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Abstract6

Software Defined Networking (SDN) is a paradigm that moves out the network switch?s7

control plane (routing protocols) from the switch and leaves only the data plane (user traffic)8

inside the switch. Since the control plane has been decoupled from hardware and given to a9

logically centralized software application called a controller; network devices become simple10

packet forwarding devices that can be programmed via open interfaces. The SDN?s concepts:11

decoupled control logic and programmable networks provide a range of benefits for12

management process and has gained significant attention from both academia and industry.13

Since the SDN field is growing very fast, it is an active research area. This review paper14

discusses the state of art in SDN, with a historic perspective of the field by describing the15

SDN paradigm, architecture and deployments in detail.16

17

Index terms— software defined network (SDN), review.18

1 Introduction19

hree components of the network architecture are control plane, data plane, and management plane [1]. The20
control plane carries control traffic (routing protocols) and is responsible for maintaining the routing tables. The21
management plane carries administrative traffic and is considered a subset of the control plane. The data plane22
bears the user traffic that the network exists to carry. It forwards the user traffic based upon information learned23
by the control plane. In a conventional network, all these three planes are implemented in the firmware of routers24
and switches.25

Software Defined Networking (SDN) is a new paradigm that moves out the network switch’s control plane26
from the switch and leaves only data plane inside the switch [2]. Since the control plane is decoupled from27
hardware and given to a logically centralized software application called a controller, network devices become28
simple packet forwarding devices that can be programmed via open interfaces. The SDN’s concepts: decoupled29
control logic and programmable networks provide a range of benefits for the network management process. They30
include centralized control, simplified algorithms, commoditizing network hardware, eliminating middle-boxes31
and enabling the design and deployment of third-party applications.32

The promise of SDN has gained significant attention from both academia and industry. The Open Network33
Foundation (ONF) is an industrial driven organization, founded in the year 2011 by a group of network operators,34
service providers, and vendors to promote SDN and standardize the OpenFlow protocol ??3]. Deutsche Telekom,35
Facebook, Google, Microsoft, Verizon and Yahoo are among the founders. Currently, ONF has around 9536
members including several major vendors. The OpenFlow Network Research Center (ONRC) was created by the37
academia with a focus on SDN research ??4]. Since the SDN field is growing very fast, it is a very active research38
area. This review paper discusses the state of art in SDN, with a historic perspective of the field by describing39
the SDN paradigm, architecture and deployments in detail.40
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7 D) CONTROL OF PACKET SWITCHED NETWORKS

2 II.41

3 SDN History42

The idea of programmable networks and decoupled control logic has a story of years. The history of SDN goes43
back to 1980s [5]. This section provides an overview of four technologies which helped SDN to evolve.44

4 a) Central network control45

In earlier days telephone networks were using in-band signaling where the data (voice) and the control signals are46
sent over the same channel. The resulting networks were always complex and insecure. In 1980s, AT&T separated47
data and control planes of their telephone network and introduced the concept of ”Network Control Point” (NCP)48
[6]. The idea was to separate voice and control, and the control resided on NCP. NCP allowed operators to have49
a central networkwide vantage point and directly observe the networkwide behavior. Elimination of in-band50
signaling lead to independent evolution of infrastructure, data, and services where new services were able to be51
introduced to customers easily. So NCP was the origin of the SDN’s concept: separating control and data plane,52
and to have centralized control over the network [5].53

5 b) Programmability in networks54

In the mid-1990s, DARPA research community introduced ”Active Networks” with the idea of a network55
infrastructure that would be programmable for customized services [7]. There were two main approaches:56
user programmable switches, with in-band data transfer and out-of-band management channels and capsules,57
which were program fragments that carried in user messages. Program fragments would be interpreted and58
executed by routers [8]. A Cambridge project in the year 1998, Tempset developed programmable, virtualizable59
switches called switchlets [9]. Switchware project of Penn, introduced a programmable switch and a scripting60
language to support switchlets [10]. Smart Packets, research by BBN was focused on applying the active networks61
framework to network management process [11]. The Open Signaling project of Columbia, introduced NetScript,62
a language to provide programmable processing of packet streams [12] [13]. Pro-grammable switches accelerated63
the innovation of middle-boxes (firewalls and proxies) which are programmed to perform specific functions.64
Providing programming functions in networks and compose these functions together were the legacy of active65
networks for SDN [5].66

