Global Journals INTEX JournalKaleidoscope™

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

10

11

12

13

14

15

16

17

18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43

Quantum Computing Tutorial Bits vs Qubits and Shor’s
Algorithm

Koffka Khan'!

! The University of the West Indies

Received: 18 December 2016 Accepted: 4 January 2017 Published: 15 January 2017

Abstract

The speculative inquiry that computation could be done in general more efficiently by
utilizing quantum effects was introduced by Richard Feynman. Peter Shor described a
polynomial time quantum algorithm for factoring integers by a quantum machine, which
proved the speculation true. Quantum systems utilize exponential parallelism, which cannot
be done by classical computers. However, quantum decoherence poses a difficulty for
measuring quantum states in modern quantum computers. This paper elaborates on some
basic concepts applied to quantum computing. It first outlines these key concepts, introduces
the mathematics needed for understanding quantum computing and finally explores the
Shor?s Algorithm as it applies to both classical and quantum computer security

Index terms— quantum; computing; shor?s; algorithm; security.

1 I. INTRODUCTION

n 2017, IBM has a 16-qubit Quantum computer on the cloud available for users worldwide. These and other
revolutionary breakthroughs over the past years have propelled the world of quantum computing into the
spotlight.

First let us see, how classical computers work. A classical computer works with the binary numbering system,
and the computer is not able to compute with the decimal numbering system. Binary system has only two digits.
All arithmetic operations are done by the binary system based logic. Let us use an example of adding two single
digit binary numbers using yes or no logic. Turn the first bit on, if any one of the bit is on, that is exclusive OR.
Turn the second bit on if both the bits are on, that is AND. We can use electrical-switches as an input device and
lights as output device. Transistors can be used for binary-logic based operations and turning on or off the lights
based on the switch settings. Transistors can be inter-connected in particular way to pass the electric-current by
with switches. A mobile phone has millions of transistors inside. A computer has billions of transistors inside.
Computer likes binary states.

How about the quantum state, which has the states of both 0 and 1 at the same time? Binary bit state may
be 0 or 1. Quantum qubit state will be both 0 and 1 at the same time. As individual digits of input numbers
have all possible ways, the result will also have all possible values. Two single digit qubit numbers addition will
make 4 possible combinations. Two double-digit Qubit numbers addition will make 16 possible combinations and
so on. All types of arithmetic operations do this kind of computation. Therefore, a quantum computer computes
all possible ways in parallel. But classical computer computes only one at a time. Take the maze as an example.
The maze has an entrance and the maze is inside. The entrance is split into multiple paths and has only one
exit. The task of computer is to find the correct path which leads to the exit. Classical computer has to travel
each path to find the exit. However, a quantum computer can travel all paths simultaneously and find the exit
immediately. It computes all possible combinations simultaneously and choosing the best one.

Classical computer uses transistors to create binary-based Logic-Gates. Subatomic particles such as electrons
and photons behave in a very strange way. Electron has a property of spin. The spin state may be Up, Down,

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

60
61
62

63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92

93

94
95
96
97
98
99
100
101

4 III. MATHEMATICS THAT SUPPORT QUANTUM COMPUTING

Right or left. The spin state will be both Up and Down or Right and Left simultaneously in particular scenario.
Such a state is called superposition [3] state. Photon has a property of polarization. The polarization state may
be horizontal, or vertical. The polarization state will be both horizontal and vertical simultaneously in particular
scenario. Light has strange behavior in the double-slit experiment. Light without any slit shows normal pattern.
Light passing through single slit is spread out, because of quantum uncertainty behavior. Light passing through
double slit shows interference pattern because of the wave behavior of light. Passing single photon at a time in
single slit hits random place, accumulates and shows the same spread pattern over the period. Passing single
photon at a time in double slit hits random place, accumulates and shows the same interference pattern over the
period. How can a single photon which is not a wave, show interference pattern? Actually, it splits in to two
photons, passing through slits simultaneously, interferes with itself and shows interference pattern. The photon
is in superposition state of passing both slits. The spread-pattern of single slit is also the superposition state of a
photon is in all position simultaneously. The photon resides in this area with the possibility of all combinations.
This superposition state can be used to create qubits, which is used in quantum computers. Superposition of
particle spin can be used to create quantum logic gates. The superposition is collapsed and turned in to definite
state when it gets measured.

