

1 A Comparative Study of Image Retrieval Algorithms for 2 Enhancing a Content-based Image Retrieval System

3 Elsaeed E. AbdElrazek¹

4 ¹ Dumyat University-Faculty of specific Education Dumyat, Egypt

5 *Received: 14 December 2016 Accepted: 3 January 2017 Published: 15 January 2017*

6

7 **Abstract**

8 Content Based image retrieval (CBIR) is in retrieve digital images by the actual content in the
9 image .The content are the features of the image such as color, shape, texture and other
10 information about the image including some statistic measures of the image. In this paper
11 Content Based Image Retrieval algorithms are discussed. The comparative study of these
12 algorithms is done. This article covers various techniques for implementing Content Based
13 Image Retrieval algorithms and Some Open Source examples of Content-based Image
14 Retrieval Search Engines.

15

16 **Index terms**— image retrieval algorithms, content-based image retrieval system, feature detection algo-
17 rithms.

18 **1 Introduction**

19 with the explosive growth of the Internet, Web Search technology marked by keywords has acquired a great success
20 in the tremendous information retrieval. As the network develops into the Web2.0 era, people no longer satisfy
21 with merely the text-search, also want to be able to find more images from the sample image. In the future,
22 image search engine will become the main tool of the user to retrieve images in the network [1].

23 The image content is more complexity than the text content to search kinds of information; images can only
24 be expressed through their own content features. Therefore, image retrieval to be implemented is much more
25 difficult than text retrieval.

26 On the other hand, people have developed many convenient development toolkits, which are capable of
27 establishing image feature database. That makes it possible that the image search technology becomes more
28 and more mature. As the same time, the efficiency of retrieving image becomes better than that of the past [2].

29 With the growth of the Internet, and the availability of image capturing devices such as digital cameras and
30 image scanners, image databases are becoming larger and more widespread, and there is a growing need for
31 effective and efficient image retrieval systems. There are two approaches for image retrieval: text-based and
32 content-based. The text-based approach can be tracked back to 1970s [3]. In such systems, the images are
33 manually annotated by text descriptors, which are then used by a database management system to perform
34 image retrieval. There are two disadvantages with this approach, the first is that a considerable level of human
35 effort is required for manual annotation. The second is the annotation inaccuracy due to the subjectivity of
36 human perception. To overcome the above disadvantages in text-based retrieval system, content-based image
37 retrieval (CBIR) was introduced in the early 1980s.

38 In CBIR, the image visual content is a matrix of pixel values which are summarized by low-level features such
39 as color, texture, shapes. We describe a CBIR methodology for the retrieval of images, whereas for humans the
40 content of an image refers to what is seen on the image, e.g." a forest, a house, a lake ". One of the research issues
41 in content-based image retrieval is to reduce this semantic gap between the image understanding of humans and
42 the image understanding of the computer, Humans tend to use high-level features (concepts), such as keywords,
43 text descriptors, to interpret images and measure their similarity. While the features are automatically extracted
44 using computer vision techniques are mostly low-level features (color, texture, shape, spatial layout, etc.). In
45 general, there is no direct link between the high-level concepts and the low-level features.

5 IMAGE RETRIEVAL

46 Digital image databases and image processing techniques have developed significantly over the last few years.
47 Today, a growing number of digital image databases are available, and are providing usable and effective access
48 to image collections. In order to access these resources, users need reliable tools to access images. The tool that
49 enables users to find and locate images is an image search engine Search engines that use Text-Based Image
50 Retrieval (TBIR) are Google, Yahoo. TBIR is based on the assumption that the surrounding text describes
51 the image. The technique relies on text surrounding the image such as filenames, captions and the "alt"-tag in
52 HTML and paragraphs close to the image with possible relevant text. The other approach uses image annotation
53 of the images and is often a manual task. Annotation of images lets the provider annotate the image with
54 the text (metadata) that is considered relevant. Most text based image retrieval systems provide a text input
55 interface that users can type keywords as a query. The query is then processed and matched against the image
56 annotation, and a list of candidate images are returned to the users. The Drawbacks of TBIR as follows: 1. In
57 TBIR, humans are required to personally describe every image in the database, so for a large image database
58 the technique require too much effort and time for manual image annotation. [4]. 5. The queries are mainly
59 conducted on the text information and consequently the performance heavily depends on the degree of matching
60 between the images and their text description. 6. The use of synonyms would result in missed results that would
61 otherwise be returned.

