were created to address Hadoop’s suboptimal416
performance when running iterative MapReduce jobs. Examples of such systems include HaLoop (Bu et al., 2010)417
and Spark (Zaharia et al., 2010).418

HaLoop has been developed on top of Hadoop, with various caching mechanisms and optimizations added.419
This makes the framework loop-aware, for example by adding programming support for iterative application and420
storing the output data on the local disk. Additionally, HaLoop’s scheduler keeps a record of every data block421
processed by each task on physical machines. It considers inter-iteration locality when scheduling tasks which422
follow. This feature helps to minimize costly remote data retrieval, meaning that tasks can use data cached on423
a local machine (Bu et al., 2010;Gog, 2012).424

Similar to HaLoop, Spark’s authors noted a suboptimal performance of iterative MapReduce jobs in the Hadoop425
framework. In certain kinds of application, such as iterative Machine Learning algorithms and interactive data426
analysis tools, the same data are repeatedly accessed in multiple steps and then discarded; therefore, it does not427
make sense to send it back and forward to a central node. In such scenarios, Spark will outperform Hadoop428
(Zaharia et al., 2012).429

Spark is built on top of HDSF, but it does not follow the two-stage model of Hadoop. Instead, it introduces430
resilient distributed datasets (RDD) and parallel operations on these datasets (Gog, 2012):431

? ’reduce’ -combines dataset elements using a provided function; ? ’collect’ -sends all the elements of the432
dataset to the user program; ? ’foreach’ -applies a provided function onto every element of a dataset.433

21 Spark provides two types of shared variables:434

? ’accumulators’ -variables onto each worker can apply associative operations, meaning that they are efficiently435
supported in parallel;436

? ’broadcast variables’ -sent once to every node, with nodes then keeping a read-only copy of those variables437
(Zecevic, 2016).438

The Spark job scheduler implementation is conceptually similar to that of Dryad’s Quincy. However, it439
considers which partitions of RDD are available in the memory. The framework then re-computes missing440
partitions, and tasks are sent to the closest possible node to the input data required (Zaharia et al., 2012).441

Another significant feature implemented in Spark is the concept of ’delayed scheduling’. In situations when442
a head-of-line job that should be scheduled next cannot launch a local task, Spark’s scheduler delays the task443
execution and lets other jobs start their tasks instead. However, if the job has been skipped long enough, typically444
a period of up to ten seconds, it launches a non-local task. Since a typical Spark workload consists of short tasks,445
meaning that it has a high task slots churn, tasks have a higher chance of being executed locally. This feature446
helps to achieve ’data locality’ which is nearly optimal, and which has a very small effect on fairness; in addition,447
the cluster throughput can be almost doubled, as shown in an analysis performed on Facebook’s workload traces448
(Zaharia et al., 2010).449

22 iii. Distributed Stream Processing450

The core concept behind distributed stream processing engines is the processing of incoming data items in real time451
by modelling a data flow in which there are several stages which can be processed in parallel. Other techniques452
include splitting the data stream into multiple sub-streams and redirecting them into a set of networked nodes453
(Liu and Buyya, 2017).454

Inspired by Microsoft’s research into DAG models (Isard et al., 2009), Apache Storm (Storm) is a distributed455
stream processing engine used by Twitter following extensive development (Toshniwal et al., 2014). Its initial456
release was 17 September 2011, and by September 2014 it had become open-source and an Apache Top-Level457
Project.458
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The defined topology acts as a distributed data transformation pipeline. The programs in Storm are designed459
as a topology in the shape of DAG, consisting of ’spouts’ and ’bolts’: ? ’Spouts’ read the data from external460
sources and emit them into the topology as a stream of ’tuples’. This structure is accompanied by a schema which461
defines the names of the tuples’ fields. Tuples can contain primitive values such as integers, longs, shorts, bytes,462
strings, doubles, floats, booleans, and byte arrays. Additionally, custom serializers can be defined to interpret463
this data. ? The processing stages of a stream are defined in ’bolts’ which can perform data manipulation,464
filtering, aggregations, joins, and so on. Bolts can also constitute more complex transforming structures that465
require multiple steps (thus, multiple bolts). The bolts can communicate with external applications such as466
databases and Kafka queues (Toshniwal et al., 2014).467

In comparison to MapReduce and iterative algorithms introduced in the subsections above, Storm topologies,468
once created, run indefinitely until killed. Given this, the inefficient scattering of application’s tasks among469
Cluster nodes has a lasting impact on performance. Storm’s default scheduler implements a Round Robin470
strategy. For resource allocation purposes, Storm assumes that every worker is homogenous. This design results471
in frequent resource over-allocation and inefficient use of inter-system communications ??Kulkarni et al., 2018).472
To try and solve this issue, more complex solutions are proposed such as D-Storm (Liu and Buyya, 2017). D-473
Storm’s scheduling strategy is based on a metaheuristic algorithm Greedy, which also monitors the volume of the474
incoming workload and is resource-aware.475

