Global Journals INTEX JournalKaleidoscope™

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

. A Taxonomy of Schedulers -Operating Systems, Clusters and Big

2 Data Frameworks

3 Leszek Sliwko!

4 1 Axis Applications Limited

5 Received: 16 December 2018 Accepted: 1 January 2019 Published: 15 January 2019
6

7 Abstract

s This review analyzes deployed and actively used workload schedulers? solutions and presents

9 a taxonomy in which those systems are divided into several hierarchical groups based on their
10 architecture and design. While other taxonomies do exist, this review has focused on the key

1 design factors that affect the throughput and scalability of a given solution, as well as the

12 incremental improvements which bettered such an architecture. This review gives special

13 attention to Google?s Borg, which is one of the most advanced and published systems of this

14 kind.

15

16 Index terms— schedulers, workload, cluster, cloud, big data, borg.
17 A Taxonomy of Schedulers -Operating Systems, Clusters and Big Data Frameworks ?7eszek Sliwko Abstract-

18 This review analyzes deployed and actively used workload schedulers’ solutions and presents a taxonomy in which
19 those systems are divided into several hierarchical groups based on their architecture and design. While other
20 taxonomies do exist, this review has focused on the key design factors that affect the throughput and scalability
21 of a given solution, as well as the incremental improvements which bettered such an architecture. This review
22 gives special attention to Google’s Borg, which is one of the most advanced and published systems of this kind.
23 Keywords: schedulers, workload, cluster, cloud, big data, borg.

» 1 I

25 Taxonomy of Schedulers lthough managing workload in a Cloud system is a modern challenge, scheduling
26 strategies are a well-researched field as well as being an area where there has been considerable practical
27 implementation. This background review started by analyzing deployed and actively used solutions and presents
28 a taxonomy in which schedulers are divided into several hierarchical groups based on their architecture and
29 design. While other taxonomies do exist (e.g., ??rauter et Tyagi and Gupta, 2018), this review has focused on
30 the most important design factors that affect the throughput and scalability of a given solution, as well as the
31 incremental improvements which bettered such an architecture.

32 Figure 1 visualizes how the schedulers’ groups are split. The sections which follow discusses each of these
33 groups separately.

» 2 Metacomputing

35 The concept of connecting computing resources has been an active area of research for some time. The term
36 'metacomputing’ was established as early as 1987 (Smarr and Catlett, 2003) and since then the topic of scheduling
37 has been the focus of many research projects, such as (i) service localizing idle workstations and utilizing their
38 spare CPU cycles -HTCondor (Litzkow et al., 1988)

» 3 ; (ii) the Mentat -a
40 Author: Axis Applications Ltd, London, Uk. e-mail: Lsliwko@gmail.com parallel run-time system developed

41 at the University of Virginia (Grimshaw, 1990); (iii) blueprints for a national supercomputer (Grimshaw et al.,
42 1994), and (iv) the Globus metacomputing infrastructure toolkit (Foster and Kesselman, 1997).

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78

79
80
81
82
83
84
85
86
87

88

89
90
o1
92
93
04
95
96
97
98
99
100

7 B) SINGLE QUEUE

Before the work of Foster et al. (2001), there was no clear definition to what ’grid’ systems referred. Following
this publication, the principle that grid systems should allow a set of participants to share several connected
computer machines and their resources became established. A list of rules defines these shared system policies.
This includes which resources are being shared, who is sharing these resources, the extent to which they can use
those resources, and what quality of service they can expect.

As shown in the following sections, the requirements of a load balancer in a decentralized system varies
significantly compared to scheduling jobs on a single machine (Hamscher et al., 2000). One significant difference
is the network resources, in that transferring data between machines is expensive because the nodes tend to be
geographically distributed. In addition to the high-impact spreading of tasks across networked machines, the
load balancer in Clusters generally provides a mechanism for faulttolerance and user session management. The
sections below also explain the workings of several selected current and historical schedulers and distributed
frameworks. If we can understand these, we will know more about how scheduling algorithms developed over
time, as well as the different ways they have been conceptualized. This paper does not purport to be a complete
taxonomy of all available designs, but rather presents an analysis of some of the most important concepts and
aspects of the history of schedulers.

4 1III.
5 OS Schedulers

The Operating System (OS) Scheduler, also known as a ’short-term scheduler’ or "CPU scheduler’, works within
very short time frames, i.e., time-slices. During scheduling events, an algorithm must examine planned tasks
and assign them appropriate CPU times (Bulpin, 2005; Arpaci-Dusseau and Arpaci- Dusseau, 2015). This
setting requires schedulers to use highly optimized algorithms with very small overheads. Process schedulers face
the challenge of how to maintain the balance between throughput and responsiveness (i.e., minimum latency).
Prioritizing the execution of processes with a higher sleep/processing ratio is the way this is generally achieved
(Pabla, 2009). At present, the most advanced strategies also take into consideration the latest CPU core where
the process ran the previous time, which is known as 'Non-Uniform Memory Access (NUMA) awareness’. The aim
is to reuse the same CPU cache memory wherever possible (Blagodurov et al., 2010). The memory access latency
differences can be very substantial, for example ca. 3-4 cycles for L1 cache, ca. 6-10 cycles for L2 cache and
ca. 40-100 cycles for L3 cache (Drepper, 2007). NUMA awareness also involves prioritizing the act of choosing a
real idle core which must occur before its logical SMT sibling, also known as "Hyper-Threading (HT) awareness’.
Given this, NUMA awareness is a crucial element in the design of modern OS schedulers. With a relatively high
data load to examine in a short period, implementation needs to be strongly optimized to ensure faster execution.
OS Schedulers tend to provide only a very limited set of configurable parameters, wherein the access
to modify them is not straightforward. Some of the parameters can change only during the kernel com-
pilation process and require rebooting, such as compile-time options CONFIG_FAIR_USER,_SCHED and
CONFIG_FAIR__CGROUP_SCHED, or on the fly using the low-level Linux kernel’s tool ’sysctl’

6 a) Cooperative Multitasking

Early multitasking Operating Systems, such as Windows 3.1x, Windows 95, 96 and Me, Mac OS before X, adopted
a concept known as Cooperative Multitasking or Cooperative Scheduling (CS). In early implementations of CS,
applications voluntarily ceded CPU time to one another. This was later supported natively by the OS, although
Windows 3.1x used a nonpre-emptive scheduler which did not interrupt the program, wherein the program needed
to explicitly tell the system that it no longer required the processor time. Windows 95 introduced a rudimentary
pre-emptive scheduler, although this was for 32-bit applications only (Hart, 1997). The main issue in CS is
the hazard caused by the poorly designed program. CS relies on processes regularly giving up control to other
processes in the system, meaning that if one process consumes all the available CPU power then all the systems
will hang.

7 b) Single Queue
Before Linux kernel version 2.4, the simple Circular Queue (CQ) algorithm was used to support the execution of
multiple processes on the available CPUs. A Round Robin policy informed the next process run (Shreedhar, 1995).
In kernel version 2.2, processes were further split into non-real/real-time categories, and scheduling classes were
introduced. This algorithm was replaced by O(n) scheduler in Linux kernel versions 2.4-2.6. In O(n), processor
time is divided into epochs, and within each epoch every task can execute up to its allocated time slice before
being pre-empted. At the beginning of each epoch, the time slice is given to each task; it is based on the task’s
static priority added to half of any remaining time-slices from the previous epoch (Bulpin, 2005). Thus, if a
task does not use its entire time slice in the current epoch, it can execute for longer in the next one. During a
scheduling event, an O(n) scheduler requires iteration through all the process which are currently planned (Jones,
2009), which can be seen as a weakness, especially for multi-core processors.

Between Linux kernel versions 2.6-2.6.23 came the implementation of the O(1) scheduler. O(1) further splits
the processes list into active and expired arrays. Here, the arrays are switched once all the processes from the

101
102
103
104

105

106
107
108

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142

143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

active array have exhausted their allocated time and have been moved to the expired array. The O(1) algorithm
analyses the average sleep time of the process, with more interactive tasks being given higher priority to boost
system responsiveness. The calculations required are complex and subject to potential errors, where O(1) may
cause non-interactive behavior from an interactive process (Wong et al., 2008;Pabla, 2009).

8 ¢) Multilevel Queue

With Q(n) and O(1) algorithms failing to efficiently support the applications’ interactivity, the design of OS
Scheduler evolved into a multilevel queue. In this queue, repeatedly sleeping (interactive) processes are pushed
to the top and executed more frequently. Simultaneously, background processes are pushed down and run less
frequently, although for extended periods.

Perhaps the most widespread scheduler algorithm is Multilevel Feedback Queue (MLFQ), which is implemented
in all modern versions of Windows NT (2000, XP, Vista, 7 and Server), Mac OS X, NetBSD and Solaris kernels
(up to version 2.6, when it was replaced with O(n) scheduler). MLFQ was first described in 1962 in a system
known as the Compatible Time-Sharing System (Corbaté et al., 1962). Fernando Corbaté was awarded the
Turing Award by the ACM in 1990 ’for his pioneering work organizing the concepts and leading the development
of the general-purpose, large-scale, time-sharing and resource-sharing computer systems, CTSS and Multics’.
MLFQ organizes jobs into a set of queues Q 0, Q 1, 7, Q i wherein a job is promoted to a higher queue if it
does not finish within 2 i time units. The algorithm always processes the job from the front of the lowest queue,
meaning that short processes have preference. Although it has a very poor worst-case scenario, MLFQ turns out
to be very efficient in practice (Becchetti et al., 2006).