2 1

This paper consists of three sections. Section II discusses Quantum Concepts. Section III explores the
Mathematics that support Quantum Computing, Section IV explains why cryptographic codes are so hard to
break and finally Section V discusses Shor’s Algorithm and Quantum Security.

3 II. QUANTUM CONCEPTS

The fundamental unit of a classical computer is a bit. Bits have two states, 0 and 1. A classical computer takes
in a string of bits and use logic gates to switch some of the bits. Quantum computers use quantum bits (qubits,
[6]). Like a bit, a qubit can be in state 0 or state 1. Also like a classical computer, the initial program for a
quantum computer is just a string of zeros and ones. However, while a quantum computer is running, its qubits
can also be in infinitely many super positions [3] between 0 and 1. When a qubit is in a superposition, it has
some probability of being in state 0 and some probability of being in state 1. You can think of a superposition
as being a mixed state partway between 0 and 1. However, super positions are fragile. If we look at it or try
to measure it, the qubit will collapse into a basic state, either 0 or 1. You might know this from the famous
Schrodinger’s cat thought experiment. Before opening the box, the mythic cat is in a superposition of alive and
dead. However, when you observe the cat, it is forced to pick a state, alive or dead, not both. Qubit materials are
usually things like electrons, where spin up corresponds to state 0 and spin down corresponds to state 1. Let us
see an example of a quantum computation with two qubits. There is four basic states, 0 0, 1 0,0 1, and 1 1. The
two classical bits can be in these states. However, there are also infinitely many states formed by superpositions
or combinations of these basic states. Each operation of a quantum computation is performed by a quantum
gate, which, like a classical gate, changes the state the qubits are in. Let us start our quantum computation in
0 0 and then apply a quantum gate. Now the qubits are in a superposition. There is a 1/2 probability or 50%
chance of being 0 1 and a 1/2 probability of being 1 0. The particular superposition position it is in is a result
of the quantum gate we chose to apply. Here is one more quantum gate, changing the state of our computation.
At the end of the quantum computation, we observe or measure the system.

However, we cannot see these delicate superpositions. Remember, a superposition is like a mix between basic
states. When you observe the computation and look at it from the perspective of these basic states, it must pick
one, collapsing the wave function and revealing a single basic state. In this case, it collapsed to state 0 1. If you
run the same computation repeatedly, the result will be 0 1 half the time, it will be 1 0 1/6 of the time, and 1 1
1/3 of the time. That is what the numbers in the superposition tell you. The probability that the superposition
will collapse into each basic state. So if you run the computation 100 times, roughly 50 times it’ll result in the
state 0 1, 17 times it will result in state 1 0, and 33 times it will result in state 1 1. This allows you to recover
the probabilities and therefore the final superposition of the computation. This does not seem very efficient with
two qubits. Nevertheless, as we will see later, it can save you a lot of time with more qubits.

4 11I. MATHEMATICS THAT SUPPORT QUANTUM COM-
PUTING

A vector can be a abstract concept in mathematics. Let us define a vector as a list of numbers and the dimension
of that vector is the number of numbers in the list. Actual qubits use negative or even complex numbers, but let
us deal with non-negative real numbers for now. One qubit is represented as a twodimensional vector. The state
0, |0> and the state 1, |1>. Moreover, this is a superposition, a|0> + b|1>. We can visualize the vector on a
circle like this. The horizontal component is the square root of the probability of being in state 0. In addition,
the vertical component is the square root of the probability of being in state 1. By the Pythagorean Theorem,
the length of the vector is 1. Each point on the unit circle is a quantum state. A classical computer can only
point up or right, but a quantum computer uses much more of the circle.

102
103
104

106
107
108
109
110
111
112
113
114
115
116

117

118
119
120
121
122

123

124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

What about two qubits? It takes a fourdimensional vector to represent the four possible states. Here is the
earlier computation in vector form.

The formula for the length of a two-dimensional vector easily generalizes to the formula for the length of a
four-dimensional vector. Therefore, as we said before, all the quantum state vectors have length 1.

