Global Journals INTEX JournalKaleidoscope™

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

) Past before Future: A Comprehensive Review on Software
. Defined Networks Road Map

3 Windhya Rankothge

4 Received: 8 December 2018 Accepted: 81 December 2018 Published: 15 January 2019
5

s Abstract

7 Software Defined Networking (SDN) is a paradigm that moves out the network switch?s

s control plane (routing protocols) from the switch and leaves only the data plane (user traffic)
o inside the switch. Since the control plane has been decoupled from hardware and given to a
10 logically centralized software application called a controller; network devices become simple
1 packet forwarding devices that can be programmed via open interfaces. The SDN?s concepts:
12 decoupled control logic and programmable networks provide a range of benefits for

13 management process and has gained significant attention from both academia and industry.
12 Since the SDN field is growing very fast, it is an active research area. This review paper

15 discusses the state of art in SDN, with a historic perspective of the field by describing the

16 SDN paradigm, architecture and deployments in detail.

17

18 Index terms— software defined network (SDN), review.

v 1 Introduction

20 hree components of the network architecture are control plane, data plane, and management plane [1]. The
21 control plane carries control traffic (routing protocols) and is responsible for maintaining the routing tables. The
22 management plane carries administrative traffic and is considered a subset of the control plane. The data plane
23 bears the user traffic that the network exists to carry. It forwards the user traffic based upon information learned
24 by the control plane. In a conventional network, all these three planes are implemented in the firmware of routers
25 and switches.

26 Software Defined Networking (SDN) is a new paradigm that moves out the network switch’s control plane
27 from the switch and leaves only data plane inside the switch [2]. Since the control plane is decoupled from
28 hardware and given to a logically centralized software application called a controller, network devices become
29 simple packet forwarding devices that can be programmed via open interfaces. The SDN’s concepts: decoupled
30 control logic and programmable networks provide a range of benefits for the network management process. They
31 include centralized control, simplified algorithms, commoditizing network hardware, eliminating middle-boxes
32 and enabling the design and deployment of third-party applications.

33 The promise of SDN has gained significant attention from both academia and industry. The Open Network
34 Foundation (ONF) is an industrial driven organization, founded in the year 2011 by a group of network operators,
35 service providers, and vendors to promote SDN and standardize the OpenFlow protocol ??73]. Deutsche Telekom,
36 Facebook, Google, Microsoft, Verizon and Yahoo are among the founders. Currently, ONF has around 95
37 members including several major vendors. The OpenFlow Network Research Center (ONRC) was created by the
38 academia with a focus on SDN research ?74]. Since the SDN field is growing very fast, it is a very active research
39 area. This review paper discusses the state of art in SDN, with a historic perspective of the field by describing
40 the SDN paradigm, architecture and deployments in detail.

42

43
44

45

46
47
48
49
50
51
52
53

54

55
56
57
58
59
60
61
62
63
64
65
66

67

68
69
70
71
72
73
74
75
76
77
78
79

80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

7 D) CONTROL OF PACKET SWITCHED NETWORKS

2 1II.
3 SDN History

The idea of programmable networks and decoupled control logic has a story of years. The history of SDN goes
back to 1980s [5]. This section provides an overview of four technologies which helped SDN to evolve.

4 a) Central network control

In earlier days telephone networks were using in-band signaling where the data (voice) and the control signals are
sent over the same channel. The resulting networks were always complex and insecure. In 1980s, AT&T separated
data and control planes of their telephone network and introduced the concept of "Network Control Point” (NCP)
[6]. The idea was to separate voice and control, and the control resided on NCP. NCP allowed operators to have
a central networkwide vantage point and directly observe the networkwide behavior. Elimination of in-band
signaling lead to independent evolution of infrastructure, data, and services where new services were able to be
introduced to customers easily. So NCP was the origin of the SDN’s concept: separating control and data plane,
and to have centralized control over the network [5].

5 b) Programmability in networks

In the mid-1990s, DARPA research community introduced ”Active Networks” with the idea of a network
infrastructure that would be programmable for customized services [7]. There were two main approaches:
user programmable switches, with in-band data transfer and out-of-band management channels and capsules,
which were program fragments that carried in user messages. Program fragments would be interpreted and
executed by routers [8]. A Cambridge project in the year 1998, Tempset developed programmable, virtualizable
switches called switchlets [9]. Switchware project of Penn, introduced a programmable switch and a scripting
language to support switchlets [10]. Smart Packets, research by BBN was focused on applying the active networks
framework to network management process [11]. The Open Signaling project of Columbia, introduced NetScript,
a language to provide programmable processing of packet streams [12] [13]. Pro-grammable switches accelerated
the innovation of middle-boxes (firewalls and proxies) which are programmed to perform specific functions.
Providing programming functions in networks and compose these functions together were the legacy of active
networks for SDN [5].

6 c¢) Network virtualization

Network virtualization is the representation of one or more logical network topologies on top of the same
infrastructure. It separates the logical infrastructure from underlying physical infrastructure. There are many
different instantiations such as Virtual LANs (VLANSs), network testbeds and VMWare. In the Switchlets, the
control framework has been separated from the switch and allowed virtualization of the switch [9]. In the year
2006, VINI provided a Virtual Network Infrastructure to support different experiments on virtual topologies using
a single infrastructure [14]. VINI used the concept of separating control and data planes, and its control plane was
a software routing protocol called XORP, which allowed to run routing protocols on virtual network topologies.
VINI’s data plane ”Click” provided the appearance of the virtual network topologies to experimenters. In the
year 2007, CABO, a network infrastructure, separated the infrastructure and services to allow service providers
to operate independently [15]. The concepts of separating services from infrastructure, using multiple con-trollers
to control a single switch and exposing multiple logical switches on top of a single physical switch were the legacy
of network virtualization for SDN [5].