Staircase Scheduler (Corbet, 2004), Staircase Deadline Scheduler (Corbet, 2007), Brain F. Scheduler (Groves
et al., 2009) and Multiple Queue Skiplist Scheduler (Kolivas, 2016) constitute a line of successive schedulers
developed by Con Kolivas since 2004 which are based on a design of Fair Share Scheduler from Kay and Lauder
(1988). None of these schedulers have been merged into the source code of mainstream kernels. They are
available only as experimental ’-ck’ patches. Although the concept behind those schedulers is similar to MLFQ),
the implementation details differ significantly. The central element is a single, ranked array of processes for each
CPU (’staircase’). Initially, each process (P1, P2, 7) is inserted at the rank determined by its base priority;
the scheduler then picks up the highest ranked process (P) and runs it. When P has used up its time slice, it
is reinserted into the array but at a lower rank, where it will continue to run but at a lower priority. When
P exhausts its next time-slice, its rank is lowered again. P then continues until it reaches the bottom of the
staircase, at which point it is moved up to one rank below its previous maximum and is assigned two time-slices.
When P exhausts these two time-slices, it is reinserted once again in the staircase at a lower rank. When P
once again reaches the bottom of the staircase, it is assigned another time-slice and the cycle repeats. P is also
pushed back up the staircase if it sleeps for a predefined period. The result of this is that that interactive tasks
which tend to sleep more often should remain at the top of the staircase, while CPU-intensive processes should
continuously expend more time-slices but at a lower frequency. Additionally, each rank level in the staircase has
its quota, and once the quota is expired all processes on that rank are pushed down.

Most importantly, Kolivas’ work introduced the concept of ’fairness’. What this means is that each process
gets a comparable share of CPU time to run, proportional to the priority. If the process spends much of its
time waiting for 1/O events, then its spent CPU time value is low, meaning that it is automatically prioritized
for execution. When this happens, interactive tasks which spend most of their time waiting for user input get
execution time when they need it, which is how the term ’sleeper fairness’ derives. This design also prevents a
situation in which the process is 'starved’, i.e., never executed.

9 d) Tree-Based Queue

While the work of Con Kolivas has never been merged into the mainstream Linux kernel, it has introduced the
central concept of ’fairness’, which is the crucial feature of the design of most current OS schedulers. At the time
of writing, Linux kernel implements Completely Fair Scheduler (CFS), which was developed by Ingo Molndr and
introduced in kernel version 2.6.23. A central element in this algorithm is a self-balancing red-black tree structure
in which processes are indexed by spent processor time. CFS implements the Weighted Fair Queueing (WFQ)
algorithm, in which the available CPU time-slices are split between processes in proportion to their priority
weights (‘niceness’). WFQ is based on the idea of the ’ideal processor’, which means that each process should
have an equal share of CPU time adjusted for their priority and total CPU load (Jones, 2009;Pabla, 2009). Lozi
et al. (2016) presents an in-depth explanation of the algorithm’s workings, noting potential issues regarding the
CF'S approach. The main criticism revolves around the four problematic areas:

? Group Imbalance -The authors’ experiments have shown that not every core of their 64-core machine is
equally loaded: some cores run only one process or sometimes no processes at all, while the rest of the cores
were overloaded. It seems that the scheduler was not balancing the load because of the hierarchical design and
complexity of the load tracking metric. To limit the complexity of the scheduling algorithm, the CPU cores are
grouped into scheduling groups, i.e., nodes. When an idle core attempts to steal work from another node, it
compares only the average load of its node with that of its victim’s node. It will steal work only if the average
load of its victim’s group is higher than its own. The result is inefficiency since idle cores will be concealed by

161
162
163
164
165
166
167
168

170
171
172
173
174
175
176
177

179
180
181
182
183
184

185

186

187
188
189
190
191
192
193
194

196
197
198
199
200
201
202
203

204

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

12 A) MONOLITHIC SCHEDULER

their nodes’ average load. ? Scheduling Group Construction -This concern relates to the way scheduling groups
are constructed which is not adapted to modern NUMA machines. Applications in Linux can be pinned to a
subset of available cores. CFS might assign the same cores to multiple scheduling groups with those groups then
being ranked by distance. This could be nodes one hop apart, two hops apart and so on. This feature was
designed to increase the probability that processes would remain close to their original NUMA node. However,
this could result in the application being pinned to particular cores which are separated by more than one hop,
with work never being migrated outside the initial core. This might mean that an application uses only one
core. 7 Overload-on-Wakeup -This problem occurs when a process goes to sleep on a particular node and is then
awoken by a process on the same node. In such a scenario, only cores in this scheduling group will be considered
to run this process. The aim of this optimization is to improve cache utilization by running a process close to
the waker process, meaning that there is the possibility of them sharing the last-level memory cache. However,
the might be the scheduling of a process on a busy core when there are idle cores in alternative nodes, resulting
in the severe underutilization of the machine. ? Missing Scheduling Domains -This is the result of a line of
code omission while refactoring the Linux kernel source code. The number of scheduling domains is incorrectly
updated when a particular code is disabled and then enabled, and a loop exits early. As a result, processes can
be run only on the same scheduling group as their parent process.

Lozi et al. (7?7016) have provided a set of patches for the above issues and have presented experimental results
after applying fixes. They have also made available a set of tools on their site which could be used to detect those
glitches early in the Linux kernel lifecycle. Moreover, it has been argued that the sheer number of optimizations
and modifications implemented into CFS scheduler changed the initially simple scheduling policy into one which
was very complex and bug-prone. As of 12 th February 2019, there had been780 commits to CFS source code
(’fair.c’ file in github.com/torvalds/linux repository) since November 2011. As such, an alternative approach is
perhaps required, such as a scheduler architecture based on pluggable components. This work demonstrates the
immerse complexity of scheduling solutions catering to the complexities of modern hardware.

10 1IV.
11 Cluster Schedulers

There are many differences between distributed computing and traditional computing. For example, the physical
size of the system means that there may be thousands of machines involved, with thousands of users being served
and millions of API calls or other requests needing processing. While responsiveness and low overheads are often
the focus of process schedulers, the focus of cluster schedulers is to focus upon high throughput, fault-tolerance,
and scalability. Cluster schedulers usually work with queues of jobs spanning to hundreds of thousands, and
indeed sometimes even millions of jobs. They also seem to be more customized and tailored to the needs of the
organization which is using them.

Cluster schedulers often provide complex administration tools with a wide spectrum of configurable parameters
and flexible workload policies. All configurable parameters can generally be accessed via configuration files or the
GUI interface. However, it appears that site administrators seldom stray from a default configuration (Etsion
and Tsafrir, 2005). The most used scheduling algorithm is simply a First-Come-First-Serve (FCFS) strategy
with backfilling optimization. Another challenge, although one which is rarely tackled by commercial schedulers,
is minimizing total power consumption. Typically, idle machines consume around half of their peak power
(McCullough et al., 2011). Therefore, a Data Center can decrease the total power it consumes by concentrating
tasks on fewer machines and powering down the remaining nodes (Pinheiro et al., 2001;Lang and Patel, 2010).

The proposed grouping of Cluster schedulers loosely follows the taxonomy presented in Schwarzkopf et al.
(2013).

12 a) Monolithic Scheduler

The earliest Cluster schedulers had a centralized architecture in which a single scheduling policy allocated all
incoming jobs. The tasks would be picked from the head of the queue and scheduled on system nodes in a
serial manner by an allocation loop. Examples of centralized schedulers include Maui (Jackson et al., 2001)
and its successor Moab (Adaptive Computing, 2015), Univa Grid Engine (Gentzsch, 2001) Monolithic schedulers
implement a wide array of policies and algorithms, such as FCFS, FCFS with backfilling and gang scheduling,

of scoring functions such as node or pod affinity /anti-affinity, resources best-fit and worst-fit, required images
locality, etc. which can be additionally weighted and combined into node’s score values (Lewis and Oppenheimer,
2017). As an interesting note -one of the functions (Balanced Resource Allocation routine) implemented in
Kubernetes evaluates the balance of utilized resources (CPU and memory) on a scored node.

Monolithic schedulers often face a ’head-ofqueue’ blocking problem, in which shorter jobs are held when a
long job is waiting for a free node. To try and counter this problem, the schedulers often implement ’backfilling’
optimization, where shorter jobs are allowed to execute while the long job is waiting. Perhaps the most widespread
scheduler is Simple Linux Utility for Resource Management (SLURM) ??Yoo et al., 2003). SLURM uses a best-
fit algorithm which is based on either Hilbert curve scheduling or fat tree network topology; it can scale to
thousands of CPU cores (Pascual, 2009). At the time of writing, the fastest supercomputer in the world is

221
222
223
224
225
226
227
228
229
230
231
232

233

234
235
236
237
238

240
241

242

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

259

260
261
262
263
264
265
266
267
268
269
270
271
272

274
275
276
277
278
279

Sunway TaihuLight’s workload in managed by SLURM (TOP500 Project, 2017).

The Fuxi (Chinese: '??’) scheduler presents a unique strategy in that it matches newly-available resources
against the backlog of tasks rather than matching tasks to available resources on nodes. This technique allowed
Fuxi to achieve very high utilization of Cluster resources, namely 95% utilization of memory and 91% utilization
of CPU. Fuxi has been supporting Alibaba’s workload since 2009, and it scales to ca. 5k nodes (Zhang et al.,
2014).

While Cluster scheduler designs have generally moved towards solutions which are more parallel, as
demonstrated in the next subsection, centralized architecture is still the most common approach in High-
Performance Computing. Approximately half the world’s supercomputers use SLURM as their workload manager,
while Moab is currently deployed on about 40% of the top 10, top 25 and top 100 on the TOP500 list (TOP500
Project, 2017).