62 In order to overcome the drawbacks of text based image retrieval system outlined above, and to assist users in
63 finding desired images from the expected tens of millions of images, the Content-based image retrieval (CBIR)
64 techniques can be designed to meet this aim.

65 The current research will focus on Comparison of Image Retrieval Algorithms within Image search engines, to
66 identify searchable image features, to compare them based on their features, and to analyze the possible impact
67 of these features on retrieval for enhancing a content-based image retrieval system Most search engines rely on
68 weak algorithms such as Color Histogram and Texture, which affects search results and images that do not match
69 the query image. So the current research is trying to review these algorithms as an attempt to integrate them to
70 achieve the quality of the search results.

71 2 II.

72 The Research Problem Can be Couched in the Following Questions III.

73 3 Objectine

74 This search introduces a Comparison of Image Retrieval Algorithms within image search engines on the World
75 Wide Web based on image recognition techniques. The main objectives are summarized in the following aspects:
76 ? Highlight image retrieval algorithms which collect images from the World Web according to its low level
77 features (color, texture and shape). ? Forming a scalable and adaptive CBIR framework for World Wide Web
78 (www) users and search engines platforms 2). ? Enable the user to search for the images which are similar to
79 his/her query in the contents and returns a set of images that similar to the user's query. ? Improving the overall
80 performance of feature extracting processing. ? To acquire reliable and accurate results to validate the approach.
81 ? Improving the overall timing of user's query.

82 4 IV.

83 5 Image Retrieval

84 Search for an image from a collection of images was commonly done through the description of the image. As
85 the number of image collections and the size of each collection grow dramatically in recent years, there is also a
86 growing needs for searching for images based on the information that can be extracted from the image themselves
87 rather than their text description. Content Based image retrieval (CBIR) IS an approach for meeting this need
88 .CBIR is in retrieve digital images by the actual content in the image The content are the features of the image
89 such as color, shape, texture and other information about the image including some statistic measures of the
90 image.

91 Image retrieval techniques integrate both low level Visual features addressing the more detailed perceptual
92 aspects and high level semantic features underlying the more general conceptual aspects of visual data. supplied
93 image. The similarity of images is determined by the values or similarity measures that are specifically defined
94 for each feature according to their physical meaning ? High Level Semantic-Based Searching: The notion of
95 similarity is not based simple feature matching and usually from extended user interaction with the system. At
96 a higher semantic level that is better attuned to matching information needs. Such indexing techniques produce
97 descriptions using a fixed vocabulary or so-called high-level features also referred to as semantic concepts.

98 The image retrieval systems based on the most commonly used image features following:

99 ? The Color: it does not find the images whose colors are exactly matched. But images with similar pixel
100 color information. This approach has been proven to be very successful in retrieving images since concepts of the
101 color-based similarity measure is simple. And the convention algorithms are very easy to implement. Besides,
102 this feature can resist noise and rotation variants in images. However, this feature can only used to take the
103 global characteristics into account rather than the local one in an image. Such as the color difference between

104 neighboring objects in an image. it is often fails to retrieve the images that are taken from the same scene in which
105 the query example is also taken from under different time or conditions [5] ? The Shape: Natural objects are
106 primarily recognized by their shape. A number of features characteristic of object shape are computed for every
107 object identified within each stored image. Generally, Shape representations can be divided into two categories,
108 boundary -based and region-based. The former uses only the outer boundary of the shape while the latter uses
109 the entire shape region [4] ? A shape-based image retrieval stein accepts as input an image provided by the user
110 and outputs a set of (possibly ranked) images of the system's database, each of which should contain shapes
111 similar to the query, There are two main types of possible queries: queries by example and quay by sketch. In
112 shape-based retrieval no isolated objects are difficult to deal with because they need to be localized in the image
113 before in order to be compared with the query. shape localization is a non-trivial problem, since it involves high
114 level scene segmentation capabilities how to separate interesting objects from the background is still an open and
115 difficult research problem in computer vision .the second problem is the necessity to deal with inexact matching
116 between a stylized sketch and a real. Possibly detailed, shape contained in the image, will be need to take into
117 account possible differences between the two shapes when compared between of them [6] ? The Texture: texture
118 is an important characteristic in many types of images. Despite its importance a formal definition of texture
119 does not exist. When an image has wide variation of tonal primitives, the dominant property of that image
120 is Texture. Texture is the spatial relationship exhibited by grey levels in a digital image. Textural measures
121 are measures capture that spatial relationship among pixels, spatial measures, which refer to measures mostly
122 derived from spatial statistics, have been used largely in geospatial applications for characterizing and quantifying
123 spatial patterns and processes [7] The method of texture analysis is divided into two approaches: statistical and
124 structural. For biological section images, the statistical approach is appropriate because the image is normally not
125 periodical like a crystal. In the statistical approach, there are various ways to measure the features of the texture.
126 Tested the discriminating power of various tools: spatial gray -level dependence method (SGLDM), gray -level
127 difference method (GLDM), gray-level nun length method(GLNLM), power spectrum method(PSM),Gray level
128 co-occurrence matrix(GLCM),Intensity histogram features and GLCM features are extracted in our proposed
129 method.