7 d) Control of packet switched networks

With the above evolution of network technologies, the separation of control was needed for rapid innovation of
networks. Since the control logic is tied to hardware, it was easier to modify the existing control logics of the
telephone network. Having a separate control channel made it possible to have a separate software controller
and could easily introduce new services to the telephone network. Software controllers also allowed operators to
have a centralized network-wide vantage point and directly observe the network-wide behavior of the telephone
network. With these motivations, packet switched networks also tried to separate the control plane from the data
plane. There are four main ways that packet switched networks achieved separation of control: separate control
channel, in-band protocols, customizing the hardware in the data plane and open Hardware [5].

The first approach of a separate control channel for packet switched network came from the Internet
Engineering Task Force (IETF) with the protocol "FORCES” in the year 2003 [16]. The FORCES redefined
the network device’s internal architecture by separating the control element (CE) from the forwarding elements
(FE). The CE executes control and signaling functions and uses the ForCES protocol to instruct FEs on how to
forward packets. The FEs forwards packets according to the instructions given by the CE. Each FE has a Logical
Function Block in its data plane which enables the CE to control the FEs’ configuration and used to process
packets. The communication between FEs and CE are achieved by the FORCES protocol. The protocol works
based on a master-slave model; FEs are slaves and CE is the master. Even though the FORCES architecture
separated the control plane from the data plane, both the planes were kept in the same network device and was

98

99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

represented as a single entity. However, the FORCES required standardization, adoption and deployment of new
hardware.

The second approach was to use existing protocols as control channels to send control messages to FEs, and
it was called in-band protocols. With the Routing Control Platform (RCP) in the year 2004, each autonomous
system in the network had a controller in the form of an RCP [17]. An RCP computed the routes on behalf
of routers and, it used existing routing protocols to communicate routes to routers. The limitation with this
approach was, the control process was constrained by what the existing protocols can support.

Customizing the hardware in the data plane, supported a wide range of applications in the control plane.
In the year 2007, Ethane presented a network architecture for enterprise networks, which used a centralized
controller to manage policies and security in a network [18]. Ethane directly enforced a single, network policy
at an element called "Domain Controller.” A Domain controller computes the flow table entries that should be
installed in each of the enterprise switches based on access control policies defined at the Domain Controller.
OpenWrt, NetFPGA, and Linux built custom switches to sup-port the Ethane protocol. However, they required
new hardware deployments that support Ethane protocol.

The solution was the last approach, to use a method that can operate on existing routing protocols, and did not
require customized hardware [19]. It is called open hardware and in the year 2008, the OpenFlow project started
with this concept [20] [21]. OpenFlow took the capabilities of existing hardware and opened those capabilities,
such that standard control protocols could control the behavior of that hardware.

8 e) OpenFlow

The OpenFlow network has been deployed in academic campus networks initially [20] [21] and today more than
nine universities in the US have deployed OpenFlow networks ?722]. OpenFlow has gained significant attention
from both academia and industry as a strategy to increase the functionality of the network, but at the same time
reducing costs and hardware complexity. The OpenFlow architecture consists of three modules: a Flow Table in
each switch, a Secure Channel that connects the switch to a remote control process (called the controller) and
the OpenFlow Protocol [20] [21] as shown in Figure 1.

The forwarding device (OpenFlow enabled switch/router) has one or more flow tables. A flow table consists
of flow entries, each of which determines how packets belonging to a flow will be processed and forwarded. Flow
entries are stored according to their priorities. A flow table entry consists of three main fields [23] and shown in
Figure 2.

? Match fields (information found in the packet header): used to match incoming packets ? Counters: used to
collect statistics for the particular flow (number of received packets, number of bytes and duration of the flow)
A set of instructions, or actions, to be applied upon a match; they dictate how to handle matching packets. The
actions include dropping the packet, continuing the matching process on the next flow table, or for-ward the
packet to the controller over the OpenFlow channel. An OpenFlow enabled switch/router has the capability of
forwarding packets according to the rules defined in the flow table. Figure 3 shows a high-level description of how
an OpenFlow enabled switch/router processes a packet. Internally, a switch uses Ternary Content Addressable
Memory (TCAM) and Random Access Memory (RAM) to process each packet [24]. When a packet arrives at
the OpenFlow enabled switch/router, packet header fields are extracted and matched against the matching fields
of the first flow table entries. If a matching entry is found, the switch applies the appropriate set of instructions
associated with the matched flow entry. If a matching entry is not found, depends on the instructions defined
by the tablemiss flow entry, the switch will take action. To handle table misses, every flow table must contain a
table-miss entry which specifies a set of actions to be performed when no match is found for an incoming packet
?7?23]. Figure 4 shows a low-level description of how an OpenFlow switch processes a packet. The metadata
field acts as a register which can be used to pass information between the tables as the packet traverses through
them. The Multi-Protocol Label Switching (MPLS) fields are included to support MPLS tagging. Since there
are multiple flow tables available in the switch, the processing of a packet entering the switch is changed. The
flow tables in the switch are linked together using a process called "pipeline processing.” When the packet first
enters the switch, it is sent to the first flow table to look for the flow entry to be matched. If there is a match, the
packet gets processed there. If there is another flow table that the particular flow entry points to, the packet is
then sent to that flow table. The process is repeated until a particular flow entry does not point to any other flow
table. The flow entries in the flow tables can also point to the group table. The group table is specially designed
to perform operations that are common across multiple flows. The OpenFlow 1.1.0 also replaced actions with
instructions. In OpenFlow 1.0.0 an action could be to forward the packet or to drop it, as well as processing it
normally as it would be in a regular switch. Instructions are more complex and they include modifying a packet,
updating an action set or updating the metadata.

The OpenFlow 1.2.0 specification was released in De-cember 2011 and it included support to IPv6 addressing.
Matching could be done using the IPv6 source and destination addresses. With OpenFlow 1.2.0 specifications,
a switch could be connected to multiple controllers concurrently. The switch maintains connections with all the
controllers. Controllers can communicate with each other. Having multiple controllers facilitated load balancing
and faster recovery during a failure. The OpenFlow 1.3.0 specification was released in June 2012. It included
features to (1) control the rate of packets through per flow meters, (2) have auxiliary connections between the

159
160

161

162
163
164
165
166
167

169
170
171
172
173
174
175
176
177
178
179
180

181

182

184
185
186
187
188
189
190
191
192
193
194
195

197
198
199
200
201
202
203
204

205

206
207
208
209
210
211
212
213
214
215
216
217

11 C) NORTHBOUND APIS

switch and the controller and (3) add cookies to the packets sent from the switch to the controller. Table I shows
a summarization of OpenFlow specifications.