13 b) Concurrent Scheduling

Historically, monolithic schedulers were frequently built on the premise of supporting a single ’killer-application’
(Barroso et al., 2003). However, the workload of the data center has become more heterogeneous as systems
and a modern Cluster system runs hundreds of unique programs with distinctive resource requirements and
constraints. A single code base of centralized workload manager means that it is not easy to add a variety
of specialized scheduling policies. Furthermore, as workload size is increased, the time to reach a scheduling
decision is progressively limited. The result of this is a restriction in the selection of scheduling algorithms to
less sophisticated ones, which affects the quality of allocations. To tackle those challenges, the Cluster schedulers
developed designs which are more parallel.

14 i. Statically Partitioned

The solution to the numerous policies and the lack of parallelism in central schedulers was to split Cluster into
specialized partitions and manage them separately. Quincy (Isard et al., 2009), a scheduler managing workload
of Microsoft’s Dryad, follows this approach.

The development of an application for Dryad is modeled as a Directed Acyclic Graph (DAG) model in which
the developer defines an application dataflow model and supplies subroutines to be executed at specified graph
vertices. The scheduling policies and tuning parameters are specified by adjusting weights and capacities on a
graph data structure. The Quincy implements a Greedy strategy. In this approach, the scheduler assumes that
the currently scheduled job is the only job running on a cluster and so always selects the best node available.
Tasks are run by remote daemon services. From time to time these services update the job manager about the
execution status of the vertex, which in the case of failure might be reexecuted. Should any task fail more than
a configured number of times, the entire job is marked as failed (Isard et al., 2007).

Microsoft has built several frameworks on top of Dryad, such as COSMOS ??Helland and The main criticism
of the static partitioning is inflexibility, that is, the exclusive sets of machines in a Cluster are dedicated to
certain types of workload. That might result in a part of scheduler being relatively idle, while other nodes are
very active. This issue leads to the Cluster’s fragmentation and the suboptimal utilization of available nodes
since no machine sharing is allowed.

15 ii. Two-Level Hierarchy

The solution to the inflexibility of static partitioning was to introduce two-level architecture in which a Cluster
is partitioned dynamically by a central coordinator. The actual task allocations take place at the second level of
architecture in one of the specialized schedulers. The first two-level scheduler was Mesos (Hindman et al., 2011).
It was developed at the University of California (Berkeley) and is now hosted in the Apache Software Foundation.
Mesos was a foundation base for other Cluster systems such as Twitter’s Aurora (Aurora, 2018) and Marathon
(Mesosphere, 2018).

Mesos introduces a two-level scheduling mechanism in which a centralized Mesos Masteracts as a resource
manager. It dynamically allocates resources to different scheduler frameworks via Mesos Agents, e.g., Hadoop,
Spark and Kafka. Mesos Agents are deployed on cluster nodes and use Linux’s cgroups or Docker container
(depending upon the environment) for resource isolation. Resources are distributed to the frameworks in the
form of ’offers’ which contain currently unused resources. Scheduling frameworks have autonomy in deciding
which resources to accept and which tasks to run on them.

Mesos is most effective when tasks are relatively small, short-lived and have a high resource churn rate, i.e., they
relinquish resources more frequently. In the current version (1.4.1), only one scheduling framework can examine
a resource offer at any given time. This resource is effectively locked for the duration of a scheduling decision,
meaning that concurrency control is pessimistic. Campbell (2017) presents several practical considerations for
using Mesos in the production environment, in addition to advice on best practice. Two-level schedulers offered
a working solution to the lack of parallelization found in central schedulers and the low efficiency of statically
partitioned Clusters. Nevertheless, the mechanism used causes resources to remain locked at the same time a
specialized scheduled examines the resources offer. This means the benefits from parallelization are limited due to

280
281

282

283
284
285
286
287
288

290
201
292
293
294
295
296
297

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

326

327
328
329
330
331
332
333
334
335

336

337
338

18 C) BIG DATA SCHEDULERS

pessimistic locking. Furthermore, the schedulers do not coordinate with each other and must rely on a centralized
coordinator to make them offers. This further restricts their visibility of the resources in a Cluster.

16 1iii. Shared State

To address the limited parallelism of the twolevel scheduling design, the alternative approach taken by some
organizations was to redesign schedulers’ architecture into several schedulers, all working concurrently. The
schedulers work on a shared Cluster’s state information and manage their resources’ reservations using an
optimistic concurrency control method. A sample of such systems includes: Microsoft’s Apollo ??Boutin et
By default, Nomad runs one scheduling worker per CPU core. Scheduling workers pick job submissions from
the broker queue and then submit it to one of the three schedulers: a long-lived services scheduler, a short-lived
batch jobs scheduler and a system scheduler, which is used to run internal maintenance routines. Additionally,
Nomad can be extended to support custom schedulers. Schedulers process and generate an action plan, which
constitutes a set of operations to create new allocations, or to evict and update existing ones (HashiCorp, 2018).

Microsoft’s Apollo design seems to be primarily tuned for high tasks churn, and at peak times is capable of
handling more than 100k of scheduling requests per second on a ca. 20k nodes cluster. Apollo uses a set of
per-job schedulers called Job Managers (JM) wherein a single job entity contains a multiplicity of tasks which
are then scheduled and executed on computing nodes. Tasks are generally short-lived batch jobs (Boutin et al.,
2014). Apollo has a centralized Resource Monitor (RM), while each node runs its Process Node (PN) with a
queue of tasks. Each PN is responsible for local scheduling decisions and can independently reorder its job queue
to allow smaller tasks to be executed immediately, while larger tasks wait for resources to become available.
In addition, PN computes a wait-time matrix based on its queue which publicizes the future availability of the
node’s resources. Scheduling decisions are made optimistically by JMs based on the shared cluster’s resource
state, which is continuously retrieved and aggregated by RM.

Furthermore, Apollo categorizes tasks as ’regular’ and ’opportunistic’. Opportunistic tasks are used to fill
resource gaps left by regular tasks. The system also prevents overloading the cluster by limiting the total number
of regular tasks that can be run on a cluster. Apollo implements locality optimization by taking into consideration
the location of data for a given task. For example, the system will score nodes higher if the required files are
already on the local drive as opposed to machines needing to download data (Boutin et al., 2014).

Historically, Omega was a spinoff from Google’s Borg scheduler. Despite the various optimizations acquired
by Borg over the years, including internal parallelism and multi-threading, to address the issues of head-of-line
blocking and scalability problems, Google decided to create an Omega scheduler from the ground up (Schwarzkopf
et al., 2013). Omega introduced several innovations, such as storing the state of the cluster in a centralized Paxos-
based store that was accessed by multiple components simultaneously. Optimistic locking concurrency control
resolved the conflicts which emerged. This feature allowed Omega to run several schedulers at the same time and
improve the throughput. Many of Omega’s innovations have since been folded into Borg (Burns et al., 2016).

Omega’s authors highlight the disadvantages of the shared state and parallel reservation of resources, namely:
(i) the state of a node could have changed considerably when the allocation decision was being made, and it
is no longer possible for this node to accept a job; (ii) two or more allocations to the same node could have
conflicted and both scheduling decisions are nullified; and (iii) this strategy introduces significant difficulties
when gang-scheduling a batch of jobs as (i) or (ii) are happening (Schwarzkopf et al., 2013).

In this research, Google’s Borg received special attention, as one of the most advanced and published schedulers.
Moreover, while other schedulers are designed to support either a high churn of short-term jobs, e.g., Microsoft’s
Apollo (Boutin et al., 2014), Alibaba’s Fuxi (Zhang et al., 2014), or else a limited number of long-term services,
such as Twitter’s Aurora (Aurora, 2018), Google’s engineers have created a system which supports a mixed
workload. Borg has replaced two previous systems, Babysitter and the Global Work Queue, which were used
to manage longrunning services and batch jobs separately (Burns et al., 2016). Given the significance of Borg’s
design for this research, it is discussed separately in section 2.4.

17 iv. Decentralised Load Balancer

The research (Sliwko, 2018) proposes a new type of Cluster’s workload orchestration model in which the actual
scheduling logic is processed on nodes themselves. This is a significant step towards completely decentralized
Cluster orchestration. The cluster state is retrieved from a subnetwork of BAs, although this system does not
rely on the accuracy of this information and uses it exclusively to retrieve an initial set of candidate nodes where
a task could potentially run. The actual task to machine matching is performed between the nodes themselves.
As such, this design avoids the pitfalls of the concurrent resource locking, which includes conflicting scheduling
decisions and the non-current state of nodes’ information. Moreover, the decentralization of the scheduling logic
also lifts complexity restrictions on scheduling logic, meaning that a wider range of scheduling algorithms can be
used, such as metaheuristic methods.

18 c¢) Big Data Schedulers

In taxonomy presented in this paper, Big Data schedulers are visualized as a separate branch from Cluster
Schedulers. Although Big Data Schedulers seem to belong to one of the Cluster schedulers designs discussed

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

previously, this separation signifies their overspecialization, and that only a very restricted set of operations
is supported (Isard et al., 2007;Zaharia et al., 2010). The scheduling mechanisms are often intertwined with
the programming language features, with Big Data frameworks often providing their own API (Zaharia et al.,
2009;White, 2012) and indeed sometimes even their own custom programming language, as seen with Skywriting
in CIEL (Murray et al., 2011).

Generally speaking, Big Data frameworks provide very fine-grained control over how data is accessed and
processed over the cluster, such as Spark RDD objects persist operations or partitioners (Zaharia et al., 2012).
Such a deep integration of scheduling logic with applications is a distinctive feature of Big Data technology. At
the time of writing, Big Data is also the most active distributed computing research area, with new technologies,
frameworks and algorithms being released regularly.