The two-dimensional vectors pointed to a spot on the unit circle in two-dimensional space. In addition, these
four-dimensional vectors point to a spot on the unit sphere in four-dimensional space, which makes it very hard
to visualize. If you have N qubits, there are two to the N basic states.

Therefore, a vector on a sphere represents the quantum state in two to the N dimensional space. Quantum
gates change the system’s state. Therefore, they move the state vector around the sphere. Mathematically, this
is represented with a unitary matrix. For our purpose, a matrix, specifically a unitary matrix, is a block of
numbers that describes how vectors move around the sphere. When we multiply it by the starting vector, 1 0 0
0, we get back a new vector, which represents our second state. Each quantum gate is a different unitary matrix,
changing the vector, which represents the state of the qubits. We just apply this quantum gate to the state 0
0, represented by this vector, and got this state as a result. However, if we apply the same gate to state 1 0,
represented by this vector, we get this state as a result. Note that the

5 Global Journal of Computer Science and Technology

Volume XVII Issue II Version I () G superposition has negative numbers in it. To get the probability that
the qubit collapses into each basic state, we just take the absolute value of the numbers. In fact, not only can
these numbers be negative, they can actually be complex numbers. Notice that the state of N qubits is actually
represented on a sphere in two to the N complex dimensions, which has twice the dimensionality of the sphere
in two to the N real dimensions.

6 IV. CRYPTOGRAPHY

Cracking open secure messages would be easy if only you knew how to factor huge numbers. One of the main
methods of cryptography, the encoding and decoding secure communications, uses big prime numbers. It is easy
for a computer to find big prime numbers and multiply them together, but it is hard for a computer to do the
opposite—find the prime factors of a big number. The prime factors of a number are all the prime numbers that
evenly divide it. Normally, RSA (Rivest Shamir Adleman) [1] cryptography uses these prime factors like keys to
decrypt messages. So if you want to eavesdrop, you’ll need to find one of these keys to hack in—that is, you’ll
need to find the prime factors of a big number, and we’re talking really big, as in hundreds of digits long. Let
us try a small example. What are the prime factors of 357 Well, they are 5 and 7. How did you figure that out?
Probably just by looking at it, but even if you had forgotten that fact, you could have just checked all the prime
numbers smaller than 35. Does two divide it? No. Does 37 No. Does 5?7 Yes. And so on. This is for a computer,
very time consuming. We will need to do something strategic to factor big numbers. Along with many, many
other things Euler thought a lot about prime numbers, relatively prime numbers, and modular arithmetic, which
is basically all the math underlying RSA cryptography. Therefore, it makes sense that we would use similar math
to break the algorithm. Modular arithmetic is what happens when you count in a circle. Counting modulo 5, or
mod 5 for short, goes 0, 1, 2,3 4,0, 1, 2,34, 0, 1, 2, and so on. We just use the numbers less than 5 on repeat.
We tell time mod 12 or mod 24 depending on your convention. This cyclical counting extends to the arithmetic
operations. So 1 plus 2 mod 5 is still just 3, but 2 plus 3 mod 5 is 0, and 2 times 3 is 1 mod 5. Another way to
think about modular arithmetic is in terms of the remainder when dividing numbers. Therefore, a slightly more
formal definition follows. a is congruent to x mod n means that when we divide a by n the remainder is x. So
2 times 3 is 6, but when we divide 6 by 5, the remainder is 1. Therefore, 2 times 3 mod 5 is 1. Euler noticed
something about modular arithmetic and exponentiation. Let us look at the powers of 3-3, 9, 27, 81, 243, and
so on. In addition, let us look at them all mod 10.