9 SDN Architecture

In SDN, the control plane is decoupled from the hard-ware data plane and given to a software application called
a controller. The controller is the core of an SDN network and it lies between network devices and applications
?7?25] [26]. This section gives a brief introduction to the SDN architecture. SDN architecture is shown in figure 6
and it includes: SDN Controllers, Southbound Interfaces, and Northbound Interfaces [25]. point to the network
(network operating system) [27]. While a computer operating system provides read and write access to various
resources, a network operating system provides the ability to observe and control a network. The network
operating system which is referred to as the controller here after, does not manage the network, but it provides a
programmatic interface which can be used to implement applications to perform the actual management tasks.
SDN controllers presents two possible behaviors: reactive and proactive [28].

When the controller behaves reactively, it listens to switches passively and configures routes on-demand. The
first packet of each new flow, received by a switch (flow request) triggers the controller to insert flow entries in
each switch of the network [28]. Every new flow introduces a small delay because of the additional setup time.
Also with the hard dependency of the controller, if a switch losses the connection to the controller, the switch
will not be able to forward packets of new flows. When the controller behaves pro-actively, it prepopulates a flow
table for each switch. So it has zero additional flow set-up time because the forwarding rules are already defined
[28]. With this approach, if the switch loss the connection with the controller, it will not disrupt traffic. However,
the proactive approach requires the controller to know the traffic flows in advanced to configure the paths before
it is used. Current controllers are implemented to facilitates both approaches. The Controller behaves reactively
in the initial state of the network and, after getting to know the network it starts to behave pro-actively.

10 b) Southbound Interfaces

The southbound interfaces allow switches to communicate with the controller. The OpenFlow protocol is the
most popular implementation of the southbound interface. OpenFlow 1.3.0 and above provide optional support
for encrypted Transport Layer Security (TLS) communication and a certificate exchange between the switches
and the controller for secure communication ??723]. The OpenFlow protocol consists of three types of messages.
2) Asynchronous messages: Sent by the switch: The Packet-in messages are used to inform the controller about
a packet that does not match an existing flow. The Flow Removed messages are used to inform the controller
that a flow has been removed because of its time to live parameter or inactivity timer has expired. Finally, the
Port status messages are used to inform the controller of a change in port status or that an error has occurred on
the switch. 3) Symmetric messages: Sent by both the switch or the con-troller: The Hello messages exchanged
between the controller and switch on startup, and the Echo messages are used to determine the latency of the
controller-to-switch connection and to verify that the controller-to-switch connection is still operative. The Error
messages are used to notify the other side of the connection of problems. Finally, the Experimenter messages are
used to provide a path for future extensions to OpenFlow technology.

The Border Gateway Protocol (BGP), a wellknown core Internet routing protocol is used by Juniper Network’s
in their SDNs [29]. The controller uses BGP as a control plane protocol and leverage NETCONF (an IETF
network management protocol) as a management plane protocol to interact with physical routers, switches and
networking services like firewalls. This approach enables SDN to exist in a multi vendor environment without
requiring infrastructure upgrades. OpenFlow does not address the issue of the controller interoperability and
requires physical changes to the network, so Juniper is introducing BGP to be the standard of the SDN. Extensible
Messaging and Presence Protocol (XMPP) which was originally developed for instant messaging and online
presence detection is also emerging as an alternative SDN protocol ??730]. XMPP can be used by the controller
to distribute control plane information to the server endpoints because XMPP manages information at all levels
of abstraction down to the flow, not only to network devices.

11 c¢) Northbound APIs

The southbound interfaces allowed controllerswitches communication and provided basic operations to access the
network system. But they could not retrieve complex information from the switches and therefore programming
the network to perform high-level tasks (load balancing, implementing security policies) was difficult. Also,
it was difficult to perform multiple independent tasks (routing, access control) concurrently using the south
bound interfaces. So the northbound interface, a programming interface that allows applications to program the
network with higher level abstraction [25] [26] was introduced. Developers can use the northbound interface
to extract information about the underlying network and to implement complex applications such as path
computation, loop avoidance, routing, and security. Additionally, northbound interface can be used by controllers
to communicate with each other to share resources and synchronize policies. The North-bound interface offers
vendor in-dependability and ability to modify or customize control through popular programming languages.
Unlike southbound interfaces, there is no currently accepted standard for northbound interfaces and they are
more likely to be implemented depending on the application requirements.

218

219

220
221
222

223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

246
247
248
249
250
251

252

253
254
255
256
257
258
259

261
262
263
264
265
266
267
268

270
271
272
273
274
275

Iv.

12 SDN Development Tools and Frameworks

The concept of decoupling control plane from the data plane allows SDN to facilitate network evolution and
innovation by introducing new services and protocols easily. This section gives an overview of currently available
tools and environments for developing services and protocols with SDN.

13 a) SDN controller platforms

Many controller implementations are available for SDNs and a suitable controller can be selected by considering
the programming language and performances of the controller [31] [32] [33]. The popular controller platforms
include ovs [23], NOX [27],

POX [34], Beacon [31], Maestro [35], Trema [36] Ryu [37] and Floodlight ??38]. Table II shows a comparison of
the SDN controller platforms according to their general details and Figure 7 (taken from [31]) shows a comparison
of the performances of SDN controller platforms.