Big Data is the term which describes the storage and processing of any data sets so large and complex that
they become unrealistic to process using traditional data processing applications based on relational database
management systems. It depends on the individual organization as to how much data is described as Big Data.
The following examples provide an idea of scale: produces about fifteen petabytes of data per year (White, 2012).
As a result of a massive size of the stored and processed data, the central element of a Big Data framework is
its distributed file system, such as Hadoop Distributed File System (Gog, 2012), Google File System (Ghemawat
et al., 2003) and its successor Colossus (Corbett et al., 2013). The nodes in a Big Data cluster fulfill the dual
purposes of storing the distributed file system parts, usually in a few replicas for fault-tolerance means, and also
providing a parallel execution environment for system tasks. The speed difference between locally-accessed and
remotely stored input data is very substantial, meaning that Big Data schedulers are very focused on providing
’data locality’, which means running a given task on a node where input data are stored or are in the closest
proximity to it. The origins of the Big Data technology are in the 'MapReduce’ programming model, which
implements the concept of Google’s inverted search index. Developed in 2003 (Dean and Ghemawat, 2010) and
later patented in 2010 (U.S. Patent 7,650,331), the Big Data design has evolved significantly in the years since.
It is presented in the subsections below.

19 i. Mapreduce

MapReduce is the most widespread principle which has been adopted for processing large sets of data in parallel.
Originally, the name MapReduce only referred to Google’s proprietary technology, but the term is now broadly
used to describe a wide range of software, such as Hadoop, CouchDB, Infinispan, and MongoDB. The most
important features of MapReduce are its scalability and fine-grained fault-tolerance. The 'map’ and ’reduce’
operations present in Lisp and other functional programming languages inspired the original thinking behind
MapReduce (Dean and Ghemawat, 2010):

? Map’ is an operation used in the first step of computation and is applied to all available data that performs
the filtering and transforming of all keyvalue pairs from the input data set. The map’ operation is executed
in parallel on multiple machines on a distributed file system. Each 'map’ task can be restarted individually,
and a failure in the middle of a multi-hour execution does not require restarting the whole job from scratch.
? The 'Reduce’ operation is executed after the 'map’ operations complete. It performs finalizing operations,
such as counting the number of rows matching specified conditions and yielding fields frequencies. The "Reduce’
operation is fed using a stream iterator, thereby allowing the framework to process the list of items one at the
time, thus ensuring that the machine memory is not overloaded (Dean and Ghemawat, 2010;Gog, 2012).

Following the development of the MapReduce concept, Yahoo! engineers began the Open Source project
Hadoop. In February 2008, Yahoo! announced that its production search index was being generated by a 10k-
core Hadoop cluster (White, 2012). Subsequently, many other major Internet companies, including Facebook,
LinkedIn, Amazon and Last.fm, joined the project and deployed it within their architectures. Hadoop is currently
hosted in the Apache Software Foundation as an Open Source project.

As in Google’s original MapReduce, Hadoop’s users submit jobs which consist of 'map’ and 'reduce’ operation
implementations. Hadoop splits each job into multiple 'map’ and 'reduce’ tasks. These tasks subsequently process
each block of input data, typically 64MB or 128MB (Gog, 2012). Hadoop’s scheduler allocates a 'map’ task to
the closest possible node to the input data required -so-called ’data locality’ optimization. In so doing, we can
see the following allocation order: the same node, the same rack and finally a remote rack (Zaharia et al., 2009).
To further improve performance, the Hadoop framework uses ’backup tasks’ in which a speculative copy of a
task is run on a separate machine. The purpose of this is to finish the computation more quickly. If the first
node is available but behaving poorly, it is known as a ’straggler’, with the result that the job is as slow as
the misbehaving task. This behavior can occur for many reasons, such as faulty hardware or misconfiguration.
Google estimated that using ’backup tasks’ could improve job response times by 44% (Dean and Ghemawat,
2010).

At the time of writing, Hadoop comes with a selection of schedulers, as outlined below: ? 'FIFO Scheduler’
is a default scheduling system in which the user jobs are scheduled using a queue with five priority levels.
Typically, jobs use the whole cluster, so they must wait their turn. When another job scheduler chooses the
next job to run, it selects jobs with the highest priority, resulting in low-priority jobs being endlessly delayed
(Zaharia et al., 2009;White, 2012). 7 'Fair Scheduler’ is part of the cluster management technology Yet Another
Resource Negotiator (YARN) (Vavilapalli et al., 2013), which replaced the original Hadoop engine in 2012. In

401
402
403
404
405
406
407
408

410
411
412
413
414

415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

450

451
452
453
454
455
456
457
458

22 III. DISTRIBUTED STREAM PROCESSING

Fair Scheduler, each user has their own pool of jobs, and the system focuses on giving each user a proportional
share of cluster resources over time. The scheduler uses a version of 'max-min fairness’ (Bonald et al., 2006)
with minimum capacity guarantees that are specified as the number of 'map’ and 'reduce’ task slots to allocate
tasks across users’ job pools. When one pool is idle, and the minimum share of the tasks slots is not being used,
other pools can use its available task slots. ? ’Capacity Scheduler’ is the second scheduler introduced within
the YARN framework. Essentially, this scheduled is a number of separate MapReduce engines, which contains
FCFS scheduling for each user or organization. Those queues can be hierarchical, with a queue having children
queues, and with each queue being allocated task slots capacity which can be divided into 'map’ and ’'reduce’
tasks. Task slots allocation between queues is similar to the sharing mechanism between pools found in Fair
Scheduler (White, 2012).

The main criticism of MapReduce is the acyclic dataflow programming model. The stateless 'map’ task must
be followed by a stateless 'reduce’ task, which is then executed by the MapReduce engine. This model makes it
challenging to repeatedly access the same dataset, a common action during the execution of iterative algorithms
(Zaharia et al., 2009).

20 ii. Iterative Computations

Following the success of Apache Hadoop, several alternative designs were created to address Hadoop’s suboptimal
performance when running iterative MapReduce jobs. Examples of such systems include HaLoop (Bu et al., 2010)
and Spark (Zaharia et al., 2010).

HaLoop has been developed on top of Hadoop, with various caching mechanisms and optimizations added.
This makes the framework loop-aware, for example by adding programming support for iterative application and
storing the output data on the local disk. Additionally, HaL.oop’s scheduler keeps a record of every data block
processed by each task on physical machines. It considers inter-iteration locality when scheduling tasks which
follow. This feature helps to minimize costly remote data retrieval, meaning that tasks can use data cached on
a local machine (Bu et al., 2010;Gog, 2012).

Similar to Hal.oop, Spark’s authors noted a suboptimal performance of iterative MapReduce jobs in the Hadoop
framework. In certain kinds of application, such as iterative Machine Learning algorithms and interactive data
analysis tools, the same data are repeatedly accessed in multiple steps and then discarded; therefore, it does not
make sense to send it back and forward to a central node. In such scenarios, Spark will outperform Hadoop
(Zaharia et al., 2012).

Spark is built on top of HDSF, but it does not follow the two-stage model of Hadoop. Instead, it introduces
resilient distributed datasets (RDD) and parallel operations on these datasets (Gog, 2012):

? ’reduce’ -combines dataset elements using a provided function; 7 ’collect’ -sends all the elements of the
dataset to the user program; ? ’foreach’ -applies a provided function onto every element of a dataset.

21 Spark provides two types of shared variables:

? ’accumulators’ -variables onto each worker can apply associative operations, meaning that they are efficiently
supported in parallel;

? ’broadcast variables’ -sent once to every node, with nodes then keeping a read-only copy of those variables
(Zecevic, 2016).

The Spark job scheduler implementation is conceptually similar to that of Dryad’s Quincy. However, it
considers which partitions of RDD are available in the memory. The framework then re-computes missing
partitions, and tasks are sent to the closest possible node to the input data required (Zaharia et al., 2012).

Another significant feature implemented in Spark is the concept of 'delayed scheduling’ In situations when
a head-of-line job that should be scheduled next cannot launch a local task, Spark’s scheduler delays the task
execution and lets other jobs start their tasks instead. However, if the job has been skipped long enough, typically
a period of up to ten seconds, it launches a non-local task. Since a typical Spark workload consists of short tasks,
meaning that it has a high task slots churn, tasks have a higher chance of being executed locally. This feature
helps to achieve ’data locality’ which is nearly optimal, and which has a very small effect on fairness; in addition,
the cluster throughput can be almost doubled, as shown in an analysis performed on Facebook’s workload traces
(Zaharia et al., 2010).

22 iii. Distributed Stream Processing

The core concept behind distributed stream processing engines is the processing of incoming data items in real time
by modelling a data flow in which there are several stages which can be processed in parallel. Other techniques
include splitting the data stream into multiple sub-streams and redirecting them into a set of networked nodes
(Liu and Buyya, 2017).

Inspired by Microsoft’s research into DAG models (Isard et al., 2009), Apache Storm (Storm) is a distributed
stream processing engine used by Twitter following extensive development (Toshniwal et al., 2014). Its initial
release was 17 September 2011, and by September 2014 it had become open-source and an Apache Top-Level
Project.