It is easy to figure out what things are mod 10 because it is just the remainder when you divide by 10, which
is the ones digit. So mod 10 our sequence is 3, 9, 7, 1, 3, 9, 7, 1, and so on. Let us repeat the same experiment,
but instead of looking at the powers of 3 mod 10, let’s look at the powers of 2 mod 7. The powers of 2 are 2, 4, 8,
16, 32, 64, and so on. In addition, mod 7 we get 2, 4, 1, 2, 4, 1, and so on. What do you observe? The sequence
of powers just gets bigger and bigger, but the modular versions of the sequence cycle repeats. They repeat the
same pattern over and over again, and the last digit of that pattern is always 1. As long as x and n are relatively
prime, meaning they share no prime factors, the sequence x mod N, x squared mod N, x cubed mod N, x to the
fourth mod N, and so on will always have this property. We call the length of the repeating pattern the period.
Therefore, the period of 3 mod 10 is 4, and the period of 2 mod 7 is 3. Here is why the period is important. If the
period of x mod N is some number r, then r is the smallest number such that x to the r is congruent to 1 mod n.
For example, 3 to the fourth is congruent to 1 mod 10, but 3 for the first, 3 squared, and 3 cubed are not 1 mod
10, but let’s get back to our original goal. What does all this stuff about modular arithmetic, exponentiation,
and periods have to do with factoring large numbers? Let us say I give you a number n. I tell you n equals p
times q for two prime numbers p and q, but I do not tell you anything about those primes. Your job is to find
them. Here is how you will do it.

161
162
163
164
165
166
167
168

170
171
172
173
174
175
176
177

179
180
181
182
183
184
185
186
187
188
189

190

191
192
193
194
195

197

199
200
201
202
203
204

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

Step one-pick any number smaller than n. Let us call the number you selected a. Check to make sure that a
and n are relatively prime by computing the greatest common divisor of a and n. The greatest common divisor
of two numbers is the biggest integer that divides them both, so it’s 1 if the two numbers are relatively prime.
The Euclidean algorithm is a quick and standard way to find the GCD [2] of two numbers. If they have a divisor
in common, that is a factor of n, which is what you have been looking for, and you have saved yourself the rest
of the steps.

Step two-compute the period of a mod N. Let us call it r. For the sake of example, let us say you are trying
to find the factors of 35. Therefore, n equals 35, and you pick a equals 8 since its relatively prime to 35. Then
with a little computation, we can see that r equals 4. To make all the arithmetic work out, we are going to need
to divide r by 2. Therefore, we need to know that r is even. Later on, we will also need to know that a to the r
over 2 plus 1 is not congruent to 0 mod N. If either of these things fail, we need to pick a different a in step one.
Luckily, there is at least a 50% chance you will pick a good value for a. So on average, you will not have to try
too many times. For step three, we will have to do some algebra. Let us start with the fact we know. a to the r
is congruent to 1 mod N, which, subtracting 1, gives the a to the r minus 1 is congruent to 0 mod N. Saying that
something is 0 mod N is the same as saying that it’s a multiple of N. Therefore, there must exist some integer k
such that a to the r minus 1 equals k times N. Since we assumed r is an even number, we can rewrite it as a to
the r over 2 minus 1 times a to the r over 2 plus 1 equals kN. In addition, since N equals pq, we’ll replace it with
pq. Here is what happens with the example where we are trying to find the factors of 35. Since the period of 8
mod 35 is 4, we have 8 to the fourth is congruent to 1 mod 35. Therefore, 8 to the fourth minus 1 is congruent to
0 mod 35. Actually, 8 to the fourth minus 1 is 4,095, but we only care about its value mod 35. We could rewrite
this as 8 to the fourth minus 1 equals k times 35 for some integer k. Again, we could solve for k in this case, but
it is irrelevant, so I will leave it as a variable. Rewrite this as 8 squared minus 1 times 8 squared plus 1 equals k
times p times q where p and q are the prime factors of 35 that we’re searching for.

Step four-I claim that the greatest common divisor of a to the r over 2 minus 1 and N is one of the prime
factors. Let us call it p, and the greatest common divisor of a to the r over 2 plus 1 and N is the other prime
factor. Let us call it . Why? The equation a to the r over 2 minus 1 times a to the r over 2 plus 1 equals kpq
means that p must divide one of the factors on the left and q must divide one of the factors on the left, but they
cannot divide the same factor since that factor would be divisible by N. Why is neither factor divisible by N?
For one, we assumed a

7T 7
Step one-pick a less than N.

to the r over 2 plus 1 is not congruent to 0 mod N. For the other, we know r is the minimum value of x such
that a to the x is congruent to 1 mod N. So a to the r over 2 minus 1 is not congruent to 0 mod N. Since p and
q divide separate factors on the left side of the equation, we can assume p divides a to the r of 2 minus 1 and
q divides a to the r over 2 plus 1. Therefore, our formulas work. Therefore, in our example, p is the greatest
common divisor of 63 and 35, which is 7. Moreover, q is the greatest common divisor of 65 and 35, which is 5,
and is correct. In summary, here is the steps.