The current standard for evaluating SDN controller performance is Cbench. The Cbench simulates OpenFlow
switches and operates in either throughput or latency mode. In through-put mode, each of 64 emulated switches
constantly sends as many Packet In messages as possible to the controller, ensuring that the controller always
has messages to process. Evaluation tests have been run on Amazon’s Elastic Computer Cloud using a Cluster
Compute Eight Extra Large instance, containing 16 physical cores from 2 x Intel Xeon E5-2670 processors,
60.5GB of RAM, using a 64-bit Ubuntu 11.10 VM image. Figure 7 shows Cbench throughput mode results
using controllers with a single thread. Beacon shows the highest throughput at 1.35 million responses per
second, followed by NOX with 828,000, Maestro with 420,000, Beacon Queue with 206,000, Floodlight with
135,000, and Beacon Immediate with 118,000. Both Python-based controllers run significantly slower, POX
serving 35,000 responses per second and Ryu with 20,000. b) SDN software switch platforms With SDN, the
switch architecture has become very simple, because it is left only with the data plane. It has reduced functions
of switches and introduced concepts of software switch implementation and switch virtualization. The result
was rapid innovations in software switch platforms. The software switch platforms can be used to replace the
firmware of physical switches that do not support SDN. The popular software switch platforms include Open
vSwitch [23], Pantou/OpenWRT [39] and ofsoftswitch13 [40]. Table III shows a comparison of the SDN software
switch platforms.

14 c¢) Native SDN switches

As explained at the beginning of the paper, the promise of SDN has gained significant attention from many
network de-vices vendors. One clear evidence of industry strong commitment to SDN is the availability of
OpenFlow enabled commodity network hardware. Hewlett-Packard, Brocade, IBM, NEC, Pronto, Juniper, and
Pica8 have introduced many OpenFlow enabled switch models. Table IV shows a partial list of native SDN
switches.

15 d) SDN languages

SDN programming languages are used for higher level abstraction of programming for network management.
They consist of high-level abstractions for querying network state, defining forwarding policies and updating
policies in a consistent way [41]. SDN languages is an area of very active research and several languages have
been proposed and are still under development. Table V shows a classification of different SDN languages.

The FatTire [42] allows programmers to declaratively specify sets of legal paths through the network and
fault tolerance requirements for those paths. The FatTire compiler takes programs specified regarding paths and
translates them to OpenFlow switch configurations. Since the backup paths are configured with those programs,
responding to link failures can be done automatically without controller intervention.

The Nettle [43] was originally designed for programming OpenFlow networks. Using the discrete nature
of Functional Reactive Programming, Nettle can capture control messages to and from OpenFlow switches
as streams of Nettle events. The Nettle model messages from switches with a data type SwitchMessage and
commands to switches with a data type SwitchCommand. A Nettle program is a signal function (SF) having an
input carrying switch messages from all switches in the network and output carrying switch commands to any
switches in the network, SF (Event SwitchMessage) (Event SwitchCommand).

The Flow-based Management Language (FML) [44] comes with high-level built-in policy operators that allow
or deny certain flows flowing through a firewall or provide quality of service. If network forwarding policy falls
into the space of policies that can be described by an FML program, the code for implementing the policy is easy.
But adding new policy operators to the system requires coding outside the FML language. Moreover, a resulting
policy decision applies equally to all packets within the same flow and it is not possible to move or redirect a flow
as it is processed. So, even though FML provides network operators with a very useful set of SDN abstractions,
the programming model, is inflexible.

The Procera [45] is an extension to Nettle, which has been designed to incorporate events that originated from
sources other than OpenFlow switches. It supports policies that react to conditions such as user authentications,

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

294
295
296
297

298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

16 E) SDN DEBUGGING TOOLS

time of day, bandwidth use and server load. Procera is expressive and extensible, so users can easily extend
the language by adding new constructs. The input to the main Procera signal function is a world signal whose
instantaneous values have the abstract World type. The output of a Procera program is a signal carrying flow
constraint functions. A flow constraint function determines the constraints that are applied to a flow: allow or
deny. The Frenetic language is embedded in Python and comprises two integrated sub-languages: a declarative
network query language and a network policy management library. The results of such queries may be used for
security monitoring and for decisions about the forwarding policy.

The Flog [46] combines features of both FML and in Frenetic. From FML, Flog uses logic programming as the
central paradigm for controlling SDNs. Logic programming fits the SDN domain because SDN programming is
table driven collection and processing of network statistics. From Frenetic, Flog uses the concept that controller
programs may be factored into three key components: a mechanism for querying network state, a mechanism for
processing data learned from queries and a component for generating packet forwarding policies. Flog is designed
as an event-driven and forward chaining logic programming language. Each time a networking event occurs,
the logic program executes. It can have two effects: generates a packet forwarding policy that is compiled and
deployed on switches and generates a state that is used to help the logic program to be executed when the next
network event is processed.

The Pyretic system [47] enables programmers to specify network policies, compose them together and execute
them on abstract network topologies. The Pyretic’s static policy lan-network), and policy combinators, which
are used to mix primitive actions, predicates, and queries together to craft so-phisticated policies from simple
components. The policies can be composed together in two ways: parallel and sequential. In parallel composition,
multiple policies operate concurrently on separate copies of the same packets. In sequential composition, one
module operates on the packets produced by another.

16 e) SDN debugging tools

The emergence of SDN enables adding new network functionalities easily, at the risk of programming errors.
Even though the centralized programming model has reduced the likelihood of bugs, the ultimate success of SDN
depends on having effective ways to test applications in pursuit of avoiding bugs. There are many SDN debugging
tools have been developed and they can be divided into four categories based on the layers they are working with.
Table VI shows a classification of different debugging tools according to the layers they are working with.

The NICE [48] is an automated testing tool that can be used to identify bugs in OpenFlow programs though
model checking and symbolic execution. It automatically generates streams of packets under possible events and
tests unmodified controller programs. The programmer must supply the controller program and the specification
of a topology with switches and hosts, to use with NICE. NICE can be instructed by the programmer to check
for generic correctness properties (no forwarding loops or no black holes), and optionally application-specific
correctness properties. NICE is developed to explores the space of possible system behaviors systematically and
checks them against the desired correctness properties. As the output, NICE reports property violations with
the traces to deterministically reproduce them.

Anteater [49] is the first design and implementation of a data plane analysis system which can be used to find
bugs in real networks. The system detects problems by analysing the contents of forwarding tables in routers,
switches, firewalls and other networking equipment. ??t The ndb [50] is a prototype network debugger inspired
by gdb (a popular debugger for software programs). It implements two primitives useful for debugging a SDN
control plane: breakpoints and packet back-traces. A packet back-trace in ndb allows the user to define a packet
breakpoint (an un-forwarded packet or a packet filter). Then it shows the sequence of for-warding actions seen
by that packet leading to the breakpoint.