130 A useful approach to texture analysis is based on the intensity histogram of all or part of an image. Common
131 histogram features include: moments, entropy dispersion, mean (an estimate of the average intensity level),
132 variance (the second moment is a measure of the dispersion of the region intensity), mean square value or average
133 energy, skewness (the third moment which gives an indication of the histograms symmetry) and kurtosis (cluster
134 prominence).

135 One of the simplest ways to extract statistical features in an image is to use the first-order probability
136 distribution of the amplitude of the quantized image may be defined as: Where M represents the total number
137 of pixels in a neighborhood window of specified size centered about (j, k), b is a gray level in an image, and N
138 (b) is the number of pixel of amplitude rb in the same window. $P(b) = P_R \{F(j, V)$.

140 6 Content-based Image Retrieval (cbir)

141 Several techniques have been proposed to extract content characteristics from visual data automatically for
142 retrieval proposed. CBIR applications became a part of a practical life and used in several commercial,
143 governmental archives, and academic institutes such as libraries. CBIR is alternative to the text-based image
144 retrieval and becomes the current research area of image retrieval [8,9]. In CBIR systems, the image content is
145 represented by a vector of image features instead of a set of keyword. The image is retrieved according to the
146 degree of similarity between features of images.

147 7 Figure 1: Content-based Image Retrieval System

148 The main components of CBIR system are as follows [10]: 1. Graphical User Interface which enable the user to
149 select the query which can be in one of the following forms: 2. An image example: content based image retrieval
150 systems allow the user to specify an image as an example and search for the images that are most similar to
151 it, presented in decreasing order of similarity score. 3. Query/search engine: it is a collection of algorithms
152 responsible for searching the database for images that is similar to the user's query. 4. Image Database: it is
153 repository of images. 5. Feature extraction: it is the process of extracting the visual features (color, shape and
154 texture) from the images. 6. Feature Database: it is repository for image features.

155 VI.

156 8 Feature Detection Algoritm

157 Feature detection algorithms consist of two basic categories [11] The drawback of a global histogram representation
158 is that information about object location, shape, and texture is discarded. Color Histogram variants with rotation,
159 scale, illumination variation and image noise with no sense of human perception. So, new algorithms are presented
160 to overcome this limitation [4].

161 9 b) Features from Accelerated Segment Test (FAST) Algo- 162 rithm

163 The beginnings of feature detection can be tracked with the work of Harris and Stephen and the later called
164 Harris Corner Detector which aims to introduce a novel method for the detection and extraction of feature-points
165 or corners.

166 The Harris corner detector is a popular interest point detector due to its strong invariance to: rotation, scale
167 and image noise by the auto-correlation function. Harris was successful in detecting robust features in any given
168 image meeting basic requirements that satisfied the first two criterions above [13]. But since it was only detecting
169 corners, his work suffered from a lack of connectivity of feature-points which represented a major limitation for
170 obtaining major level descriptors (such as surfaces and objects) and limitation in speed.

171 The main contribution of FAST was summarized as: "A new algorithm which overcame some limitations of
172 currently used corner detectors" [14].

173 With FAST, the detection of corners was prioritized over edges as they claimed that corners are one of the most
174 intuitive types of features that show a strong two dimensional intensity change, and are therefore well distinguished
175 from the neighboring points Also, FAST modified the Harris detector so as to decrease the computational time
176 [8].