8 7
Step two-find the period of a mod N.

? Step three-check that r is even and a to the r over 2 plus 1 is not congruent to 0 mod N. If either of these
things fail, we need to go back to step one and pick a new value of a. ? Finally, step four—let p equal the GCD
of a to the r over 2 minus 1 and N. In addition, let q equal the GCD of a to the r over 2 plus 1 and N.

Step two, finding the period, takes a long time-in fact, an exponentially long time. All the steps besides two
are fast. Instead of looking for a needle in a haystack, we reduced the hard part to one step—finding the period.
In addition—here is the big twist—period finding is precisely the kind of thing a quantum computer is good at,
and on the next section. The four steps we just reviewed are the outline of Shor’s algorithm, and next section
shows how to use a quantum computer to dramatically speed up step two.

V. SHOR’S ALGORITHM AND QUANTUM SECURITY Remember, popular forms of cryptography work by
multiplying together two large prime numbers and using those primes as keys to recover the message. Therefore,
to crack the code, we will need to find the prime factors of a big number. However, that would take a classical
computer a long time. Way longer than the encrypted information is probably useful for. However, Shor’s
algorithm [4] allows us to quickly factor large numbers using a quantum computer. Let us see how a classical
computer would factor a prime number. What is the most straightforward way it could find the factors of a
number N? Well, it could check. Is 2 a factor, is 3 factor, is 4 a factor, and so on. However, if N is big, this might
take many steps. Now, if a quantum computer is just a bunch of classical computers working in parallel, then
we could have one computer check if 2 is a factor, another check if 3 is a factor, and so on. Then it would only
require two steps. We have split the many steps of a classical computer among the many parallel computations
of a quantum computer. Here is the problem. When we say that a quantum computer is a bunch of classical
computers working in parallel, what we really mean is that a quantum computer is in a superposition of basic
states, which are the kind of states a classical computer could be in.

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

237

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

254
255
256
257

259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275

277
278
279
280
281
282

Remember, a superposition is a combination of basic states and there is some probability associated with
observing each of them. To find that probability, you square the amplitude of the number in front of the basic
state. Here, we have N basic states and a 1 over N probability of being in each state. Therefore, the quantum
computer is not actually in all of these states. It is more like the quantum computer has split itself into N
different pieces. However, when you measure a quantum computer, that is, ask for the result of a computation,
it does not tell you about all N pieces it is in. Instead, it will pick a state, each with probability 1 over N, and
tell you what that state says. You cannot look at the whole thing. Just one random state. That is a problem for
us. Only two the N states give useful information. That the number of checked was a divisor of N. So the vast
majority of the time we run the computation, N minus 2 over N of the time, the result will just tell you that
something is not a factor of N. That means our algorithm is no more efficient than checking random numbers to
see if they are divisors using a classical computer.

To harness the power of quantum computation, we need each of these basic states, the components of the
superposition, to be working together. Right now, they are functioning as separate computers individually
searching, which is a problem because the quantum computer cannot tell us about all these independent states.
However, if there is some kind of underlying structure to the states, we can use that to amplify the states with
the correct answers. In this case, the ones

9 Global Journal of Computer Science and Technology

Volume XVII Issue II Version I () G that give the factors of a number. Then when we measure the quantum
state, we will have a high probability of ending up with the correct answer. So instead of checking each number
smaller than N to see if it is a factor, how does Shor’s algorithm find the factors? It needs to utilize the properties
of its entire superposition, and not just a few of its basic states. To do that, Shor’s algorithm actually uses some
number theory, to transform the problem of finding the factors of a given number into a problem of finding a
different number, the period of a periodic function. Here is the four basic steps that outlines the number theory
in Shor’s algorithm for finding the two secret prime factors, p and q, of a given number N. That is, N is equal to
p times q.