OFRewind [51] allows SDN control plane traffic to be recorded at different granularities. Later they can be
replayed to reproduce a specific scenario, giving the opportunity to localize and troubleshoot the events that
caused the network anomaly. It records flow table state via a proxy and logs packet traces and aids debugging
via scenario re-creation. The VeriFlow [52] is a SDN debugging tool which finds faulty rules issued by SDN
applications and prevents them from reaching the network and causing anomalous network behavior.

VeriFlow operates as a layer between the controller and the devices, and checks the validity of invariants as
each rule is inserted. To ensure a real-time response, VeriFlow introduces new algorithms to search for potential
violation of key network invariants: availability of a path to the destination, absence of routing loops, access
control policies or isolation between virtual networks.

Other than the SDN debugging tools which were described earlier, there are two SDN troubleshooting
simulators: STS (SDN Troubleshooting Simulator) [53] and OpenSketch [54]. STS [53] is a SDN troubleshooting
simulator which is written in python and depends on POX controller [34]. It simulates the devices of the network
to allow operators to easily generate test cases, examine the state of the network interactively and find the exact
inputs that are responsible for triggering a given ment architecture, which separates the measurement data plane
from the control plane. In the data plane, OpenSketch provides a simple three-stage pipeline (hashing, filtering,
and counting). They can be implemented with commodity switch components and support many measurement
tasks. In the control plane, OpenSketch provides a measurement library that automatically configures the pipeline
and allocates resources for different measurement tasks.

337

338
339
340
341
342
343
344
345
346

347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

377

378
379
380
381
382
383
384
385
386
387
388
389

17 f) SDN emulation and simulation tools

The Mininet [55], the Emulab and the ns-3 [56] are popular emulation and simulation Tools used with SDN.
Mininet [55] is an emulation environment which creates a complete network of hosts, links, and switches on a
single machine. It creates virtual networks using process-based virtualization and network namespaces (features
available in Linux kernels). In Mininet, hosts are emulated as bash processes running in a network namespace.
So any code that would run on a Linux server can be run within a Mininet "Host”. The Mininet "Host” has its
private network interface and can only see its own processes. Switches in Mininet are software- The Emulab [57]
is a network emulation testbed which includes a network facility and a software system. Emulab is widely used
by computer science researchers in the fields of networking and distributed systems and it support OpenFlow.
So currently it is used also used for SDN research works. The primary Emulab installation is

18 g) SDN virtualization tools

The OpenFlow has opened the control of a network for innovation, but only one network administrator can do
experiments on the network at a time. If there is a way to divide, slice or replicate network resources, more
than one network administrator can use them in parallel to do experiments. Actions in one slice or replication
should not negatively affect other, even if they share the same underlying physical hardware. SDN Virtualization
concepts have been introduced to achieve these goals.

The FlowVisor [58] is a special purpose OpenFlow controller that allows multiple researchers to run experiments
independently on the same production OpenFlow network. It uses a new approach to switch virtualization,
in which the same hardware forwarding plane is shared among multiple logical networks, each with distinct
forwarding logic. FlowVisor acts as a middle layer between the underlying physical hardware and the software
that controls it. It is implemented as an OpenFlow proxy that intercepts messages between OpenFlow switches
and OpenFlow controllers. The AutoSlice [59] devel-ops a transparent virtualization layer (SDN hypervisor)
which automates the deployment and operation of vSDN topologies. In contrast to FlowVisor, AutoSlice focuses
on the scalability aspects of the hypervisor design. AutoSlice monitors flow level traffic statistics to optimize
the resource utilization and to mitigate flow-table limitations. With the distributed hypervisor architecture,
Autoslice can handle large numbers of flow table control messages from multiple tenants.

In a virtual machine environment, moving applications from one location to another without a disruption in
service is called Live virtual machine (VM) migration. SDN applications can reside and rely on multiple VMs.
So migrating individual SDN VMs, one by one, may disrupt the SDN applications. So the LIME [60] design
migrate an ensemble: the VMs, the network, and the management system to a different set of physical resources
at the same time. LIME uses the SDN concept of separation between the controller and the data plane state in
the switches. LIME clones the data plane state to a new set of switches, transparent to the application running
on the controller. And then incrementally migrates the traffic sources.

The RouteFlow [61] provides virtualized IP routing over OpenFlow capable hardware. It is composed with a
OpenFlow Controller application, a server, and a virtual network environ-ment. The virtual network environment
rebuild the connectivity of the physical infrastructure and runs IP routing engines. The routing engines generate
the forwarding information base (FIB) according to the routing protocols configured. An ex-tension of RouteFlow
[62], discusses incorporating RCPs [17] in the context of OpenFlow and SDN. It proposes a controller centric
networking model with a prototype implementation of an autonomous system-wide abstract BGP routing service.

V.

19 Final Remarks

SDNs have emerged in the last decade as a very active research domain, gaining significant attention from both
academia and industry. This survey discussed the state of art in SDN, with a historic perspective of the field by
describing the SDN paradigm, architecture and deployments in detail.

We first introduced the concepts and definitions that enable a clear understanding of SDNs. The idea of
programmable networks and decoupled control logic has been around for many years and the history of SDN
goes back to the early 1980s. Central network control, programmability in networks, network virtualization and
control of packet switched networks were the four main supporting technologies which helped SDN to evolve.
The survey was extended by exploring the OpenFlow project and the standardized SDN architecture. Standard
SDN three tier architecture includes: SDN controller, southbound APIs and northbound APIs. For a broader
scope, the pa-per detailed the tools and frameworks associated with SDN development in the categories of SDN
controller platforms, SDN software switch platforms, native SDN switches, SDN languages, SDN debugging tools,
SDN emulation/simulation tools and SDN virtualization tools. Year 2 019 () C 4B

1() C © 2019 Global Journals Past before Future: A Comprehensive Review on Software Defined Networks
Road Map

2@ 2019 Global JournalsPast before Future: A Comprehensive Review on Software Defined Networks Road
Map

19 FINAL REMARKS

*a
L
o*

Controller

~OpenFlow ™,
~—__switch

Secure OpenFlow

SW
Channel *,.._.f.r.ﬁcﬁ?.j...