177 10 c) Scale Invariant Feature Transform (SIFT) Algorithm

178 SIFT was developed by David Lowe in 2004 Aim to presents a method for detecting distinctive invariant features
179 from images that can be later used to perform reliable matching between different views of an object or scene.
180 Two key concepts are used in this definition: distinctive invariant features and reliable matching [9]. SIFT is
181 broken down into four major computational stages [11]:

182 The main contribution of SIFT was summarized as: "A new texture algorithm which invariant feature
183 transforms and overcome some limitations of currently used corner detectors". In SIFT algorithm, "there is no
184 need to analysis the whole image" but you can use only interested key points to describe image. Unfortunately,
185 the drawback of algorithm is that SIFT consider as the slowest texture-based algorithm, complex in computations
186 and consume resources [15].

187 PCA is a standard technique for dimensionality reduction and has been applied to a broad class of
188 computer vision problems, including feature selection, object recognition. While PCA suffers from a number
189 of shortcomings, such as its implicit assumption of Gaussian distributions and its restriction to orthogonal
190 linear combinations, it remains popular due to its simplicity. The idea of applying PCA to image patches is not
191 novel. Our contribution lies in rigorously demonstrating that PCA is well-suited to representing keypoint patches
192 (once they have been transformed into a canonical scale, position and orientation), and that this representation
193 significantly improves SIFT's matching performance. Research showed that PCA-SIFT was both significantly
194 more accurate and much faster than the standard SIFT local descriptor. However, these results are somewhat
195 surprising since the latter was carefully designed while PCA-SIFT is a somewhat obvious idea. We now take a
196 closer look at the algorithm.

197 11 d) Principal Component Analysis -Scale Invariant

198 Feature Transform (PCA-SIFT Algorithm) Our algorithm for local descriptors (termed PCA-SIFT) accepts the
199 same input as the standard SIFT descriptor: the sub-pixel location, scale, and dominant orientations of the
200 key-point. We extract a 41×41 patch at the given scale, centered over the key-point, and rotated to align its
201 dominant orientation. PCA-SIFT can be summarized in the following steps: pre-compute an eigenspace to
202 express the gradient images of local patches; given a patch, compute its local image gradient; project the gradient
203 image vector using the eigenspace to derive a compact feature vector. The feature vector is significantly smaller
204 than the standard SIFT feature vector, and it can be used with the same matching algorithms. The Euclidean
205 distance between two feature vectors is used to determine whether the two vectors correspond to the same key-
206 point in different images [16]. According to PCA-SIFT testing, fewer components requires less storage and will be
207 resulting to a faster matching than SIFT, they choose the dimensionality of the feature space, $n=20$, which results
208 to significant space benefits. But, PCA suffers from a number of shortcomings, Such as its implicit assumption
209 of Gaussian distributions, less accuracy, less reliable and its restriction to orthogonal linear combinations, it was
210 proved to be less distinctive than SIFT.

211 The parameters which are used for the experimental evaluation of the results by the above stated algorithms
212 are accuracy, precision and recall [17] where:

213 12 A Comparison of Image Retrieval Algorithms

214 The following table provides the comparison of various Image Retrieval algorithms:

215 **13 Some Open Source of Contentbased Image Retrieval Search** 216 **Engines a) AltaVista Photo Finder Search Engine**

217 Features Similarity is based on visual characteristics such as dominant colors only. No details are given about the
218 exact features. First, the user type keywords to search for images tagged with these words. If a retrieved image
219 is shown with a link "similar", the link gives images that are visually similar to the selected image. Similarity is
220 based on visual characteristics such as dominant colors. The user cannot set the relative weights of these features,
221 but judging from the results, color is the predominant feature.

222 **14 b) Anaktisi Photo Finder Search Engine**

223 In this website a new set of feature descriptors is presented in a retrieval system. These descriptors have not
224 been designed with particular attention to their size and storage requirements. These descriptors incorporate
225 color information into one histogram while keeping their sizes between 23000 and 740000 bytes per image.

226 High retrieval scores in content-based image retrieval systems can be attained by adopting relevance feedback
227 mechanisms. These mechanisms require the user to grade the quality of the query results by marking the retrieved
228 images as being either relevant or not. Then, the search engine uses this grading information in subsequent queries
229 to better satisfy users' needs. It is noted that while relevance feedback mechanisms were first introduced in the
230 information retrieval field, they currently receive considerable attention in the CBIR field.