? Step 1, pick a number, a less than n, at random. 7 Step 2, check to make sure it is not a factor of N.

Step of a mod N. 7 Step 3, check that r is even, and a to the r over 2 plus 1 is not congruent to 0 mod N. ?
Step 4, let p be the GCD of a to the r over 2 minus 1 and N, and q be the GCD of a to the r over 2 plus 1 and
N. Then you found p and q, the two prime factors of N. However, step 2 is the extremely long step. Remember,
N is the number we are trying to find the factors of, and a is a selected number smaller than N. We are trying to
find the smallest number r, which we call the period, such that a to the r is congruent to 1 mod N. It is easy to
find the period of a small example just by checking the powers of a mod N until we get 1. So if N is equal to 7
and a is equal to 2, we compute 2 to the 1 mod and 2 to the 3 mod 7 is 1. Therefore, the period is 3. However,
if N is big, then r, the period, can be as big as N. There is no known efficient classical way to find the period.
Remember how we tried to find the factors of N by letting the quantum computer act as N parallel classical
computers, and using each to check a different factor? We could try the same thing to find the period. We begin
with N different states representing the numbers for each state, we compute a to the x mod N, where x is the
number of the state. So now the states are a to the 1 mod N, a to the 2 mod N, a to the 3 mod N, and so on.
Then we just look for the smallest one that says 1, and we are done. That is when we run into the same problem
as before. We cannot just scan all the states at once. When we look at the result of a quantum computation, it
just shows one random state, which is not very helpful.

However, there is something different about this current problem. Something that will possibly help us. The
period is a global property of this quantum superposition. It is not just a special fact about one or two of the
basic states. It is a fact about this entire wave of numbers created by superposition, how often it repeats. That
is the period. We can use this to our advantage. We apply something known as the quantum Fourier transform
[5] to the superposition a to the 1 mod N, a to the 2 mod N, a to the 3 mod N, and so on. The quantum Fourier
transform utilizes the ideas of quantum physics to do exactly what we want. It uses resonances to amplify the
basic state associated with the correct period, and the incorrect answers destructively interfere, which suppress
their amplitudes. After applying the quantum Fourier transform, there is a very high probability that we will
pick the correct period. So how does it work?

To understand the quantum Fourier transform, we will need to start with a quick version of a branch of math
known as complex analysis. What we will really be doing is adding complex roots of unity. However, if you are
not familiar with that concept, do not worry. Start with a bunch of circles. On the first, we will put two equally
spaced dots. On the next, we will put three equally spaced lines. On the next, four equally spaced dots. And so
on. Notice, though, we always put one of the dots on the middle right side, the 0-degree angle. Start a dial on
that special point. By the way, these dots are called complex roots of unity. Now, let us focus on the circle with
three dots. We will move the dial counter-clockwise through the points. In addition, underneath the dial, we
will form a path consisting of arrows where the direction of the arrow is given by the direction in which the dial
points. For example, with three dots, the first arrow points east. Then move the dial one dot counterclockwise
and connect to the first arrow another that points northwest, like the dial. Move the dial again and connect
another arrow pointing southwest, the same direction as the dial. Notice that after three arrows, we are back
where we started. This is what it looks like on a circle with six dots. Again, after six arrows, we are back to the

283
284
285

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312
313
314

10 VI. CONCLUSION

starting place. Remember that we have a superposition whose basic states look like a to the 1 mod N, a to the
2 mod N, a to the 3 mod N, and so on. Let us pick a tiny example, like a equals 2 and N equals 7. Then the
components of the superposition are 2 to the 1 mod 7, 2 to the 2 mod 7, 2 to the 3 mod 7, and so on, which
is the repeating pattern 2 4 1, 2 4. Because this example is so small, we can just see that the period is three
by looking at it. However, how can we use our dials to figure out period? We will move along the sequence
a to the 1 mod N, a to the 2 mod N, a to the 3 mod N. For each term in the sequence, move every dial once
counter-clockwise. Any time we encounter a 1, stop and record where the dial is pointing with an arrow. Let
us focus on the sequence. The dial with three points is always pointing directly east when we record its values.
Therefore, our path of arrows just runs off to the right. However, what happens to the dial with four points? The
first time we encounter a 1, its facing south. The next time, it’s facing west. The next time, it is facing north.
In addition, the fourth time we encounter. Therefore, our path of arrows has looped back to where it started. In
fact, this will happen with all of the numbers besides 3. They will all just make loops near the starting point.
The distance of the arrow from the starting point is like the amplitude, or probability of a state. Since we are
most likely to observe these states at the end of the computation, we are set. We have magnified the correct
answer. In addition, that is roughly how the quantum Fourier transform works.