6 c) Network virtualization67

Network virtualization is the representation of one or more logical network topologies on top of the same68
infrastructure. It separates the logical infrastructure from underlying physical infrastructure. There are many69
different instantiations such as Virtual LANs (VLANs), network testbeds and VMWare. In the Switchlets, the70
control framework has been separated from the switch and allowed virtualization of the switch [9]. In the year71
2006, VINI provided a Virtual Network Infrastructure to support different experiments on virtual topologies using72
a single infrastructure [14]. VINI used the concept of separating control and data planes, and its control plane was73
a software routing protocol called XORP, which allowed to run routing protocols on virtual network topologies.74
VINI’s data plane ”Click” provided the appearance of the virtual network topologies to experimenters. In the75
year 2007, CABO, a network infrastructure, separated the infrastructure and services to allow service providers76
to operate independently [15]. The concepts of separating services from infrastructure, using multiple con-trollers77
to control a single switch and exposing multiple logical switches on top of a single physical switch were the legacy78
of network virtualization for SDN [5].79

7 d) Control of packet switched networks80

With the above evolution of network technologies, the separation of control was needed for rapid innovation of81
networks. Since the control logic is tied to hardware, it was easier to modify the existing control logics of the82
telephone network. Having a separate control channel made it possible to have a separate software controller83
and could easily introduce new services to the telephone network. Software controllers also allowed operators to84
have a centralized network-wide vantage point and directly observe the network-wide behavior of the telephone85
network. With these motivations, packet switched networks also tried to separate the control plane from the data86
plane. There are four main ways that packet switched networks achieved separation of control: separate control87
channel, in-band protocols, customizing the hardware in the data plane and open Hardware [5].88

The first approach of a separate control channel for packet switched network came from the Internet89
Engineering Task Force (IETF) with the protocol ”FORCES” in the year 2003 [16]. The FORCES redefined90
the network device’s internal architecture by separating the control element (CE) from the forwarding elements91
(FE). The CE executes control and signaling functions and uses the ForCES protocol to instruct FEs on how to92
forward packets. The FEs forwards packets according to the instructions given by the CE. Each FE has a Logical93
Function Block in its data plane which enables the CE to control the FEs’ configuration and used to process94
packets. The communication between FEs and CE are achieved by the FORCES protocol. The protocol works95
based on a master-slave model; FEs are slaves and CE is the master. Even though the FORCES architecture96
separated the control plane from the data plane, both the planes were kept in the same network device and was97
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represented as a single entity. However, the FORCES required standardization, adoption and deployment of new98
hardware.99

The second approach was to use existing protocols as control channels to send control messages to FEs, and100
it was called in-band protocols. With the Routing Control Platform (RCP) in the year 2004, each autonomous101
system in the network had a controller in the form of an RCP [17]. An RCP computed the routes on behalf102
of routers and, it used existing routing protocols to communicate routes to routers. The limitation with this103
approach was, the control process was constrained by what the existing protocols can support.104

Customizing the hardware in the data plane, supported a wide range of applications in the control plane.105
In the year 2007, Ethane presented a network architecture for enterprise networks, which used a centralized106
controller to manage policies and security in a network [18]. Ethane directly enforced a single, network policy107
at an element called ”Domain Controller.” A Domain controller computes the flow table entries that should be108
installed in each of the enterprise switches based on access control policies defined at the Domain Controller.109
OpenWrt, NetFPGA, and Linux built custom switches to sup-port the Ethane protocol. However, they required110
new hardware deployments that support Ethane protocol.111

The solution was the last approach, to use a method that can operate on existing routing protocols, and did not112
require customized hardware [19]. It is called open hardware and in the year 2008, the OpenFlow project started113
with this concept [20] [21]. OpenFlow took the capabilities of existing hardware and opened those capabilities,114
such that standard control protocols could control the behavior of that hardware.115

8 e) OpenFlow116

The OpenFlow network has been deployed in academic campus networks initially [20] [21] and today more than117
nine universities in the US have deployed OpenFlow networks ??22]. OpenFlow has gained significant attention118
from both academia and industry as a strategy to increase the functionality of the network, but at the same time119
reducing costs and hardware complexity. The OpenFlow architecture consists of three modules: a Flow Table in120
each switch, a Secure Channel that connects the switch to a remote control process (called the controller) and121
the OpenFlow Protocol [20] [21] as shown in Figure 1.122