231 The vast majority of relevance feedback techniques proposed in the literature is based on modifying the values
232 of the search parameters so that they better represent the concept the user has in mind. But, the semantic gap
233 between the user query and the result isn't maintained yet.

234 There is no ranking algorithm for more usability and reliability Figure 2.7 shows the result of bus query image
235 of Anaktisi Photo Finder search engine.

236 **15 c) Akiwi Photo Finder Search Engine**

237 In this web-site a new set of feature descriptors is presented in a retrieval System. These descriptors have been
238 designed with particular attention to their size and storage requirements, keeping them as small as possible
239 without compromising their discriminating ability. These descriptors incorporate color and texture information
240 into one histogram while keeping their sizes between 22 and 70 kilobytes per image. There are no High retrieval
241 techniques and the semantic gap between human perception and the machine perception is very high. We
242 considered that returned images by color feature. For semantic technique, Google used ontology tagging for
243 retrieval process. Consequently, ranking method is page rank method as alternative of relevance feedback to
244 optimize usability.

245 **16 Conclusion and Future Scope**

246 In this paper, compared to content-based image retrieval algorithms used in the most famous image search
247 engines, the set of algorithms used and their results are discussed in detail. From the results of Year 2017 ()
248 F the different methods discussed, it can be concluded that to improve algorithm retrieval performance must
249 integrate these algorithms to increase the values of standard evaluation criteria such as accuracy, proportion of
250 convergence or accuracy to obtain the higher values of the standard evaluation parameters used to evaluate a
251 large algorithm to demand better results for retrieval performance.

252 The horizon is still wide for future studies to work on increasing the accuracy and speed of searching the
253 web. Following points show open issues that need to be addressed: ? Increase the accuracy of search results by
254 combining of Image Retrieval Algorithms ? Increase the accuracy of the search results in the retrieval of images
255 ? Increase the speed (Response time) in image retrieval ? The development of search engines with high accuracy
256 in retrieving information based on the integration of several algorithms of image retrieval. ¹

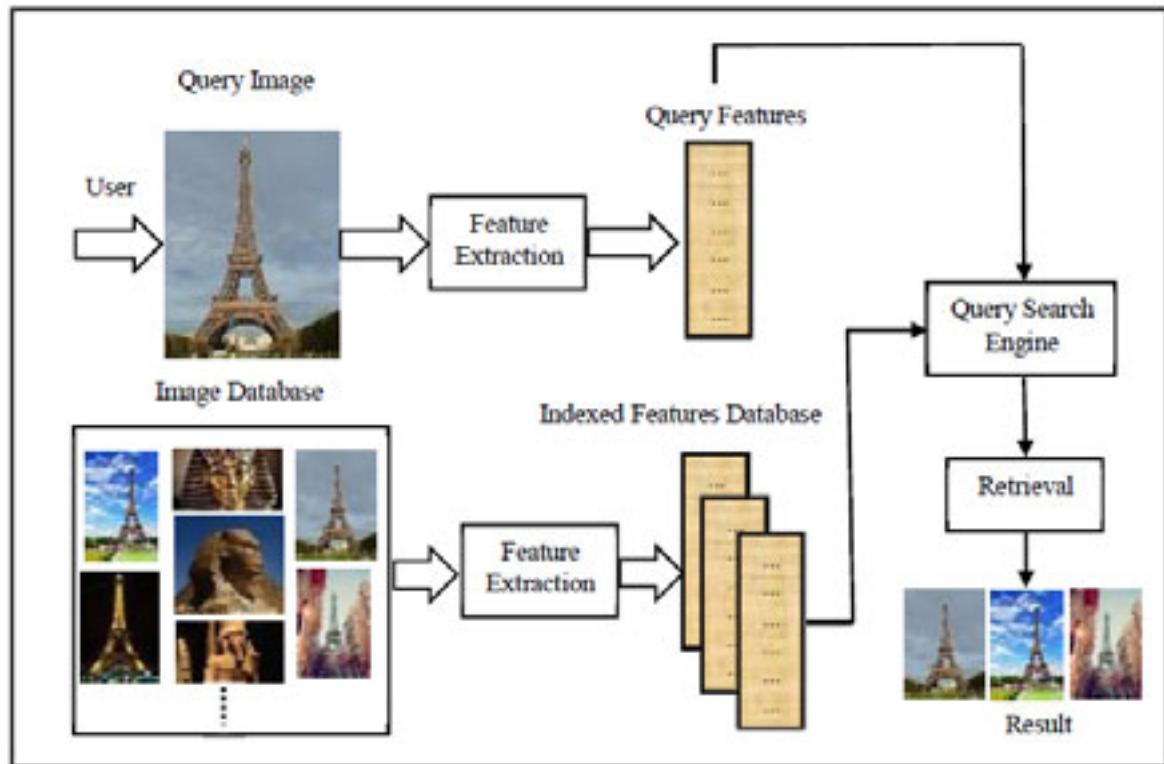


Figure 1:

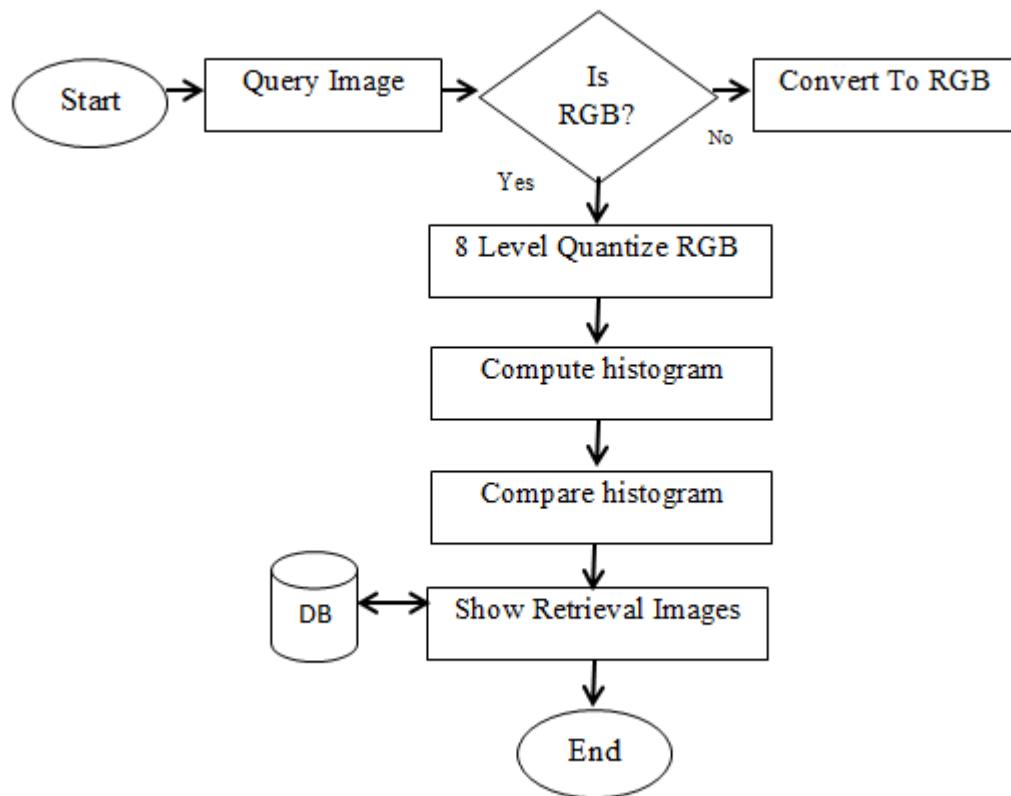


Figure 2:

2

Figure 3: Figure 2 :

23

Figure 4: Figure 2 :AFigure 3 :

Figure 5:

4

Figure 6: Figure 4 :