23 Typical examples of Storm’s usage include:476

? Processing a stream of new data and updating databases in real time, for example in trading systems wherein477
data accuracy is crucial; ? Continuously querying and forwarding the results to clients in real time, for example478
streaming trending topics on Twitter into browsers, and ? A parallelization of a computing-intensive query on479
the fly, i.e., a distributed Remote Procedure Call (RPC) wherein a large number of sets are probed (Marz, 2011).480

Storm has gained widespread popularity and is used by companies such as Groupon, Yahoo!, Spotify, Verisign,481
Alibaba, Baidu, Yelp, and many more. A comprehensive list of users is available at the storm.apache.org website.482

At the time of writing, Storm is being replaced at Twitter by newer distributed stream processing engine483
-Heron ??Kulkarni et al., 2018) which continues the DAG model approach, but focuses on various architectural484
improvements such as reduced overhead, testability, and easier access to debug data.485

V.486

24 Google’s Borg487

To support its operations, Google utilizes a high number of data centers around the world, which at the time of488
writing number sixteen. Borg admits, schedules, starts, restarts and monitors the full range of applications run489
by Google. Borg users are Google developers and system administrators, and users submit their workload in the490
form of jobs. A job may consist of one or more tasks that all run the same program (Burns et al., 2016).491

25 a) Design Concepts492

The central module of the Borg architecture is BorgMaster, which maintains an in-memory copy of most of the493
state of the cell. This state is also saved in a distributed Paxos-based store (Lamport, 1998). While BorgMaster494
is logically a single process, it is replicated five times to improve fault-tolerance. The main design priority of495
Borg was resilience rather than performance. Google services are seen as very durable and reliable, the result of496
multi-tier architecture, where no component is a single point of failure exists. Current allocations of tasks are497
saved to Paxos-based storage, and the system can recover even if all five BorgMaster instances fail. Each cell in498
the Google Cluster in managed by a single BorgMaster controller. Each machine in a cell runs BorgLet, an agent499
process responsible for starting and stopping tasks and also restarting them should they fail. BorgLet manages500
local resources by adjusting local OS kernel settings and reporting the state of its node to the BorgMaster and501
other monitoring systems.502

The Borg system offers extensive options to control and shape its workload, including priority bands for tasks503
(i.e., monitoring, production, batch, and best effort), resources quota and admission control. Higher priority504
tasks can pre-empt locally-running tasks to obtain the resources which are required. The exception is made for505
production tasks which cannot be preempted. Resource quotas are part of admission control and are expressed506
as a resource vector at a given priority, for some time (usually months). Jobs with insufficient quotas are rejected507
immediately upon submission. Production jobs are limited to actual resources available to BorgMaster in a given508
cell. The Borg system also exposes a web-based interface called Sigma, which displays the state of all users’ jobs,509
shows details of their execution history and, if the job has not been scheduled, also provides a ’why pending?’510
annotation where there is guidance about how to modify the job’s resource requests to better fit the cell (Verma511
et al., 2015).512

The dynamic nature of the Borg system means that tasks might be started, stopped and then rescheduled on513
an alternative node. Google engineers have created the concept of a static Borg Name Service (BNS) which is used514
to identify a task run within a cell and to retrieve its endpoint address. The BNS address is predominantly used515
by load balancers to transparently redirect RPC calls to the endpoint of a given task. Meanwhile, the Borg’s516
resource reclamation mechanisms help to reclaim under-utilized resources from cell nodes for non-production517
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29 SUMMARY AND CONCLUSIONS

tasks. Although in theory users may request high resource quotas for their tasks, in practice they are rarely518
fully utilized continuously. Instead, they have peak times of the day or are used in this way when coping with a519
denial-ofservice attack. BorgMaster has routines that estimate resource usage levels for a task and reclaim the520
rest for low-priority jobs from the batch or the best effort bands (Verma et al., 2015).521

26 b) Jobs Schedulers522

Early versions of Borg had a simple, synchronous loop that accepted jobs requests and evaluated on which node to523
execute them. The current design of Borg deploys several schedulers working in parallel -the scheduler instances524
use a shared state of the available resources, but the resource offers are not locked during scheduling decisions525
(optimistic concurrency control). Where there is a conflicting situation where two or more schedulers allocate526
jobs to the same resources, all the jobs involved are returned to the jobs queue (Schwarzkopf et al., 2013).527

When allocating a task, Borg’s scheduler scores a set of available nodes and selects the most feasible machine528
for this task. Initially, Borg implemented a variation of the Enhanced Parallel Virtual Machine algorithm (E-529
PVM) (Amir et al., 2000) for calculating the task allocation score. Although this resulted in the fair distribution530
of tasks across nodes, it also resulted in increased fragmentation and later difficulties when fitting large jobs531
which required the most of the node’s resources or even the whole node itself. An opposite to the E-PVM532
approach is a best-fit strategy, which, in turn, packs tasks very tightly. The best-fit approach may result in533
the excessive pre-empting of other tasks running on the same node, especially when the user miscalculates the534
resources required, or when the application has frequent load spikes. The current model used by Borg’s scheduler535
is a hybrid approach that tries to reduce resource usage gaps (Verma et al., 2015).536