S5L

Flow
Table

gt

...‘.I EEEEEEEEREE

hw

‘.IIIIIIIIIIIIIbIIIIIIIIIIIIII‘.‘
v

]

o

]
u
L]
[]
u
-
-
-

Figure 1: Fig. 1:

Flow Entry

TR R ST R R e

Packet Counters,
byte counters.

Examples;

Forward packet to a port list
Add/remove/modify VLAN Tag
Drop packet

Send packet to the controller

Layer 2 Layer 3
A M
il s il

/

MAC | MAC EtherT VLAN | P- | P 1P [IP | TCP/UDP| TCF/UDP
DA | 5A e D I:it:-!Sn: Dst | Protocol| D3CP | srcport dst_purt

Imgress
Fort
g P

|

Figure 2: Fig. 2 :

Abstraction |
providedto 4 | Matching Rules Actions Counters
the controller
¥
i N B
TCAMSs are used RAM has instructions on
Vendar hierarchically to how 10 process a packet)
specific data .1 perform matching
plane and classification . L] 5
of a packet Process packet by
its classification
Y P Ty r
| :
Packet H.Hpmng_ Input PI;H'I Cutput Forwanding Packst
biffer port batfer handware
Figure 3:
Erh Packet Extracted
T 1
Pa:;ne * Parsing q header
t
g System fields
Open Flow Table Interaction
Priority | Rule | Action |
Found & matched rule Mot found & matched rule

Perform the action according to the rule

I Send Packet to the controller I

Figure 4: Fig. 3:

19 FINAL REMARKS

o I» I I>
= = = i
= = = =
Northbound API
SDN Controller Platform
: Southbound API >
Switch Switch
vSwitch vSwitch
4
Figure 5: Fig. 4 :
Controller
Fy

DpenFluwi Protocol

[
¥

Secure Group
Channel . | Table
Flow Flow
Table Table

OpenFlow Switch

Figure 6: Fig. 5:

10

1.4M

1.3.0
No

Yes
Yes
Yes
Yes

1.2M
2 1M
O
2 800K
o
2. 600K
¥
& 400K
200K
v e X OO OF oy
o0 \}f’ R e OO
DY AL o0 OV e®
o™ \0
ia,_":.'D E,‘?.-"-'E" -‘E
P Y
Figure 7:

Specification 1.0.0 1.1.0 1.2.0
Widely deployed Yes No No
Flow tables One Multiple Multiple Multiple
Group tables No Yes Yes
MPLS matching No Yes Yes
Group tables No Yes Yes
IPV6 Support No No Yes
Simultaneous communication No No Yes

I1I.

Figure 8: Table I :

11

Yes

19 FINAL REMARKS

11
Name Languagkicense Original Can
authors Ex-
tend
Ovs C OpenFlowStanford/ No

license Nicira

NOX C++4+ GPL Nicira Yes
POX Python GPL Nicira Yes

Beacon Java GPL

Maestro Java LGPL

Trema Ruby, GPL
C

Floodlightava Apache

111

Year 2 019
14

) (C

Stanford Yes

Rice Yes
NEC Yes

Big switch Yes

Currentlyotes

ac-

tive

No A reference controller, act as a learning
switch

Yes Event-based

Yes Event-based

Yes Web Interface, Regression test frame-
work, Event based and Multi-thread
based

No Multi-thread based

No Emulator and Regression test frame-
work

Yes REST APIs, Supports multi-tenant
clouds

Figure 9: Table II :

Software switch Language OpenVSwitch C, Python OpenFNotes Implements a switch platform in a virtus

Pantou/ C

OpenWRT

ofsoftswitch13 C,
C++

© 2019 Global
Journals

v

Ver-
sion
\%
1.0

Figure 10: Table III :

Figure 11: Table IV :

12

ized server environment. Supports standard Et
ernet switching with VLANs and access contr
lists. Provides interfaces for managing configur
tion state and a method to remotely manipula
the forwarding

path.

A user space software switch implementation. Tl
code is based on the Ericsson’s

Traffic Lab 1.1 soft switch implementation.

© 2019 Global Journals

A\Y

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

Switch Company Series

Cisco Cisco catbk, catalyst
3750,6500 series

Juniper Juniper MX-240,T-640

HP HP pro-curve
5400z1,8200z1,6200z1,35002z1,6600

NEC NEC 1P8800

Pronto Pronto 3240, 3290

Dell Toroki Ciena Dell 79000 and S4810 Year
Toroki Light switch 2
4810 Ciena Core- 019
director running
firmware version 6.1.1

Quanta Quanta LB4G

Table VI: Classification of SDN debugging tools
according to the layers they are working with

(connectivity or consistency) that exist in the data plane.
Violations of these invariants are considered as a bug in
the network. Anteater translates the detected high-level
network invariants into instances of boolean satisfiability
problems (SAT). Then checks them against network
state using an SAT solver. And finally, if violations have

been found, it reports counter examples.
© 2019 Global Journals

Figure 12: Table V :

13

19 FINAL REMARKS

Language
FatTire

Nettle

FML

Procera

Flog

YearFrenetic
2
019

Pyretic

Layer

Application layer
Data Plane
Control Plane

Supports
Only
OpenFlow
Only
OpenFlow

Only
OpenFlow

Any type of
hard-

ware
Any type of
hard-

ware Any type
of hard-ware

Any type of
hard-

ware

) A new layer between Data Plane and Control Plane

© 2019
Journals

Figure 13:

14

Type

Functional

Logical

Functional

Logical

Logical

Logical

Tools
NICE
Anteater
ndb,
OFrewind
VeriFlow

Based on
Regular
expressions
Functional
Reactive
Program-
ming
datalog

Functional
Reactive
Program-
ming
datalog

Query
language

Query
language

Used for

Fault tolerant pro-
gramming

Load balancing
programming

Policy implementa-
tion programming
General program-
ming

General program-
ming
General program-
ming

General program-
ming

390

391
392
393
394
395

396

397
398

399
400

401
402

403
404

405
406

407
408

41C
411

412
413

414

415
416

417
418

41¢
420

421
422

423
424

425
426

427
428

429

430

431
432

434

435
436

437

43¢
440

441
442

443
444

.1 Acknowledgment

.1 Acknowledgment

I would like to thank Prof. Jorge Lobo, Prof. A. Russo, Dr. Frank Le, Dr. C. Makaya and Prof. H. Ramalhino,
who collaborated in all my SDN related research work [63], [64], [65], [66], [67], [68].

run by the Flux Group, part of the School of Computing at the University of Utah. The ns-3 [56] is a discrete
event network simulator for internet systems. It is based on C++ and Python and widely used for research and
educational use. Since ns-3 provides support for OpenFlow, it can be used to emulate SDNs.

[Rothenberg and Nascimento] , C E Rothenberg , M R Nascimento . (Revisiting routing)

[Ma et al.] A compre-hensive study on load balancers for vnf chains horizontal scaling, J Ma , W Rankothge , C
Makaya , C Morales . arXiv:1810.03238.

[Lantz et al. ()] ‘A network in a laptop: rapid prototyping for software-defined networks’. B Lantz , B Heller , N
Mckeown . ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[Canini and Venzano ()] ‘A nice way to test openflow applications’. M Canini , D Venzano . USENIX conference
on Networked Systems Design and Implementation, 2012.

[Tennenhouse and Smith ()] ‘A survey of active network research’. D L Tennenhouse , J M Smith . IFEE
Communications Magazine 1997.

[D ()] ‘Active network vision and reality: lessons from a capsule-based system’ D . ACM Operating Systems
Review 1999.

[Ma et al. ()] ‘An overview of a load balancer architecture for vnf chains horizontal scaling’. J Ma , W Rankothge
, C Makaya , C Morales , F Le , J Lobo . IEEE IFIP CNSM, 2018.

[Wang and Tsou] Analysis of comparisons between openflow and forces draft-wang-forces-
compareopenflowforces;, H J S X Wang , Z Tsou , T , YX . http://tools.ietf.org/html/
draft-wang- forces-compare-openflow-forces-01

[Bozakov and Papadimitriou] ‘Autoslice: automated and scalable slicing for software-defined networks’. Z
Bozakov , P Papadimitriou . CONEXT Student 12,

[Available] http://https://www.coursera.org/course/sdn Available,

[Sherwood and Chan ()] ‘Carving research slices out of your production networks with openflow’. R Sherwood ,
M Chan . ACM SIGCOMM 2008.

[Menga ()] Cenp practical studies: Layer 8 switching, J Menga . http://www.ciscopress.com/articles/
article.asp?p=102093 2003.

[Santhanam ()] Clisco support community: Cam vs tcam, T Santhanam . https://supportforums.cisco.
com/docs/DOC-15833 2011.

[Fernandez] ‘Comparing openflow controller paradigms scalability: Reactive and proactive’ F M Fernandez .
AINA 2013,

[Monsanto and Reich ()] ‘Composing software defined networks’. C Monsanto , J Reich . USENIX Conference
on Networked Systems Design and Implementation, 2013.

[Controller performance comparisons ()] Controller performance comparisons, http://www.noxrepo.org/
pox/about-pox/ 2011. 2012. (About pox)

[Rankothge et al.] Data modelling for the eval-uation of virtualized network functions resource allocation
algorithms, W Rankothge , F' Le , J Lobo . arXiv:1702.00369.

[Mai and Khurshid ()] ‘Debugging the data plane with anteater’. H Mai , A Khurshid . ACM SIGCOMM, 2011.
[Caesar and Caldwell ()] Design and implementation of a routing control platform, M Caesar , D Caldwell . 2005.

[Emulab -network emulation testbed home ()] Emulab -network emulation testbed home, http://www.
emulab.net/ 2013.

[Casado ()] ‘Ethane: Taking control of the enterprise’. M Casado , MJ F . Computer Communication Review
(ACM SIGCOMM) 2007.

[Rankothge et al. ()] ‘Experimental results on the use of genetic algorithms for scaling virtualized network
functions” W Rankothge , F Le , A Russo , J Lobo . IEEE SDN/NFV, 2015.

[Reitblatt and Canini ()] Fattire: Declarative fault tolerance for software-defined networks, M Reitblatt , M
Canini . 2013.

[Johnson ()] feature/Border-Gateway-Protocol-as-a-hybrid-SDN-protocol 80, S Johnson . http://searchsdn.
southbound-SDN-protocol 2012. 2012. (The role for xmpp as a southbound sdn protocol)

[Doria and Salim ()] Forwarding and control element separation (forces) protocol specification, A Doria , J H
Salim . RFC 5810. 2010.

[Feamster et al. ()] ‘How to lease the internet in your spare time. N Feamster , L Gao , J Rexford . ACM
SIGCOMM, 2007.

15

http://tools.ietf.org/html/draft-wang-forces-compare-openflow-forces-01
http://tools.ietf.org/html/draft-wang-forces-compare-openflow-forces-01
http://tools.ietf.org/html/draft-wang-forces-compare-openflow-forces-01
http://https://www.coursera.org/course/sdn
http://www.ciscopress.com/articles/article.asp?p=102093
http://www.ciscopress.com/articles/article.asp?p=102093
http://www.ciscopress.com/articles/article.asp?p=102093
https://supportforums.cisco.com/docs/DOC-15833
https://supportforums.cisco.com/docs/DOC-15833
https://supportforums.cisco.com/docs/DOC-15833
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/
http://www.emulab.net/
http://www.emulab.net/
http://www.emulab.net/
http://searchsdn.southbound-SDN-protocol
http://searchsdn.southbound-SDN-protocol
http://searchsdn.southbound-SDN-protocol

445
446

447
448

449

450

451
452

453

454
455

456

458
459

460
461

462
463

464

466

467

468
469

470
471

472
473

474
475
476

477
478

479
480
481

482

483
484

485
486

488

489
490

491
492

493

494
495

496
497

19 FINAL REMARKS

[Kim and Feamster ()] Improving network management with software defined networking, H Kim , N Feamster .
2011. (Open networking foundation)

[Bavier and Feamster ()] ‘In vini veritas: Realistic and con-trolled network experimentation’. A Bavier , N
Feamster . Computer Communication Review 2006.