The forwarding device (OpenFlow enabled switch/router) has one or more flow tables. A flow table consists123
of flow entries, each of which determines how packets belonging to a flow will be processed and forwarded. Flow124
entries are stored according to their priorities. A flow table entry consists of three main fields [23] and shown in125
Figure 2.126

? Match fields (information found in the packet header): used to match incoming packets ? Counters: used to127
collect statistics for the particular flow (number of received packets, number of bytes and duration of the flow)128
A set of instructions, or actions, to be applied upon a match; they dictate how to handle matching packets. The129
actions include dropping the packet, continuing the matching process on the next flow table, or for-ward the130
packet to the controller over the OpenFlow channel. An OpenFlow enabled switch/router has the capability of131
forwarding packets according to the rules defined in the flow table. Figure 3 shows a high-level description of how132
an OpenFlow enabled switch/router processes a packet. Internally, a switch uses Ternary Content Addressable133
Memory (TCAM) and Random Access Memory (RAM) to process each packet [24]. When a packet arrives at134
the OpenFlow enabled switch/router, packet header fields are extracted and matched against the matching fields135
of the first flow table entries. If a matching entry is found, the switch applies the appropriate set of instructions136
associated with the matched flow entry. If a matching entry is not found, depends on the instructions defined137
by the tablemiss flow entry, the switch will take action. To handle table misses, every flow table must contain a138
table-miss entry which specifies a set of actions to be performed when no match is found for an incoming packet139
??23]. Figure 4 shows a low-level description of how an OpenFlow switch processes a packet. The metadata140
field acts as a register which can be used to pass information between the tables as the packet traverses through141
them. The Multi-Protocol Label Switching (MPLS) fields are included to support MPLS tagging. Since there142
are multiple flow tables available in the switch, the processing of a packet entering the switch is changed. The143
flow tables in the switch are linked together using a process called ”pipeline processing.” When the packet first144
enters the switch, it is sent to the first flow table to look for the flow entry to be matched. If there is a match, the145
packet gets processed there. If there is another flow table that the particular flow entry points to, the packet is146
then sent to that flow table. The process is repeated until a particular flow entry does not point to any other flow147
table. The flow entries in the flow tables can also point to the group table. The group table is specially designed148
to perform operations that are common across multiple flows. The OpenFlow 1.1.0 also replaced actions with149
instructions. In OpenFlow 1.0.0 an action could be to forward the packet or to drop it, as well as processing it150
normally as it would be in a regular switch. Instructions are more complex and they include modifying a packet,151
updating an action set or updating the metadata.152

The OpenFlow 1.2.0 specification was released in De-cember 2011 and it included support to IPv6 addressing.153
Matching could be done using the IPv6 source and destination addresses. With OpenFlow 1.2.0 specifications,154
a switch could be connected to multiple controllers concurrently. The switch maintains connections with all the155
controllers. Controllers can communicate with each other. Having multiple controllers facilitated load balancing156
and faster recovery during a failure. The OpenFlow 1.3.0 specification was released in June 2012. It included157
features to (1) control the rate of packets through per flow meters, (2) have auxiliary connections between the158
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11 C) NORTHBOUND APIS

switch and the controller and (3) add cookies to the packets sent from the switch to the controller. Table I shows159
a summarization of OpenFlow specifications.160

9 SDN Architecture161

In SDN, the control plane is decoupled from the hard-ware data plane and given to a software application called162
a controller. The controller is the core of an SDN network and it lies between network devices and applications163
??25] [26]. This section gives a brief introduction to the SDN architecture. SDN architecture is shown in figure 6164
and it includes: SDN Controllers, Southbound Interfaces, and Northbound Interfaces [25]. point to the network165
(network operating system) [27]. While a computer operating system provides read and write access to various166
resources, a network operating system provides the ability to observe and control a network. The network167
operating system which is referred to as the controller here after, does not manage the network, but it provides a168
programmatic interface which can be used to implement applications to perform the actual management tasks.169
SDN controllers presents two possible behaviors: reactive and proactive [28].170