Borg also takes advantage of resources preallocation using ’allocs’ (short for allocation). Allocs can be used to537
pre-allocate resources for future tasks to retain resources between restarting a task or to gather class-equivalent538
or related tasks, such as web applications and associated log-saver tasks, onto the same machine. If an alloc is539
moved to another machine, its tasks are also rescheduled.540

One point to note is that, similar to MetaCentrum users (Klusá?ek and Rudová, 2010), Google’s users tend to541
overestimate the memory resources needed to complete their jobs, to prevent jobs being killed due to exceeding542
the allocated memory. In over 90% of cases, users overestimate how many resources are required, which in certain543
cases can waste up to 98% of the requested resource (Moreno et al., 2013;Ray et al., 2017).544

27 c) Optimisations545

Over the years, Borg design has acquired several optimizations, namely: ? Score caching -checking the node’s546
feasibility and scoring it is a computation-expensive process. Therefore, scores for nodes are cached and small547
differences in the required resources are ignored; While the Borg architecture remains heavily centralized, this548
approach does seem to be successful. Although this eliminates head-of-line job blocking problems and offers549
better scalability, it also generates additional overheads for solving resource collisions. Nevertheless, the benefits550
from better scalability often outweigh the incurred additional computation costs which arise when scalability551
targets are achieved (Schwarzkopf et al., 2013).552

28 VI.553

29 Summary and Conclusions554

This paper has presented a taxonomy of available schedulers, ranging from early implementations to modern555
versions. Aside from optimizing throughput, different class schedulers have evolved to solve different problems.556
For example, while OS schedulers maximize responsiveness, Cluster schedulers focus on scalability, provide557
support a wide range of unique (often legacy) applications, and maintain fairness. Big Data schedulers are558
specialized to solve issues accompanying operations on large datasets, and their scheduling mechanisms are often559
extensively intertwined with programming language features.560

Table 1 presents a comparison of the presented schedulers with their main features and deployed scheduling561
algorithms: ’map’ task processes roughly the same amount of data (input data block size is constant), while562
’reduce’ task requirements shall be directly correlated to the size of returned data.563

OS schedulers have evolved in such a way that their focus is on maximizing responsiveness while still providing564
good performance. Interactive processes which sleep more often should be allocated time-slices more frequently,565
while background processes should be allocated longer, but less frequent execution times. CPU switches between566
processes extremely rapidly which is why modern OS scheduling algorithms were designed with very low overhead567
(Wong et al., 2008;Pinel et al., 2011). Most end-users for this class of schedulers are non-technical. As such,568
those schedulers usually have a minimum set of configuration parameters (Groves et al., 2009).569

OS scheduling was previously deemed to be a solved problem (Torvalds, 2001), but the introduction and570
popularization of multi-core processors by Intel (Intel Core?2 Duo) and AMD (AMD Phenom? II) in the571
early 2000s enabled applications to execute in parallel. This meant that scheduling algorithms needed to be572
reimplemented tobe efficient once more. Modern OS schedulers also consider NUMA properties when deciding573
which CPU core the task will be allocated to. Furthermore, the most recent research explores the potential574
application of dynamic voltage and frequency scaling technology in scheduling to minimize power consumption by575
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CPU cores (Sarood et al., 2012;Padoin et al., 2014). Given that it is hard to build a good universal solution which576
caters to the complexities of modern hardware, it is reasonable to develop the modular scheduler architecture577
suggested in Lozi et al. (2016).578

Cluster schedulers have a difficult mission in ensuring ’fairness’. In this context, namely a very dynamic579
environment consisting of variety of applications, fairness means sharing cluster resources proportionally while580
simultaneously ensuring a stable throughput. Cluster systems tend to allow administrators to implement complex581
resource sharing policies with multiple input parameters (Adaptive Computing, 2002). Cluster systems implement582
extensive fault-tolerance strategies and sometimes also focus on minimizing power consumption (Lang and Patel,583
2010). Surprisingly, it appears that the most popular scheduling approach is a simple FCFS strategy with variants584
of backfilling. However, due to the rapidly increasing cluster size, the current research focuses on parallelization,585
as seen with systems such as Google’s Borg and Microsoft’s Apollo.586

Big Data systems are still rapidly developing. Nodes in Big Data systems fulfil the dual purposes of storing587
distributed file system parts and providing a parallel execution environment for system tasks. Big Data schedulers588
inherit their general design from the cluster system’s jobs schedulers. However, they are usually much more589
specialized for the framework and are also intertwined with the programming language features. Big Data590
schedulers are often focused on ’locality optimization’ or running a given task on a node where input data is591
stored or in the closest proximity to it.592

The design of modern scheduling strategies and algorithms is a challenging and evolving field of study.593
While early implementations often used simplistic approaches, such as a CS, modern solutions use complex594
scheduling schemas. Moreover, the literature frequently mentions the need for a modular scheduler architecture595
(Vavilapalli et al., 2013;Lozi et al., 2016) which could customize scheduling strategies to hardware configuration596
or applications. 1

1
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Figure 4:

? Relaxed randomization -instead of evaluating a
task against all available nodes, Borg examines
machines in random order until it finds enough
feasible nodes. It then selects the highest scoring
node in this set.

Figure 5: ?
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