[NF ()] ‘Languages for software-defined networks’. NF . IEEE Communications Magazine 2013.
[Keller and Arora ()] Live migration of an entire network and its hosts, E Keller , D Arora . 2012. (in HotNets-XI)

[Kaia et al. ()] ‘Logic programming for software-defined networks: Flog. N P Kaia , J Rexford , D Walker . ACM
SIGPLAN Workshop on Cross-model Language Design and Implementation, 2012.

[Cai and Cox ()] ‘Maestro: A system for scalable openflow control’. Z Cai, A L Cox . Tech. Rep 2010.

[Voellmy and Hudak ()] ‘Nettle: Functional reactive programming of openflow networks’ A Voellmy , P Hudak
. International Conference on Practical aspects of declarative languages, 2011.

[Henderson et al. ()] ‘Network simulations with the ns-3 simulator’. T R Henderson , M Lacage , G F Riley .
ACM SIGCOMM Workshop on Hot Topics in Networks, 2008.

[Gude and Koponen ()] ‘Nox: towards an operating system for networks. N Gude , T Koponen . ACM
SIGCOMM 2008.

[Wundsam and Levin ()] ‘Of rewind: enabling record and re-play troubleshooting for networks’. A Wundsam |,
D Levin . USENIX conference on USENIX annual technical conference, 2011.

[Erickson ; A. Tootoonchian and Gorbunov ()] On controller performance in softwaredefined networks, D Erick-
son ; A. Tootoonchian , S Gorbunov . 2013. 2012. (The beacon openflow controller. in Hot-ICE)

[Open networking research center (onrc) ()] http://onrc.net Open networking research center (onrc), 2011.

[Campbell and Katzela ()] ‘Open signaling for atm, internet and mobile networks’. A T Campbell , I Katzela .
Computer Communication Review (ACM SIGCOMM) 1998.

[Limoncelli ()] ‘Openflow: a radical new idea in networking’ T A Limoncelli . http://www.openflow.org/
wp/current-deployments/23 Open Networking Foundation, Tech. Rep 2012. 2012. 2013. 22. (ACM Queue
-Performance)

[Mckeown and Anderson ()] ‘Openflow: enabling innovation in campus networks’. N Mckeown , T Anderson .
ACM SIGCOMM, 2008.

[Rankothge and Le ()] ‘Optimizing resources allocation for virtualized network functions in a cloud center using
genetic algorithms’. W Rankothge , F Le . IEEE TNSM, 2017.

[Hinrichs and Gude ()] ‘Practical declarative network management’. T L Hinrichs , N S Gude . Proceedings of the
1st ACM Workshop on Research on enterprise networking, (the 1st ACM Workshop on Research on enterprise
networking) 2009.

[Voellmy et al. ()] Procera: A language for high-level reactive network control, A Voellmy , H Kim , N Feamster
. 2012.

[Ryu : a component-based software-defined networking framework ()] Ryu : a component-based software-defined
networking framework, http://www.openflow.org/wk/index.php/0Open-Flowl.0forOpenWRT39
2012. 2012. 2012. 2011. (Pantou: openflow 1.0 for openwrt. ofsoftswitch13,” 2011. [Online)

[Feamster ()] Sdn course, N Feamster . 2013.

[Sdn troubleshooting simulator (sts) ()] Sdn troubleshooting simulator (sts), http://ucb-sts.github.com/
sts/ 2013.

[Schwartz and Jackson ()] ‘Smart packets: applying active networks to network management’. B Schwartz , A
W Jackson . ACM Transactions on Computer Systems 2000.

[Yu et al. ()] ‘Software defined traffic measurement with opensketch’. M Yu , L Jose , R Miao . USENIX
Symposium on Networked Systems Design and Implementation, 2013.

[Shin et al.] Softwaredefined networking (sdn): A reference architecture and open apis, M.-K Shin , H.-J Kim ,
K.-H Nam . ICTC 2012.

[Lawser ()] ‘Stored program controlled network: Generic network plan’ J J Lawser , Lecronier . Bell System
Technical Journal 1982.

[Smith and Farber ()] ‘Switchware: Accelerating network evolution’. J M Smith , D J Farber . Tech. Rep 1996.

[Jonathan and David ()] ‘The open sdn architecture -big switch networks’. M S Jonathan , J F David . Tech.
Rep 2011.

[Van ()] The tempest: A practical framework for network programmability, J E Van . 1998. IEEE Networks
Magazine.

16

http://onrc.net
http://www.openflow.org/wp/current-deployments/23
http://www.openflow.org/wp/current-deployments/23
http://www.openflow.org/wp/current-deployments/23
http://www.openflow.org/wk/index.php/Open-Flow1.0forOpenWRT39
http://ucb-sts.github.com/sts/
http://ucb-sts.github.com/sts/
http://ucb-sts.github.com/sts/

498
499

500
501

502

503
504

505
506

.1 Acknowledgment

[Rankothge et al. ()] ‘Towards making network function virtualization a cloud computing service’. W Rankothge
,JMa , F Le, A Russo, J Lobo . IEEE IM, 2015.

[Yemini and Silva ()] ‘Towards programmable networks’ Y Yemini , S D Silva . IEEE International Workshop
on Distributed Systems: Operations and Management, 1996.

[Khurshid and Zhou ()] Veriflow: verifying network-wide invariants in real time, A Khurshid , W Zhou . 2011.

[Nascimento and Rothenberg ()] ‘Virtual routers as a service: the routeflow approach leveraging software-defined
networks’. M R Nascimento , C E Rothenberg . Future Internet Technologies, 2011.

[Handigol and Heller ()] Where is the debugger for my software-defined network?, N Handigol , B Heller . 2012.
(in HotSDN)

17