When the controller behaves reactively, it listens to switches passively and configures routes on-demand. The171
first packet of each new flow, received by a switch (flow request) triggers the controller to insert flow entries in172
each switch of the network [28]. Every new flow introduces a small delay because of the additional setup time.173
Also with the hard dependency of the controller, if a switch losses the connection to the controller, the switch174
will not be able to forward packets of new flows. When the controller behaves pro-actively, it prepopulates a flow175
table for each switch. So it has zero additional flow set-up time because the forwarding rules are already defined176
[28]. With this approach, if the switch loss the connection with the controller, it will not disrupt traffic. However,177
the proactive approach requires the controller to know the traffic flows in advanced to configure the paths before178
it is used. Current controllers are implemented to facilitates both approaches. The Controller behaves reactively179
in the initial state of the network and, after getting to know the network it starts to behave pro-actively.180

10 b) Southbound Interfaces181

The southbound interfaces allow switches to communicate with the controller. The OpenFlow protocol is the182
most popular implementation of the southbound interface. OpenFlow 1.3.0 and above provide optional support183
for encrypted Transport Layer Security (TLS) communication and a certificate exchange between the switches184
and the controller for secure communication ??23]. The OpenFlow protocol consists of three types of messages.185
2) Asynchronous messages: Sent by the switch: The Packet-in messages are used to inform the controller about186
a packet that does not match an existing flow. The Flow Removed messages are used to inform the controller187
that a flow has been removed because of its time to live parameter or inactivity timer has expired. Finally, the188
Port status messages are used to inform the controller of a change in port status or that an error has occurred on189
the switch. 3) Symmetric messages: Sent by both the switch or the con-troller: The Hello messages exchanged190
between the controller and switch on startup, and the Echo messages are used to determine the latency of the191
controller-to-switch connection and to verify that the controller-to-switch connection is still operative. The Error192
messages are used to notify the other side of the connection of problems. Finally, the Experimenter messages are193
used to provide a path for future extensions to OpenFlow technology.194

The Border Gateway Protocol (BGP), a wellknown core Internet routing protocol is used by Juniper Network’s195
in their SDNs [29]. The controller uses BGP as a control plane protocol and leverage NETCONF (an IETF196
network management protocol) as a management plane protocol to interact with physical routers, switches and197
networking services like firewalls. This approach enables SDN to exist in a multi vendor environment without198
requiring infrastructure upgrades. OpenFlow does not address the issue of the controller interoperability and199
requires physical changes to the network, so Juniper is introducing BGP to be the standard of the SDN. Extensible200
Messaging and Presence Protocol (XMPP) which was originally developed for instant messaging and online201
presence detection is also emerging as an alternative SDN protocol ??30]. XMPP can be used by the controller202
to distribute control plane information to the server endpoints because XMPP manages information at all levels203
of abstraction down to the flow, not only to network devices.204

11 c) Northbound APIs205

The southbound interfaces allowed controllerswitches communication and provided basic operations to access the206
network system. But they could not retrieve complex information from the switches and therefore programming207
the network to perform high-level tasks (load balancing, implementing security policies) was difficult. Also,208
it was difficult to perform multiple independent tasks (routing, access control) concurrently using the south209
bound interfaces. So the northbound interface, a programming interface that allows applications to program the210
network with higher level abstraction [25] [26] was introduced. Developers can use the northbound interface211
to extract information about the underlying network and to implement complex applications such as path212
computation, loop avoidance, routing, and security. Additionally, northbound interface can be used by controllers213
to communicate with each other to share resources and synchronize policies. The North-bound interface offers214
vendor in-dependability and ability to modify or customize control through popular programming languages.215
Unlike southbound interfaces, there is no currently accepted standard for northbound interfaces and they are216
more likely to be implemented depending on the application requirements.217
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IV.218

12 SDN Development Tools and Frameworks219

The concept of decoupling control plane from the data plane allows SDN to facilitate network evolution and220
innovation by introducing new services and protocols easily. This section gives an overview of currently available221
tools and environments for developing services and protocols with SDN.222

13 a) SDN controller platforms223

Many controller implementations are available for SDNs and a suitable controller can be selected by considering224
the programming language and performances of the controller [31] [32] [33]. The popular controller platforms225
include ovs [23], NOX [27],226

POX [34], Beacon [31], Maestro [35], Trema [36] Ryu [37] and Floodlight ??38]. Table II shows a comparison of227
the SDN controller platforms according to their general details and Figure 7 (taken from [31]) shows a comparison228
of the performances of SDN controller platforms.229