459
460
461
462
463
464
465
466

468
469
470
a7
472
473
474
475

476

477
478
479
480
481
482
483
484
485

487

488
489
490
491

492

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

The defined topology acts as a distributed data transformation pipeline. The programs in Storm are designed
as a topology in the shape of DAG, consisting of ’spouts’ and ’bolts’: 7 ’Spouts’ read the data from external
sources and emit them into the topology as a stream of ’tuples’. This structure is accompanied by a schema which
defines the names of the tuples’ fields. Tuples can contain primitive values such as integers, longs, shorts, bytes,
strings, doubles, floats, booleans, and byte arrays. Additionally, custom serializers can be defined to interpret
this data. 7 The processing stages of a stream are defined in ’bolts’ which can perform data manipulation,
filtering, aggregations, joins, and so on. Bolts can also constitute more complex transforming structures that
require multiple steps (thus, multiple bolts). The bolts can communicate with external applications such as
databases and Kafka queues (Toshniwal et al., 2014).

In comparison to MapReduce and iterative algorithms introduced in the subsections above, Storm topologies,
once created, run indefinitely until killed. Given this, the inefficient scattering of application’s tasks among
Cluster nodes has a lasting impact on performance. Storm’s default scheduler implements a Round Robin
strategy. For resource allocation purposes, Storm assumes that every worker is homogenous. This design results
in frequent resource over-allocation and inefficient use of inter-system communications ??Kulkarni et al., 2018).
To try and solve this issue, more complex solutions are proposed such as D-Storm (Liu and Buyya, 2017). D-
Storm’s scheduling strategy is based on a metaheuristic algorithm Greedy, which also monitors the volume of the
incoming workload and is resource-aware.

23 Typical examples of Storm’s usage include:

? Processing a stream of new data and updating databases in real time, for example in trading systems wherein
data accuracy is crucial; 7 Continuously querying and forwarding the results to clients in real time, for example
streaming trending topics on Twitter into browsers, and ? A parallelization of a computing-intensive query on
the fly, i.e., a distributed Remote Procedure Call (RPC) wherein a large number of sets are probed (Marz, 2011).

Storm has gained widespread popularity and is used by companies such as Groupon, Yahoo!, Spotify, Verisign,
Alibaba, Baidu, Yelp, and many more. A comprehensive list of users is available at the storm.apache.org website.

At the time of writing, Storm is being replaced at Twitter by newer distributed stream processing engine
-Heron ??Kulkarni et al., 2018) which continues the DAG model approach, but focuses on various architectural
improvements such as reduced overhead, testability, and easier access to debug data.

V.

24 Google’s Borg

To support its operations, Google utilizes a high number of data centers around the world, which at the time of
writing number sixteen. Borg admits, schedules, starts, restarts and monitors the full range of applications run
by Google. Borg users are Google developers and system administrators, and users submit their workload in the
form of jobs. A job may consist of one or more tasks that all run the same program (Burns et al., 2016).

25 a) Design Concepts

The central module of the Borg architecture is BorgMaster, which maintains an in-memory copy of most of the
state of the cell. This state is also saved in a distributed Paxos-based store (Lamport, 1998). While BorgMaster
is logically a single process, it is replicated five times to improve fault-tolerance. The main design priority of
Borg was resilience rather than performance. Google services are seen as very durable and reliable, the result of
multi-tier architecture, where no component is a single point of failure exists. Current allocations of tasks are
saved to Paxos-based storage, and the system can recover even if all five BorgMaster instances fail. Each cell in
the Google Cluster in managed by a single BorgMaster controller. Each machine in a cell runs BorglLet, an agent
process responsible for starting and stopping tasks and also restarting them should they fail. BorgLet manages
local resources by adjusting local OS kernel settings and reporting the state of its node to the BorgMaster and
other monitoring systems.

The Borg system offers extensive options to control and shape its workload, including priority bands for tasks
(i.e., monitoring, production, batch, and best effort), resources quota and admission control. Higher priority
tasks can pre-empt locally-running tasks to obtain the resources which are required. The exception is made for
production tasks which cannot be preempted. Resource quotas are part of admission control and are expressed
as a resource vector at a given priority, for some time (usually months). Jobs with insufficient quotas are rejected
immediately upon submission. Production jobs are limited to actual resources available to BorgMaster in a given
cell. The Borg system also exposes a web-based interface called Sigma, which displays the state of all users’ jobs,
shows details of their execution history and, if the job has not been scheduled, also provides a 'why pending?’
annotation where there is guidance about how to modify the job’s resource requests to better fit the cell (Verma
et al., 2015).

The dynamic nature of the Borg system means that tasks might be started, stopped and then rescheduled on
an alternative node. Google engineers have created the concept of a static Borg Name Service (BNS) which is used
to identify a task run within a cell and to retrieve its endpoint address. The BNS address is predominantly used
by load balancers to transparently redirect RPC calls to the endpoint of a given task. Meanwhile, the Borg’s
resource reclamation mechanisms help to reclaim under-utilized resources from cell nodes for non-production

518
519
520
521

522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

545

546
547
548
549
550
551
552

553

554

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

29 SUMMARY AND CONCLUSIONS

tasks. Although in theory users may request high resource quotas for their tasks, in practice they are rarely
fully utilized continuously. Instead, they have peak times of the day or are used in this way when coping with a
denial-ofservice attack. BorgMaster has routines that estimate resource usage levels for a task and reclaim the
rest for low-priority jobs from the batch or the best effort bands (Verma et al., 2015).

26 b) Jobs Schedulers

Early versions of Borg had a simple, synchronous loop that accepted jobs requests and evaluated on which node to
execute them. The current design of Borg deploys several schedulers working in parallel -the scheduler instances
use a shared state of the available resources, but the resource offers are not locked during scheduling decisions
(optimistic concurrency control). Where there is a conflicting situation where two or more schedulers allocate
jobs to the same resources, all the jobs involved are returned to the jobs queue (Schwarzkopf et al., 2013).

When allocating a task, Borg’s scheduler scores a set of available nodes and selects the most feasible machine
for this task. Initially, Borg implemented a variation of the Enhanced Parallel Virtual Machine algorithm (E-
PVM) (Amir et al., 2000) for calculating the task allocation score. Although this resulted in the fair distribution
of tasks across nodes, it also resulted in increased fragmentation and later difficulties when fitting large jobs
which required the most of the node’s resources or even the whole node itself. An opposite to the E-PVM
approach is a best-fit strategy, which, in turn, packs tasks very tightly. The best-fit approach may result in
the excessive pre-empting of other tasks running on the same node, especially when the user miscalculates the
resources required, or when the application has frequent load spikes. The current model used by Borg’s scheduler
is a hybrid approach that tries to reduce resource usage gaps (Verma et al., 2015).

Borg also takes advantage of resources preallocation using ’allocs’ (short for allocation). Allocs can be used to
pre-allocate resources for future tasks to retain resources between restarting a task or to gather class-equivalent
or related tasks, such as web applications and associated log-saver tasks, onto the same machine. If an alloc is
moved to another machine, its tasks are also rescheduled.

One point to note is that, similar to MetaCentrum users (Klusa?ek and Rudova, 2010), Google’s users tend to
overestimate the memory resources needed to complete their jobs, to prevent jobs being killed due to exceeding
the allocated memory. In over 90% of cases, users overestimate how many resources are required, which in certain
cases can waste up to 98% of the requested resource (Moreno et al., 2013;Ray et al., 2017).

27 c¢) Optimisations

Over the years, Borg design has acquired several optimizations, namely: ? Score caching -checking the node’s
feasibility and scoring it is a computation-expensive process. Therefore, scores for nodes are cached and small
differences in the required resources are ignored; While the Borg architecture remains heavily centralized, this
approach does seem to be successful. Although this eliminates head-of-line job blocking problems and offers
better scalability, it also generates additional overheads for solving resource collisions. Nevertheless, the benefits
from better scalability often outweigh the incurred additional computation costs which arise when scalability
targets are achieved (Schwarzkopf et al., 2013).

28 VL

29 Summary and Conclusions

This paper has presented a taxonomy of available schedulers, ranging from early implementations to modern
versions. Aside from optimizing throughput, different class schedulers have evolved to solve different problems.
For example, while OS schedulers maximize responsiveness, Cluster schedulers focus on scalability, provide
support a wide range of unique (often legacy) applications, and maintain fairness. Big Data schedulers are
specialized to solve issues accompanying operations on large datasets, and their scheduling mechanisms are often
extensively intertwined with programming language features.

Table 1 presents a comparison of the presented schedulers with their main features and deployed scheduling
algorithms: ’map’ task processes roughly the same amount of data (input data block size is constant), while
reduce’ task requirements shall be directly correlated to the size of returned data.

OS schedulers have evolved in such a way that their focus is on maximizing responsiveness while still providing
good performance. Interactive processes which sleep more often should be allocated time-slices more frequently,
while background processes should be allocated longer, but less frequent execution times. CPU switches between
processes extremely rapidly which is why modern OS scheduling algorithms were designed with very low overhead
(Wong et al., 2008;Pinel et al., 2011). Most end-users for this class of schedulers are non-technical. As such,
those schedulers usually have a minimum set of configuration parameters (Groves et al., 2009).

OS scheduling was previously deemed to be a solved problem (Torvalds, 2001), but the introduction and
popularization of multi-core processors by Intel (Intel Core?2 Duo) and AMD (AMD Phenom? II) in the
early 2000s enabled applications to execute in parallel. This meant that scheduling algorithms needed to be
reimplemented tobe efficient once more. Modern OS schedulers also consider NUMA properties when deciding
which CPU core the task will be allocated to. Furthermore, the most recent research explores the potential
application of dynamic voltage and frequency scaling technology in scheduling to minimize power consumption by

10

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

597

CPU cores (Sarood et al., 2012;Padoin et al., 2014). Given that it is hard to build a good universal solution which
caters to the complexities of modern hardware, it is reasonable to develop the modular scheduler architecture
suggested in Lozi et al. (2016).