Here is another way to think about it. Pretend you are on a swing with period three seconds. It swings back
and forth every three seconds. The arrows from before are like the kicks on a swing that you time as you try to
get higher and higher on the swing. If the kicks are timed off resonance with the swing’s natural frequency, so
anything other than every three seconds, then you end up slowing down the swing. However, if every kick is timed
to match the frequency of the swing, every three seconds, you create resonance, amplifying the swing’s motion.
If we start with a bunch of states, metaphorically swings, with different periods, than only the swing with the
correct period will be moving after a while. It will be the state with the biggest amplitude or highest probability
of being observed. Of course, there is no actual dials or arrow paths or swings in a quantum computer. That
is just a visual representation of adding complex numbers, which are the amplitudes of waves. Waves and their
crazy ability to either reinforce each other with constructive interference, or negate each other with destructive
interference, are at the heart of quantum physics. The dial with three dots is showing constructive interference
by making the arrow path grow, which represents the likelihood the quantum computer will measure that state.
The other dials are destructively interfering, making it less likely we will detect them.

10 VI. CONCLUSION

This paper elaborates on some basic concepts applied to quantum computing. It first outlines these key
concepts, introduces the mathematics needed for understanding quantum computing and finally explores the
Shor’s Algorithm as it applies to both classical and quantum computer security. * 2

'@ 20 7 Global Journa lIs Inc. (US) 1
2© 20 7 Global Journa Is Inc. (US) 138Year 2017

315
316
317

318
319
320

321
322

323
324

325
326
327

328
329

330
331

[Lanyon et al. ()] ‘Experimental demonstration of a compiled version of Shor’s algorithm with quantum entan-
glement’. B P Lanyon , T J Weinhold , Nathan K Langford , M Barbieri , D F V James , Alexei Gilchrist ,
A G White . Physical Review Letters 2007. 99 (25) p. 25050.

[Barrett ()] ‘Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard digital
signal processor’. Paul Barrett . Conference on the Theory and Application of Cryptographic Techniques,
(Berlin Heidelberg) 1986. Springer. p. .

[Brown and Steven ()] ‘On Euclid’s algorithm and the computation of polynomial greatest common divisors’. W
Brown , Steven . Journal of the ACM (JACM) 1971. 18 (4) p. .

[Friedman et al. ()] ‘Quantum superposition of distinct macroscopic states’. Jonathan R Friedman , Vijay Patel
, Wei Chen , S K Tolpygo , James E Lukens . nature 2000. 406 (6791) p. 43.

[Wallraff et al. ()] ‘Strong coupling of a single photon to a superconducting qubit using circuit quantum
electrodynamics’. Andreas Wallraff , David I Schuster , Alexandre Blais , L Frunzio . Nature 2004. 431
(7005) p. 162.

[Namias ()] ‘The fractional order Fourier transform and its application to quantum mechanics’. Victor Namias .
IMA Journal of Applied Mathematics 1980. 25 (3) p. .

[US) Guidelines Handbook Global Journals Inc ()] ‘US) Guidelines Handbook’ www.GlobalJournals.org
Global Journals Inc 2017.

www.GlobalJournals.org

	1 I. INTRODUCTION
	2 I
	3 II. QUANTUM CONCEPTS
	4 III. MATHEMATICS THAT SUPPORT QUANTUM COMPUTING
	5 Global Journal of Computer Science and Technology
	6 IV. CRYPTOGRAPHY
	7 ?
	8 ?
	9 Global Journal of Computer Science and Technology
	10 VI. CONCLUSION