The current standard for evaluating SDN controller performance is Cbench. The Cbench simulates OpenFlow230
switches and operates in either throughput or latency mode. In through-put mode, each of 64 emulated switches231
constantly sends as many Packet In messages as possible to the controller, ensuring that the controller always232
has messages to process. Evaluation tests have been run on Amazon’s Elastic Computer Cloud using a Cluster233
Compute Eight Extra Large instance, containing 16 physical cores from 2 x Intel Xeon E5-2670 processors,234
60.5GB of RAM, using a 64-bit Ubuntu 11.10 VM image. Figure 7 shows Cbench throughput mode results235
using controllers with a single thread. Beacon shows the highest throughput at 1.35 million responses per236
second, followed by NOX with 828,000, Maestro with 420,000, Beacon Queue with 206,000, Floodlight with237
135,000, and Beacon Immediate with 118,000. Both Python-based controllers run significantly slower, POX238
serving 35,000 responses per second and Ryu with 20,000. b) SDN software switch platforms With SDN, the239
switch architecture has become very simple, because it is left only with the data plane. It has reduced functions240
of switches and introduced concepts of software switch implementation and switch virtualization. The result241
was rapid innovations in software switch platforms. The software switch platforms can be used to replace the242
firmware of physical switches that do not support SDN. The popular software switch platforms include Open243
vSwitch [23], Pantou/OpenWRT [39] and ofsoftswitch13 [40]. Table III shows a comparison of the SDN software244
switch platforms.245

14 c) Native SDN switches246

As explained at the beginning of the paper, the promise of SDN has gained significant attention from many247
network de-vices vendors. One clear evidence of industry strong commitment to SDN is the availability of248
OpenFlow enabled commodity network hardware. Hewlett-Packard, Brocade, IBM, NEC, Pronto, Juniper, and249
Pica8 have introduced many OpenFlow enabled switch models. Table IV shows a partial list of native SDN250
switches.251

15 d) SDN languages252

SDN programming languages are used for higher level abstraction of programming for network management.253
They consist of high-level abstractions for querying network state, defining forwarding policies and updating254
policies in a consistent way [41]. SDN languages is an area of very active research and several languages have255
been proposed and are still under development. Table V shows a classification of different SDN languages.256

The FatTire [42] allows programmers to declaratively specify sets of legal paths through the network and257
fault tolerance requirements for those paths. The FatTire compiler takes programs specified regarding paths and258
translates them to OpenFlow switch configurations. Since the backup paths are configured with those programs,259
responding to link failures can be done automatically without controller intervention.260

The Nettle [43] was originally designed for programming OpenFlow networks. Using the discrete nature261
of Functional Reactive Programming, Nettle can capture control messages to and from OpenFlow switches262
as streams of Nettle events. The Nettle model messages from switches with a data type SwitchMessage and263
commands to switches with a data type SwitchCommand. A Nettle program is a signal function (SF) having an264
input carrying switch messages from all switches in the network and output carrying switch commands to any265
switches in the network, SF (Event SwitchMessage) (Event SwitchCommand).266

The Flow-based Management Language (FML) [44] comes with high-level built-in policy operators that allow267
or deny certain flows flowing through a firewall or provide quality of service. If network forwarding policy falls268
into the space of policies that can be described by an FML program, the code for implementing the policy is easy.269
But adding new policy operators to the system requires coding outside the FML language. Moreover, a resulting270
policy decision applies equally to all packets within the same flow and it is not possible to move or redirect a flow271
as it is processed. So, even though FML provides network operators with a very useful set of SDN abstractions,272
the programming model, is inflexible.273

The Procera [45] is an extension to Nettle, which has been designed to incorporate events that originated from274
sources other than OpenFlow switches. It supports policies that react to conditions such as user authentications,275
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16 E) SDN DEBUGGING TOOLS

time of day, bandwidth use and server load. Procera is expressive and extensible, so users can easily extend276
the language by adding new constructs. The input to the main Procera signal function is a world signal whose277
instantaneous values have the abstract World type. The output of a Procera program is a signal carrying flow278
constraint functions. A flow constraint function determines the constraints that are applied to a flow: allow or279
deny. The Frenetic language is embedded in Python and comprises two integrated sub-languages: a declarative280
network query language and a network policy management library. The results of such queries may be used for281
security monitoring and for decisions about the forwarding policy.282