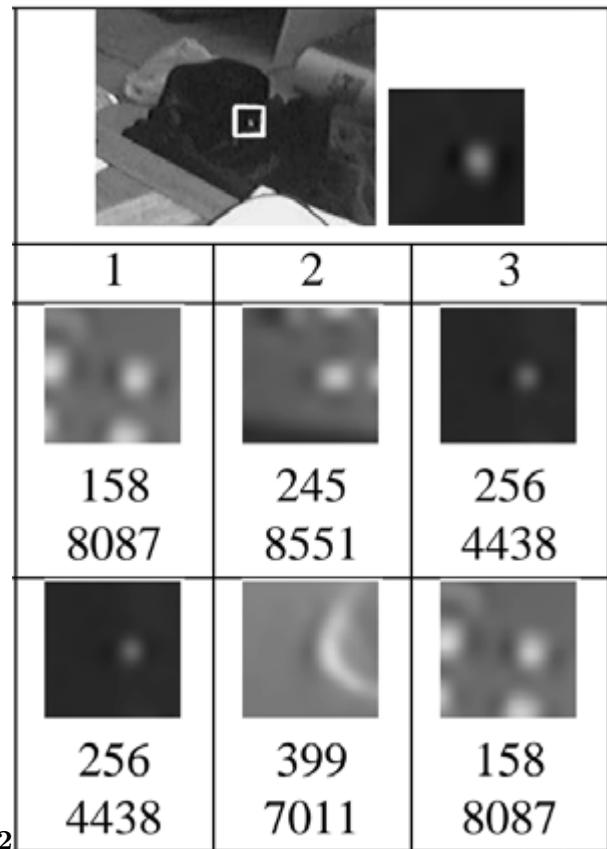



Figure 7: Figure 2 .

5

Figure 8: Figure 5 :

6

Figure 9: Figure 6 :

Figure 10:

1

Figure 11: Table 1 :

257 [Babbar et al. (2010)] 'A Comparative study image matching algorithm'. G Babbar , Punam Bajaj , Anu Chawla
258 , Monika Gogna . *International Journal of Information Technology and Knowledge Management* July-
259 December. 2010. p. .

260 [Jwun ()] 'A comparison of SIFT, PCA-SIFT, and SURE'. L Jwun . *International Journal of Image Processing*
261 (*IJIP*) 2009. 3 p. .

262 [Liu et al. ()] 'A Survey of Content-Based Image Retrieval with high level Semantics'. Y Liu , D Zhang , G Lu .
263 *Pattern Recognition* 2007. 40 p. .

264 [Zhang and Wu ()] 'An Image Automatic Matching Method based on FAST Corner and LBP Description'. Young
265 Zhang , Yujian Wu . *Journal of Information & Computational Science* 2013. p. .

266 [Hess ()] 'An open source SIFT library'. R Hess . *Proceedings of the International Conference in Multimedia*, (the
267 International Conference in MultimediaItaly) 2010. p. .

268 [Bian and Tao (2010)] 'Biased Discriminant Euclidean Embedding for Content-Based Image Retrieval'. Wei Bian
269 , Dacheng Tao . *IEEE Trans. on Image Processing* Feb 2010. 19 (2) p. .

270 [Sahami et al. ()] 'Challenges in web Information Retrieval'. M Sahami , V Mittal , S B Mayron , S Baluja ,
271 Rowley . *International Conference on Artificial Intelligence*, (Berlin) 2004. 3157.

272 [Eakins and Graham ()] 'Content-based Image Retrieval'. John Eakins , Margaret Graham . *Jisc Technology*
273 1999.

274 [Low ()] 'Distinctive Image Features from Scale-Invariant Key points'. D Low . *International Journal of computer
275 Vision* 2004. 60 p. .

276 [Khosrowpour ()] 'Encyclopedia of information Science and Technology'. Mehd Khosrowpour . *Idea Group
277 Inc.(IGI)* 2005.

278 [Liang ()] Shunline Liang . *Advances in land remote Sensing: System, Modeling, Inversion and Application*, 2008.
279 Springer science+ Business Media.

280 [Cao et al. ()] 'Mindfinder: interactive sketch-based image search on'. Y Cao , H Wang , C Wang . *Proceedings
281 of the international conference on Multimedia*, (the international conference on Multimedia) 2010. ACM. p. .

282 [Ke and Sukthankar ()] *PCA-SIFT: A More Distinctive Representation for local Image Descriptors*, Y Ke , R
283 Sukthankar . 2004. School of Computer Science, Carnegie Mellon University; Intel Research Pittsburgh,
284 Computer Vision and Pattern Recognition

285 [Wang ()] *Robust image retrieval based on color histogram of local feature regions*, X Wang . 2009. Netherlands:
286 Springer.

287 [Stokman and Gevers ()] 'Selection and Fusion of Color for Image Feature Detection'. H Stokman , T Gevers .
288 *IEEE Transaction on Pattern Analysis and Machine Intelligence* 2008. 29 p. .

289 [Zhang ()] 'Semantic -based Visual information Retrieval'. Yu-Jin Zhang . *Idea Group Inc.(IGI)*, 2007.

290 [Wei and Zhao ()] 'Zhang Design and implementation of image search algorithm'. Z Wei , P Zhao . *American
291 Journal of Software Engineering and Applications* 2014. 3 (6) p. .