Cluster schedulers have a difficult mission in ensuring ’fairness’ In this context, namely a very dynamic
environment consisting of variety of applications, fairness means sharing cluster resources proportionally while
simultaneously ensuring a stable throughput. Cluster systems tend to allow administrators to implement complex
resource sharing policies with multiple input parameters (Adaptive Computing, 2002). Cluster systems implement
extensive fault-tolerance strategies and sometimes also focus on minimizing power consumption (Lang and Patel,
2010). Surprisingly, it appears that the most popular scheduling approach is a simple FCFS strategy with variants
of backfilling. However, due to the rapidly increasing cluster size, the current research focuses on parallelization,
as seen with systems such as Google’s Borg and Microsoft’s Apollo.

Big Data systems are still rapidly developing. Nodes in Big Data systems fulfil the dual purposes of storing
distributed file system parts and providing a parallel execution environment for system tasks. Big Data schedulers
inherit their general design from the cluster system’s jobs schedulers. However, they are usually much more
specialized for the framework and are also intertwined with the programming language features. Big Data
schedulers are often focused on ’locality optimization’ or running a given task on a node where input data is
stored or in the closest proximity to it.

The design of modern scheduling strategies and algorithms is a challenging and evolving field of study.
While early implementations often used simplistic approaches, such as a CS, modern solutions use complex
scheduling schemas. Moreover, the literature frequently mentions the need for a modular scheduler architecture
(Vavilapalli et al., 2013;Lozi et al., 2016) which could customize scheduling strategies to hardware configuration
or applications.

Figure 1: Figure 1 :

Figure 2:

Figure 3:

1@ 2019 Global JournalsA Taxonomy of Schedulers -Operating Systems, Clusters and Big Data Frameworks

11

29 SUMMARY AND CONCLUSIONS

1

Figure 4:

? Relaxed randomization -instead of evaluating a
task against all available nodes, Borg examines
machines in random order until it finds enough
feasible nodes. It then selects the highest scoring

node in this set.

Schedulerlass

OS Schedulers

Cluster Schedulers

Big Data Schedulers

Figure 5: 7

Requirpmeehitisilthedbanfigmration
knownexeduflizmance

No

No

Yes 1 Yes

Yes 2 Yes

Simple
(compile-time
and runtime
parameters)
Complex
(configuratio
n files and
GUI)
Complex
(configuratio
n files and
GUI)

Figure 6: Table 1 :

12

Common algo-
rithms

CS, CQ, MLFQ,
O(n), (1),
Staircase, WFQ
FCFS (backfilling
and gang-
scheduling), SJF,
Best-Fit, Scoring

F Best-Fit, FCFS

i (locality and
gang-scheduling),
Greedy, Fair
Shdl

Schedulimgerhead
deci-

sion

very low -low

low -high

low -medium

B I R IS I L B e B B

Design f

single m

distribut

specializ

598
599

600

601
602

603
604
605
606

607
608

609
610

611
612

613
614

615
616

617
618
619

620
521
622
623

624
625

626
627
628

629
630
631

632
633

534
635
636

637
638
639

640
641
642

643
644

645
646

647
648
649
650

651
652
653

[Gabriel et al.] , Gabriel , Graham E Edgar , George Fagg , Bosilca , Jack J Tharaangskun , Dongarra , M
Jeffrey .

[Springer ()] , Springer . 2003. Berlin, Heidelberg.

[Burns et al. ()] , Brendan Burns , Brian Grant , David Oppenheimer , Eric Brewer , John Wilkes , ; Borg ,
Omega , Kubernetes . Communications of the ACM 2016. 59 (5) p. .

[Blagodurov et al. ()] ‘A case for NUMA-aware contention management on multicore systems’. Sergey Blago-
durov , Sergey Zhuravlev , Alexandra Fedorova , Ali Kamali . Proceedings of the 19th international
conference on Parallel architectures and compilation techniques, (the 19th international conference on Parallel
architectures and compilation techniques) 2010. ACM. p. .

[Kay and Lauder ()] ‘A fair share scheduler’. Judy Kay , Piers Lauder . Communications of the ACM 1988. 31
(1) p. .

[Bonald et al. ()] ‘A queueing analysis of max-min fairness, proportional fairness and balanced fairness’. Thomas
Bonald , Laurent Massoulié , Alexandre Proutiere , Jormavirtamo . Queueing systems 2006. 53 (1) p. .

[Pinel et al. ()] ‘A review on task performance prediction in multi-core based systems’. Pinel , Johnatan E Frédéric
, Pascal Pecero , Samee U Bouvry , Khan . Computer and Information Technology (CIT), 2011.

[Sliwko ()] ‘A Scalable Service Allocation Negotiation For Cloud Computing’ Leszek Sliwko . Journal of
Theoretical and Applied Information Technology 2018. 96 p. .

[Etsion and Tsafrir ()] A short survey of commercial cluster batch schedulers, Yoav Etsion , Dan Tsafrir . 2005.
44221 p. . School of Computer Science and Engineering, the Hebrew University of Jerusalem

[Pop et al. ()] ‘A simulation model for grid scheduling analysis and optimization’. Pop , Florin , Gavril
Cipriandobre , Valentin Godza , Cristea . ELEC 2006. International Symposium on, 2006. 2006. IEEE.
p. .

[Marz (2011)] A Storm is coming: more details and plans for release,
Nathan Marz . https://blog.twitter.com/engineering/en us/a/2011/
a-storm-is-coming-more-details-and-plans-for-release.html August 4, 2011. July 16.
2018. Twitter, Inc. (Engineering Blog)

[Tyagi and Gupta ()] ‘A Survey on Scheduling Algorithms for Parallel and Distributed Systems’. Rinki Tyagi ,
Santosh Kumar Gupta . Silicon Photonics & High Performance Computing, (Singapore) 2018. Springer. p. .

[Krauter et al. ()] ‘A taxonomy and survey of grid resource management systems for distributed computing.
Klaus Krauter , Rajkumar Buyya , Muthucumaru Maheswaran . Software: Practice and Experience 2002. 32
2) p. .

[Rodriguez and Buyya ()] ‘A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud

computing environments’. Maria Alejandra Rodriguez , Rajkumar Buyya . Concurrency and Computation:
Practice and Ezperience 2017. 29 (8) .

[Yu and Buyya ()] ‘A taxonomy of scientific workflow systems for grid computing’. Jia Yu , Rajkumar Buyya .
ACM Sigmod Record 2005. 34 (3) p. .

[Adaptive Computing Enterprises, Inc (2015)] Adaptive Computing FEnterprises, Inc, http://docs.
adaptivecomputing.com/torque/5-1-2/torqueAdminGuide-5.1.2.pdf November 2015.
November 15. 2016. (Administration Guide 5.1.2)

[Lewis and Oppenheimer (2017)] ‘Advanced Scheduling in Kubernetes’. Ian Lewis , David Oppenheimer
. https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes Kubernetes.io.
Google, Inc March 31, 2017. January 4. 2018.

[Moreno et al. ()] ‘An approach for characterizing workloads in google cloud to derive realistic resource utilization
models’. Ismael Moreno , Peter Solis , Paul Garraghan , Jie Townend , Xu . IEEE 7th International Symposium
on, 2013. 2013. IEEE. p. .

[Corbaté et al. ()] ‘An experimental time-sharing system’ Fernando J Corbaté , Marjorie Merwin-Daggett |,
Robert C Daley . Proceedings of the, (the) May 1-3, 1962. 1962. ACM. p. . (spring joint computer conference)

[Amir et al. ()] An opportunity cost approach for job assignment in a scalable computing cluster, Yair Amir ,
Baruch Awerbuch , Amnon Barak , R Sean Borgstrom , Arie Keren . 2000. 11 p. .

[Vavilapalli et al. ()] ‘Apache hadoop yarn: Yet another resource negotiator’. Vinod Vavilapalli , Arun C Kumar
, Chris Murthy , Sharad Douglas , Mahadev Agarwal , Robert Konar , Thomas Evans , Graves . Proceedings
of the 4th annual Symposium on Cloud Computing, (the 4th annual Symposium on Cloud Computing) 2013.
ACM. p. 5.

[Boutin et al. ()] ‘Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing’. Eric Boutin , Wei
Jaliyaekanayake , Bing Lin , Jingren Shi , Zhengping Zhou , Ming Qian , Lidong Wu , Zhou . OSDI, 2014.
14 p..

13

https://blog.twitter.com/engineering/en_us/a/2011/a-storm-is-coming-more-details-and-plans-for-release.html
https://blog.twitter.com/engineering/en_us/a/2011/a-storm-is-coming-more-details-and-plans-for-release.html
https://blog.twitter.com/engineering/en_us/a/2011/a-storm-is-coming-more-details-and-plans-for-release.html
http://docs.adaptivecomputing.com/torque/5-1-2/torqueAdminGuide-5.1.2.pdf
http://docs.adaptivecomputing.com/torque/5-1-2/torqueAdminGuide-5.1.2.pdf
http://docs.adaptivecomputing.com/torque/5-1-2/torqueAdminGuide-5.1.2.pdf
https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes

654
655
656

657
658

659
660

661
662
663
664

665
666

667
668

669
670

671
672

673
674

675
676
677

678
679

680
681

682
683

684
685
686

687
688
689

690
691

692
693

694
695

696
697
698

699
700

701
702
703

704
705
706

707
708

709

29 SUMMARY AND CONCLUSIONS

[Becchetti et al. ()] ‘Average-case and smoothed competitive analysis of the multilevel feedback algorithm’. L
Becchetti , Stefano Leonardi , Alberto Marchetti-Spaccamela , Guido Schéfer , Tjarkvredeveld . Mathematics
of Operations Research 2006. 31 (1) p. .