The Flog [46] combines features of both FML and in Frenetic. From FML, Flog uses logic programming as the283
central paradigm for controlling SDNs. Logic programming fits the SDN domain because SDN programming is284
table driven collection and processing of network statistics. From Frenetic, Flog uses the concept that controller285
programs may be factored into three key components: a mechanism for querying network state, a mechanism for286
processing data learned from queries and a component for generating packet forwarding policies. Flog is designed287
as an event-driven and forward chaining logic programming language. Each time a networking event occurs,288
the logic program executes. It can have two effects: generates a packet forwarding policy that is compiled and289
deployed on switches and generates a state that is used to help the logic program to be executed when the next290
network event is processed.291

The Pyretic system [47] enables programmers to specify network policies, compose them together and execute292
them on abstract network topologies. The Pyretic’s static policy lan-network), and policy combinators, which293
are used to mix primitive actions, predicates, and queries together to craft so-phisticated policies from simple294
components. The policies can be composed together in two ways: parallel and sequential. In parallel composition,295
multiple policies operate concurrently on separate copies of the same packets. In sequential composition, one296
module operates on the packets produced by another.297

16 e) SDN debugging tools298

The emergence of SDN enables adding new network functionalities easily, at the risk of programming errors.299
Even though the centralized programming model has reduced the likelihood of bugs, the ultimate success of SDN300
depends on having effective ways to test applications in pursuit of avoiding bugs. There are many SDN debugging301
tools have been developed and they can be divided into four categories based on the layers they are working with.302
Table VI shows a classification of different debugging tools according to the layers they are working with.303

The NICE [48] is an automated testing tool that can be used to identify bugs in OpenFlow programs though304
model checking and symbolic execution. It automatically generates streams of packets under possible events and305
tests unmodified controller programs. The programmer must supply the controller program and the specification306
of a topology with switches and hosts, to use with NICE. NICE can be instructed by the programmer to check307
for generic correctness properties (no forwarding loops or no black holes), and optionally application-specific308
correctness properties. NICE is developed to explores the space of possible system behaviors systematically and309
checks them against the desired correctness properties. As the output, NICE reports property violations with310
the traces to deterministically reproduce them.311

Anteater [49] is the first design and implementation of a data plane analysis system which can be used to find312
bugs in real networks. The system detects problems by analysing the contents of forwarding tables in routers,313
switches, firewalls and other networking equipment. ??t The ndb [50] is a prototype network debugger inspired314
by gdb (a popular debugger for software programs). It implements two primitives useful for debugging a SDN315
control plane: breakpoints and packet back-traces. A packet back-trace in ndb allows the user to define a packet316
breakpoint (an un-forwarded packet or a packet filter). Then it shows the sequence of for-warding actions seen317
by that packet leading to the breakpoint.318

OFRewind [51] allows SDN control plane traffic to be recorded at different granularities. Later they can be319
replayed to reproduce a specific scenario, giving the opportunity to localize and troubleshoot the events that320
caused the network anomaly. It records flow table state via a proxy and logs packet traces and aids debugging321
via scenario re-creation. The VeriFlow [52] is a SDN debugging tool which finds faulty rules issued by SDN322
applications and prevents them from reaching the network and causing anomalous network behavior.323

VeriFlow operates as a layer between the controller and the devices, and checks the validity of invariants as324
each rule is inserted. To ensure a real-time response, VeriFlow introduces new algorithms to search for potential325
violation of key network invariants: availability of a path to the destination, absence of routing loops, access326
control policies or isolation between virtual networks.327

Other than the SDN debugging tools which were described earlier, there are two SDN troubleshooting328
simulators: STS (SDN Troubleshooting Simulator) [53] and OpenSketch [54]. STS [53] is a SDN troubleshooting329
simulator which is written in python and depends on POX controller [34]. It simulates the devices of the network330
to allow operators to easily generate test cases, examine the state of the network interactively and find the exact331
inputs that are responsible for triggering a given ment architecture, which separates the measurement data plane332
from the control plane. In the data plane, OpenSketch provides a simple three-stage pipeline (hashing, filtering,333
and counting). They can be implemented with commodity switch components and support many measurement334
tasks. In the control plane, OpenSketch provides a measurement library that automatically configures the pipeline335
and allocates resources for different measurement tasks.336
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17 f) SDN emulation and simulation tools337

The Mininet [55], the Emulab and the ns-3 [56] are popular emulation and simulation Tools used with SDN.338
Mininet [55] is an emulation environment which creates a complete network of hosts, links, and switches on a339
single machine. It creates virtual networks using process-based virtualization and network namespaces (features340
available in Linux kernels). In Mininet, hosts are emulated as bash processes running in a network namespace.341
So any code that would run on a Linux server can be run within a Mininet ”Host”. The Mininet ”Host” has its342
private network interface and can only see its own processes. Switches in Mininet are software- The Emulab [57]343
is a network emulation testbed which includes a network facility and a software system. Emulab is widely used344
by computer science researchers in the fields of networking and distributed systems and it support OpenFlow.345
So currently it is used also used for SDN research works. The primary Emulab installation is346

18 g) SDN virtualization tools347

The OpenFlow has opened the control of a network for innovation, but only one network administrator can do348
experiments on the network at a time. If there is a way to divide, slice or replicate network resources, more349
than one network administrator can use them in parallel to do experiments. Actions in one slice or replication350
should not negatively affect other, even if they share the same underlying physical hardware. SDN Virtualization351
concepts have been introduced to achieve these goals.352

The FlowVisor [58] is a special purpose OpenFlow controller that allows multiple researchers to run experiments353
independently on the same production OpenFlow network. It uses a new approach to switch virtualization,354
in which the same hardware forwarding plane is shared among multiple logical networks, each with distinct355
forwarding logic. FlowVisor acts as a middle layer between the underlying physical hardware and the software356
that controls it. It is implemented as an OpenFlow proxy that intercepts messages between OpenFlow switches357
and OpenFlow controllers. The AutoSlice [59] devel-ops a transparent virtualization layer (SDN hypervisor)358
which automates the deployment and operation of vSDN topologies. In contrast to FlowVisor, AutoSlice focuses359
on the scalability aspects of the hypervisor design. AutoSlice monitors flow level traffic statistics to optimize360
the resource utilization and to mitigate flow-table limitations. With the distributed hypervisor architecture,361
Autoslice can handle large numbers of flow table control messages from multiple tenants.362

In a virtual machine environment, moving applications from one location to another without a disruption in363
service is called Live virtual machine (VM) migration. SDN applications can reside and rely on multiple VMs.364
So migrating individual SDN VMs, one by one, may disrupt the SDN applications. So the LIME [60] design365
migrate an ensemble: the VMs, the network, and the management system to a different set of physical resources366
at the same time. LIME uses the SDN concept of separation between the controller and the data plane state in367
the switches. LIME clones the data plane state to a new set of switches, transparent to the application running368
on the controller. And then incrementally migrates the traffic sources.369

The RouteFlow [61] provides virtualized IP routing over OpenFlow capable hardware. It is composed with a370
OpenFlow Controller application, a server, and a virtual network environ-ment. The virtual network environment371
rebuild the connectivity of the physical infrastructure and runs IP routing engines. The routing engines generate372
the forwarding information base (FIB) according to the routing protocols configured. An ex-tension of RouteFlow373
[62], discusses incorporating RCPs [17] in the context of OpenFlow and SDN. It proposes a controller centric374
networking model with a prototype implementation of an autonomous system-wide abstract BGP routing service.375

V.376

19 Final Remarks377

SDNs have emerged in the last decade as a very active research domain, gaining significant attention from both378
academia and industry. This survey discussed the state of art in SDN, with a historic perspective of the field by379
describing the SDN paradigm, architecture and deployments in detail.380

We first introduced the concepts and definitions that enable a clear understanding of SDNs. The idea of381
programmable networks and decoupled control logic has been around for many years and the history of SDN382
goes back to the early 1980s. Central network control, programmability in networks, network virtualization and383
control of packet switched networks were the four main supporting technologies which helped SDN to evolve.384
The survey was extended by exploring the OpenFlow project and the standardized SDN architecture. Standard385
SDN three tier architecture includes: SDN controller, southbound APIs and northbound APIs. For a broader386
scope, the pa-per detailed the tools and frameworks associated with SDN development in the categories of SDN387
controller platforms, SDN software switch platforms, native SDN switches, SDN languages, SDN debugging tools,388
SDN emulation/simulation tools and SDN virtualization tools. Year 2 019 ( ) C 1 2389