[Groves et al. (2009)] BFS vs. CFS -Scheduler Comparison, Taylor Groves , Jeff Knockel , Eric Schulte . 11
December 2009. The University of New Mexico

[Naik ()] ‘Building a virtual system of systems using Docker Swarm in multiple clouds’ Nitin Naik . Systems
Engineering (ISSE), 2016 IEEE International Symposium on, 2016. IEEE. p. .

[Murray et al. ()] ‘CIEL: a universal execution engine for distributed data-flow computing’. Derek G Murray
, Malte Schwarzkopf , Christopher Smowton , Steven Smith , Anil Madhavapeddy , Steven Hand . Proc.
8th ACM/USENIX Symposium on Networked Systems Design and Implementation, (8th ACM/USENIX
Symposium on Networked Systems Design and Implementation) 2011. p. .

[Pabla and Singh ()] ‘Completely fair scheduler’. Chandandeep Pabla , Singh . Linuz Journal 2009. 2009. (184)
p. 4.

[Litzkow et al. ()] ‘Condor-a hunter of idle workstations’ Michael J Litzkow , Matt W Mironlivny , Mutka . 8th
International Conference on, 1988. 1988. IEEE. p. . (Distributed Computing Systems)

[Sarood et al. ()] ‘Cool” Load Balancing for High Performance Computing Data Centers’. Osman Sarood , Phil
Miller , Ehsan Totoni , Laxmikant V Kale . IEEE Transactions on Computers 2012. 61 (12) p. .

[Jackson et al. ()] ‘Core algorithms of the Maui scheduler’ David Jackson , Quinn Snell , Mark Clement .
Workshop on Job Scheduling Strategies for Parallel Processing, (Berlin, Heidelberg) 2001. Springer. p. .

[Helland and Ed (2011)] Cosmos: Big Data and Big Challenges, Pat Helland , Harris Ed . October 26, 2011.
Stanford University

[Liu and Buyya ()] ‘D-Storm: Dynamic Resource-Efficient Scheduling of Stream Processing Applications’
Xunyun Liu , Rajkumar Buyya . 2017 IEEE 23rd International Conference on, 2017. IEEE. p. . (Parallel and
Distributed Systems (ICPADS)

[Thain and Tannenbaum ()] Distributed computing in practice: the Condor experience, Douglas Thain , Todd
Tannenbaum , Mironlivny . 2005. 17 p. . (Concurrency and computation: practice and experience)

[Campbell (2017)] ‘Distributed Scheduler Hell’. Matthew Campbell . DigitalOcean. SREcon17 Asia/Australia,
May 24, 2017.

[Gog ()] Dron: An Integration Job Scheduler, I Gog
Imperial College London . 2012.

[Isard et al. ()] ‘Dryad: distributed data-parallel programs from sequential building blocks’. Michael Isard , Mihai
Budiu , Yuan Yu , Andrew Birrell , Dennis Fetterly . ACM SIGOPS operating systems review, 2007. ACM.
41 p. .

[Pascual et al. ()] ‘Effects of topology-aware allocation policies on scheduling performance’. Jose Pascual , Javier
Navaridas , Jose Miguel-Alonso . Job Scheduling Strategies for Parallel Processing, (Berlin/Heidelberg) 2009.
Springer. p. .

[Shreedhar and Varghese ()] ‘Efficient fair queueing using deficit round robin’. Madhavapeddi Shreedhar , George
Varghese . ACM SIGCOMM Computer Communication Review, 1995. ACM. 25 p. .

[Zakarya and Gillam ()] ‘Energy efficient computing, clusters, grids and clouds: A taxonomy and survey’
Muhammad Zakarya , Lee Gillam . Sustainable Computing: Informatics and Systems 2017. 14 p. .

[Lang et al. ()] ‘Energy management for mapreduce clusters’. Willis Lang , M Jignesh , Patel . Proceedings of
the VLDB Endowment, (the VLDB Endowment) 2010. 3 p. .

[Mccullough et al. ()] ‘Evaluating the effectiveness of model-based power characterization’ John C Mccullough ,
Yuvraj Agarwal , Jaideep Chandrashekar , Sathyanarayan Kuppuswamy , Alex C Snoeren , Rajesh K Gupta
. USENIX Annual Technical Conf, 2011. 20.

[Hamscher et al. ()] Fuvaluation of jobscheduling strategies for grid computing, Hamscher , Uwe Volker , Achim
Schwiegelshohn , Raminyahyapour Streit . GRID 2000. 2000. p. .
[Wong et al. ()] ‘Fairness and interactive performance of O(1) and cfslinux kernel schedulers’. C S Wong , I K T

Tan , R D Kumari , J W Lam , W Fun . Information Technology, 2008. International Symposium on, 2008.
IEEE. 4 p. .

[Zhang et al. ()] ‘Fuxi: a fault-tolerant resource management and job scheduling system at internet scale’. Zhuo
Zhang , Chao Li, Yangyu Tao , Renyu Yang , Hong Tang , Jie Xu . Proceedings of the VLDB Endowment,
(the VLDB Endowment) 2014. 7 p. .

[Foster and Kesselman ()] ‘Globus: A metacomputing infrastructure toolkit’ Ian Foster , Carl Kesselman . The
International Journal of Supercomputer Applications and High Performance Computing 1997. 11 (2) p. .

[White ()] Hadoop: The definitive guide, Tom White . 2012. Reilly Media, Inc.

14

710
711

712

713
714

715
716
717

718
719
720

721
722
723
724

725
726
727

728
729
730

731
732

734
735
736
737
738
739

740
741
742

743
744

748
746
747

748
749

751
752

753
754
755

756
757
758

759
760

761
762

763
764
765

[Bu et al. ()] ‘HaLoop: Efficient iterative data processing on large clusters’ Yingyi Bu , Bill Howe , Magdalena
Balazinska , Michael D Ernst . Proceedings of the VLDB Endowment, (the VLDB Endowment) 2010. 3 p. .

[IEEE 11th International Conference on ()] IEEE 11th International Conference on, 2011. IEEE. p. .

[Jones and Tim (2009)] ‘Inside the Linux 2.6 Completely Fair Scheduler -Providing fair access to CPUs since
2.6.23". M Jones , Tim . IBM Developer Works, December 15, 2009.

[Ray et al. ()] ‘Is High Performance Computing (HPC) Ready to Handle Big Data’. Biplob R Ray , Morshed
Chowdhury , Usman Atif . In International Conference on Future Network Systems and Security, (Cham)
2017. Springer. p. .

[Zaharia et al. ()] Job scheduling for multi-user mapreduce clusters, Matei Zaharia , Dhruba Borthakur , J Sen
Sarma . UCB/EECS-2009-55. 2009. 47. EECS Department, University of California, Berkeley (Technical
Report) (Khaled Elmeleegy, Scott Shenker, and Ion Stoica)

[Verma et al. ()] ‘Large-scale cluster management at Google with Borg. Abhishek Verma , Luis Pedrosa |,
Madhukar Korupolu , David Oppenheimer , Eric Tune , John Wilkes . Proceedings of the Tenth European
Conference on Computer Systems, (the Tenth European Conference on Computer Systems) 2015. ACM. p.
18.

[Grimshaw et al. ()] Legion: The next logical step toward a nationwide virtual computer, Andrew S Grimshaw
, A William , James C Wulf , Alfred C French , Paul Weaver , ReynoldsJr . CS-94-21. 1994. University of
Virginia (Technical Report)

[Pinheiro et al. ()] ‘Load balancing and unbalancing for power and performance in clusterbased systems’. Eduardo
Pinheiro , Ricardo Bianchini , Enrique V Carrera , Taliver Heath . Workshop on compilers and operating
systems for low power, 2001. 180 p. .

[Dean and Ghemawat ()] ‘MapReduce: a flexible data processing tool’. Jeffrey Dean , Sanjay Ghemawat .
Communications of the ACM 2010. 53 (1) p. .

[Marathon: A container orchestration platform for Mesos and DC/OS Aurora (2018)] ‘Marathon: A container
orchestration platform for Mesos and DC/0OS". 0.19.0. 2. https://mesosphere.github.io/marathon/
Aurora December 5. 2018. January 10. 2018. February 7. 2018. Mesosphere, Inc. (References Références
Referencias 1)

[Maui Administrator’s Guide (2002)] Maui Administrator’s Guide, http://docs.adaptivecomputing.
com/maui/pdf/mauiadmin.pdf May 16. 2002. November 5. 2014. Adaptive Computing Enterprises, Inc.
(Version 3.2)

[Hindman et al. ()] ‘Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center’. Benjamin
Hindman , Andy Konwinski , Matei Zaharia , Ali Ghodsi , Anthony D Joseph , Randy H Katz , Scott
Shenker , Ton Stoica . NSDI, 2011. 2011. 11 p. .

[Smarr and Catlett ()] ‘Metacomputing’. Larry Smarr , Charles E Catlett . Grid Computing: Making the Global
Infrastructure a Reality, 2003. p. .

[Kolivas (2016)] MuQSS wversion 0.114.” -ck hacking, Con Kolivas . linux-4.8-ck2. https://ck-hack.
blogspot.co.uk/2016/10/1linux-48-ck2-mugss-version-0114.html October 21. 2016. December
8, 2016.

[Singh (2017)] New York Stock Exzchange Oracle FEzradata -Our Journey, Ajit Singh . http://www.
oracle.com/technetwork/database/availability/con8821-nyse-2773005.pdf November 17,
2017. June 28. 2018. Oracle, Inc.