1( ) C © 2019 Global Journals Past before Future: A Comprehensive Review on Software Defined Networks
Road Map

2© 2019 Global JournalsPast before Future: A Comprehensive Review on Software Defined Networks Road
Map
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Figure 1: Fig. 1 :
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Figure 2: Fig. 2 :
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Figure 3:
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Figure 4: Fig. 3 :
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4

Figure 5: Fig. 4 :

5

Figure 6: Fig. 5 :
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Figure 7:

I

Specification 1.0.0 1.1.0 1.2.0 1.3.0
Widely deployed Yes No No No
Flow tables One Multiple Multiple Multiple
Group tables No Yes Yes Yes
MPLS matching No Yes Yes Yes
Group tables No Yes Yes Yes
IPV6 Support No No Yes Yes
Simultaneous communication No No Yes Yes
III.

Figure 8: Table I :
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II

Name LanguageLicense Original
authors

Can
Ex-
tend

Currently
ac-
tive

Notes

Ovs C OpenFlow
license

Stanford/
Nicira

No No A reference controller, act as a learning
switch

NOX C++ GPL Nicira Yes Yes Event-based
POX Python GPL Nicira Yes Yes Event-based
Beacon Java GPL Stanford Yes Yes Web Interface, Regression test frame-

work, Event based and Multi-thread
based

Maestro Java LGPL Rice Yes No Multi-thread based
Trema Ruby,

C
GPL NEC Yes No Emulator and Regression test frame-

work
FloodlightJava Apache Big switch Yes Yes REST APIs, Supports multi-tenant

clouds

Figure 9: Table II :

III

Year 2 019 Year 2 019
14 13

Volume
XIX Issue I
Version I

) ( C ( ) C
Software switch Language OpenVSwitch C, Python OpenFlow

Ver-
sion
V
1.0

Notes Implements a switch platform in a virtual-
ized server environment. Supports standard Eth-
ernet switching with VLANs and access control
lists. Provides interfaces for managing configura-
tion state and a method to remotely manipulate
the forwarding

Global
Journal of
Computer
Science and
Technology

path.
Pantou/ C V

1.0
OpenWRT
ofsoftswitch13 C,

C++
V
1.3

A user space software switch implementation. The
code is based on the Ericsson’s
Traffic Lab 1.1 soft switch implementation.

© 2019 Global
Journals

© 2019 Global Journals

Figure 10: Table III :

IV

Figure 11: Table IV :
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V
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Switch Company Series
Cisco Cisco cat6k, catalyst

3750,6500 series
Juniper Juniper MX-240,T-640
HP HP pro-curve

5400zl,8200zl,6200zl,3500zl,6600
NEC NEC IP8800
Pronto Pronto 3240, 3290
Dell Toroki Ciena Dell Z9000 and S4810

Toroki Light switch
4810 Ciena Core-
director running
firmware version 6.1.1

Year
2
019

Quanta Quanta LB4G
Table VI: Classification of SDN debugging tools
according to the layers they are working with

(
)
C

(connectivity or consistency) that exist in the data plane.
Violations of these invariants are considered as a bug in
the network. Anteater translates the detected high-level
network invariants into instances of boolean satisfiability
problems (SAT). Then checks them against network
state using an SAT solver. And finally, if violations have
been found, it reports counter examples.

© 2019 Global Journals

Figure 12: Table V :
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Language Supports Type Based on Used for
FatTire Only

OpenFlow
- Regular

expressions
Fault tolerant pro-
gramming

Nettle Only
OpenFlow

Functional Functional
Reactive
Program-

Load balancing
programming

ming
FML Only

OpenFlow
Logical datalog Policy implementa-

tion programming
Procera Any type of

hard-
Functional Functional

Reactive
Program-

General program-
ming

ware ming
Flog Any type of

hard-
Logical datalog General program-

ming
Year
2
019

Frenetic ware Any type
of hard-ware

Logical Query
language

General program-
ming

Pyretic Any type of
hard-

Logical Query
language

General program-
ming

ware
Layer Tools
Application layer NICE
Data Plane Anteater
Control Plane ndb,

OFrewind
) A new layer between Data Plane and Control Plane VeriFlow
(
C

© 2019 Global
Journals

Figure 13:
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