[Nomad -Easily Deploy Applications at Any Scale (2018)] Nomad -Easily Deploy Applications at Any Scale,
https://www.nomadproject March 19. 2018. (Version 0.7.1)

[Schwarzkopf et al. ()] ‘Omega: flexible, scalable schedulers for large compute clusters’. Malte Schwarzkopf ,
Andy Konwinski , Michael Abd-El-Malek , John Wilkes . Proceedings of the 8th ACM FEuropean Conference
on Computer Systems, (the 8h ACM European Conference on Computer Systems) 2013. ACM. p. .

[Squyres and Sahay ()] ‘Open MPI: Goals, concept, and design of a next generation MPI implementation’. Vishal
Squyres , Sahay . European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, (Berlin
Heidelberg) 2004. Springer. p. .

[Bulpin ()] Operating system support for simultaneous multithreaded processors, James R Bulpin . No. UCAM-
CL-TR-619. 2005. University of Cambridge, Computer Laboratory

[Arpaci-Dusseau et al. ()] Operating systems: Three easy pieces, Arpaci-Dusseau , H Remzi , Andrea C Arpaci-
Dusseau . 2015. Arpaci-Dusseau Books.

[Klusa?ek et al. ()] ‘Optimizing user oriented job scheduling within TORQUE’ Dalibor Klusid?ek , Véclav
Chlumsky , Hana Rudova . Super Computing the 25th International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’13), 2013.

15

https://mesosphere.github.io/marathon/
http://docs.adaptivecomputing.com/maui/pdf/mauiadmin.pdf
http://docs.adaptivecomputing.com/maui/pdf/mauiadmin.pdf
http://docs.adaptivecomputing.com/maui/pdf/mauiadmin.pdf
https://ck-hack.blogspot.co.uk/2016/10/linux-48-ck2-muqss-version-0114.html
https://ck-hack.blogspot.co.uk/2016/10/linux-48-ck2-muqss-version-0114.html
https://ck-hack.blogspot.co.uk/2016/10/linux-48-ck2-muqss-version-0114.html
http://www.oracle.com/technetwork/database/availability/con8821-nyse-2773005.pdf
http://www.oracle.com/technetwork/database/availability/con8821-nyse-2773005.pdf
http://www.oracle.com/technetwork/database/availability/con8821-nyse-2773005.pdf
https://www.nomadproject

766
767
768

77C
771

772
773
774
775
776

T
778
779

780
781
782

783
784

785
786

787
788
789

790

791
792

793
794
795
796

797
798
799

800
801

802
803

804
805

806
807
808
809

810
811

812
813

814
815

31€
817

818
819

820
821
822

29 SUMMARY AND CONCLUSIONS

[Isard et al. ()] ‘Quincy: fair scheduling for distributed computing clusters’. Michael Isard , Vijayan Prabhakaran
, Jon Currey , Udi Wieder , Kunal Talwar , Andrew Goldberg . Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, (the ACM SIGOPS 22nd symposium on Operating systems
principles) 2009. ACM. p. .

[Torvalds (2001)] Re: Just a second ?” The Linux Kernel Mailing List, Linus Torvalds . http://
tech-insider.org/linux/research/2001/1215.html December 15. 2001. September 27, 2017.

[Zaharia et al. ()] ‘Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing’
Matei Zaharia , Mosharaf Chowdhury , Tathagata Das , Ankur Dave , Justin Ma , Murphy Mccauley , Michael
J Franklin , Scott Shenker , Ion Stoica . Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, (the 9th USENIX conference on Networked Systems Design and Implementation)
2012. USENIX Association. p. .

[Padoin et al. ()] ‘Saving energy by exploiting residual imbalances on iterative applications’ Edson L Padoin
, Marcio Castro , Laércio L Pilla , O A Philippe , Jean-Francois Navaux , Méhaut . High Performance
Computing (HiPC), 2014 21st International Conference on, 2014. IEEE. p. .

[Vagata and Wilfong (2014)] Scaling the Facebook data warehouse to 300 PB, Pamela Vagata , Kevin Wilfong
https://code.fb.com/core-data/scaling-the- facebook-data-warehouse-to-300-pb/
April 10. 2014. June 28. 2018. Facebook, Inc.

[Vohra ()] ‘Scheduling pods on nodes’. Deepak Vohra . Kubernetes Management Design Patterns, (Berkeley, CA)
2017. Apress. p. .

[Yoo et al.] ‘Slurm: Simple linux utility for resource management’. Andy B Yoo , A Morris , Mark Jette ,
Grondona . Workshop on Job Scheduling Strategies for Parallel Processing, p. .

[Corbett et al. ()] ‘Spanner: Google’s globally distributed database’. James C Corbett , Jeffrey Dean , Michael
Epstein , Andrew Fikes , Christopher Frost , Jeffrey John Furman , Sanjay Ghemawat . ACM Transactions
on Computer Systems (TOCS) 2013. 31 (3) p. 8.

[Zecevic and Bonaci ()] Spark in Action, Petar Zecevic , Marko Bonaci . 2016.

[Zaharia et al. ()] Spark: Cluster computing with working sets, Matei Zaharia , Mosharaf Chowdhury , Michael
J Franklin , Scott Shenker , Ion Stoica . 2010. 10 p. 95.

[Toshniwal et al. ()] ‘Storm @Twitter’ Ankit Toshniwal , Siddarth Taneja , Amit Shukla , Karthik Ramasamy ,
Jignesh M Patel , Sanjeev Kulkarni , Jason Jackson . Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, (the 2014 ACM SIGMOD international conference on Management of
data) 2014. ACM. p. .

[Gentzsch ()] ‘Sun grid engine: Towards creating a compute power grid. Wolfgang Gentzsch . Proceedings. First

IEEE/ACM International Symposium on, (First IEEE/ACM International Symposium on) 2001. 2001. IEEE.
p. . (Cluster Computing and the Grid)

[Smanchat and Viriyapant ()] ‘Taxonomies of workflow scheduling problem and techniques in the cloud’ Sucha
Smanchat , Kanchana Viriyapant . Future Generation Computer Systems 2015. 52 p. .

[Foster et al. ()] ‘The anatomy of the grid: Enabling scalable virtual organizations’. Ian Foster , Carl Kesselman
, Steven Tuecke . The International Journal of High Performance Computing Applications 2001. 15 (3) p. .

[Ghemawat et al. ()] ‘The Google file system’. Sanjay Ghemawat , Howard Gobioff , Shun-Tak Leung . ACM
SIGOPS operating systems review, 2003. ACM. 37 p. .

[Lozi et al. ()] ‘The Linux scheduler: a decade of wasted cores’ Jean-Pierre Lozi , Baptiste Lepers , Justin
Funston , Fabien Gaud , Vivien Quéma , Alexandra Fedorova . Proceedings of the Eleventh European
Conference on Computer Systems, (the Eleventh European Conference on Computer Systems) 2016. ACM.
p. L.

[Grimshaw ()] ‘The Mentat run-time system: support for medium grain parallel computation’. Andrew S
Grimshaw . Distributed Memory Computing Conference, 1990. 1990. IEEE. 2 p. . (Proceedings of the Fifth)

[Lamport ()] ‘The part-time parliament’. Leslie Lamport . ACM Transactions on Computer Systems (TOCS)
1998. 16 (2) p. .

[Bode et al. ()] ‘The Portable Batch Scheduler and the Maui Scheduler on Linux Clusters’. Bode , David M Brett
, Ricky Halstead , Zhou Kendall , David Lei , Jackson . Annual Linux Showcase € Conference, 2000.

[Corbet (2007)] ‘The Rotating Staircase Deadline Scheduler’. Jonathan Corbet . https://lwn.net/
Articles/224865/ LWN.net. March, 2007. September 25, 2017. 6.

[Corbet (2004)] ‘The staircase scheduler’. Jonathan Corbet . https://lwn.net/Articles/87729/ LWN.net,
June 2, 2004. September 25, 2017.

[Klusa?ek and Rudové ()] ‘The Use of Incremental Schedule-based Approach for Efficient Job Scheduling’
Dalibor Klusa?ek , Hana Rudova . Sixth Doctoral Workshop on Mathematical and Engineering Methods
in Computer Science, 2010.

16

http://tech-insider.org/linux/research/2001/1215.html
http://tech-insider.org/linux/research/2001/1215.html
http://tech-insider.org/linux/research/2001/1215.html
https://code.fb.com/core-data/scaling-the-facebook-data-warehouse-to-300-pb/
https://lwn.net/Articles/224865/
https://lwn.net/Articles/224865/
https://lwn.net/Articles/224865/
https://lwn.net/Articles/87729/

823
824
825
826

827
828

829
830

831

832
833

[Kulkarni et al. ()] ‘Twitter Heron: Stream processing at scale’. Sanjeev Kulkarni , Nikunj Bhagat , Maosong
Fu , Christopher Vikaskedigehalli , Sailesh Kellogg , Jignesh M Mittal , Karthik Patel , Siddarth Ramasamy
, Taneja . Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, (the
2015 ACM SIGMOD International Conference on Management of Data) 2015. ACM. p. .

[Barroso et al. ()] Web search for a planet: The Google cluster architecture, Luiz Barroso , Jeffrey André ,
Ursholzle Dean . 2003. 23 p. .

[Drepper ()] ‘What every programmer should know about memory’. Ulrich Drepper . Red Hat, Inc 2007. 11 p.
2007.

[Hart ()] Win32 systems programming, Johnson M Hart . 1997. Addison-Wesley Longman Publishing Co., Inc.

[Kannan et al. ()] ‘Workload management with LoadLeveler. Kannan , Mark Subramanian , Peter Roberts ,
Dave Mayes , Joseph F Brelsford , Skovira . IBM Redbooks 2001. 2 (2) .

17

