

1 Kanban based Scheduling in A Multistage and Multiproduct 2 System

3 Eric C. Okafor¹

4 1

5 *Received: 16 December 2016 Accepted: 2 January 2017 Published: 15 January 2017*

6 **Abstract**

7 In the highly competitive manufacturing environment, many companies around the world are
8 searching for ways to improve manufacturing performance. This is in response to changes in
10 the manufacturing environment reflected by shortened product life cycles, diverse customer
11 needs and the rapid progress of manufacturing technology. A JIT tool otherwise referred to as
12 kanban based scheduling is then considered as a suitable management concept for Juhel
13 Pharmaceutical Nigeria Ltd to address the challenges by minimising all the components,
14 particularly on the shop floor. The JIT system is not just related to Kanban implementation
15 but it comprises an all-inclusive approach for improving batch size reduction, setup time
16 reduction, quality, production planning, and human resources management. Mechanisms and
17 operating procedures are required to provide detailed step-by-step instructions for the
18 implementation of a pull system. Basically, the Drug Process Plant operations are mainly
19 characterised by single flow line production processes, periodical and multi-items orders.
20 Based on the evaluation of the implementation of the new system, there are some factors that
21 must be considered for further improvement including inventory reduction, improving
22 visibility, batch size reduction and matching with other systems.

23
24 **Index terms**— JIT system; kanban; MRP; MPS; drug process plant.

25 **1 I. Introduction**

26 Also, manufacturing environment could be too turbulent to allow accurate forecasting. This results in excessive
27 obsolescence. This can only be improved by reducing the lead time below what can be achieved by Manufacturing
28 Resource Planning (MRP). However, the need to be more responsive to rapidly changing customer demand as a
29 result of market competition remains a constant dominant challenge. In the highly competitive manufacturing
30 environment, many companies around the world are searching for ways to improve manufacturing performance.
31 This is in response to changes in the manufacturing environment reflected by shortened product life cycles, diverse
32 customer needs and the rapid progress of manufacturing technology (Uwakwe, 2015).

33 Amongst the available technology and systems is Just-In-Time (JIT), a Japanese manufacturing concept that
34 puts emphasis on waste elimination. This is a suitable means for a company that wants to perform in a competitive
35 market. Some potential benefits that can be achieved by applying JIT concepts include: significant reduction
36 of setup time, reduced cost of quality (such as scrap/rework reduction), increased inventory turn-over, increased
37 manufacturing flexibility and shorter lead time (Melitus, Kevin, & Collins, 2016). Companies operating in highly
38 competitive environments are the most appropriate for implementing JIT concepts.

39 There are four motives for using JIT in industries (Vincent and Abdul-Karim, 2009). First, some industries
40 are characterised by a short product life cycle, for that reason, lead time and inventory reduction must become
41 main concerns. Secondly, a large percentage of the cost of goods sold is material cost so decreased inventory and
42 scrap is very essential. Thirdly, the collective effects of short life cycle and high material costs lead to a high level

6 D) DESIGNING MECHANISMS OR OPERATING PROCEDURES FOR

43 of material obsolescence, thereby, decrease in lead time and inventory again becomes main concerns. Finally,
44 rapid technological advancement causes shorter life cycle so the company must be able to reduce time required
45 to meet up with customer needs.

46 In this paper, a serial multi-stage manufacturing system controlled by Kanbans is considered which acquires
47 raw materials from outside suppliers and route them through multiple work-stages to produce a varying quantity
48 of finished products to customers at a fixed interval of time (Figure1). The raw materials are also replenished
49 instantaneously to the manufacturing system to meet the JIT operation and time-varying finished product demand
50 model, and the production capability of the system is flexible.

51 An ideal JIT manufacturing system produces only the right items in right quantities at right time. Traditional
52 manufacturing facilities carry large inventories of finished goods to satisfy the demands of customers that adopt a
53 JIT delivery system. In the newly proposed JIT system, lot sizes are compact as much as possible and deliveries
54 of products are scheduled repeatedly. The express impact of the JIT system is anufacturing firms are currently
55 encountering problems because of changing environment, varying weather conditions, product design changes
56 and rapidly changing customer demand. Thus, the Manufacturing Resource Planning (MRP) system and the
57 Mass Production System (MPS) cannot respond quickly enough to the product design changes. This results in,
58 amongst other things, high levels of obsolete stocks.

59 As a result, the manufacturer should get exact knowledge of demands of finished products and sustain an
60 optimum production schedule to match the supply chain manufacturing system. If production is synchronized
61 with the customers' lumpy demands and the ordering of raw material with production schedules is properly
62 coordinated, all raw materials, WIP and finished goods inventories could be sustained at an economic level in
63 a manufacturing firm to reduce the integrated inventory cost incurred due to raw materials, WIP, and finished
64 products.

65 2 II. Materials and Method

66 One of several indicators that pharmaceutical companies are able to survive within the global marketplace is
67 their ability to improve return on assets (ROA). ROA will improve if either turnover or return on sales (ROS)
68 increases. Turn over that is obtained by dividing sales into assets can be increased if assets decrease. Since
69 in a pharmaceutical company, inventory is a major part of assets, inventory reduction will improve turnover
70 significantly. Similarly, ROS will increase if operating profit that is obtained by subtracting sales against total
71 costs and expense increases. Since in such companies inventory is a major part of the total cost, inventory
72 reduction will significantly improve ROS. Therefore, inventory reduction, is a key factor for improving ROA and
73 eventually to survive global competition (Mathew, Bali & Edmund, 2014).

74 These considerations require the companies to find better ways for reducing various type of inventory such
75 as raw materials, WIP and finished goods. JIT is then considered as a suitable management concept for Juhel
76 Pharmaceutical Nigeria Ltd to address the challenges by minimising all the components, particularly on the shop
77 floor.

78 3 a) An Overview about the Drug Process Plant

79 Basically, the Drug Process Plant operations are mainly characterised by single flow line production processes,
80 periodical and multi-items orders. There are around 97 periodical items produced by the Drug Process Plant
81 with Mechanisms and operating procedures are necessary to provide detailed step-bystep instructions for the
82 implementation of a pull system. These management tools must be developed clearly so all people working with
83 this the order quantity ranging from one pallet to 700 pallets. With such characteristics, it is not surprising that
84 MRP was then introduced to control the plant.

85 4 b) Products

86 Basically, items produced by the Drug Process Plant can be classified into three types as shown in figure 2:
87 Product A otherwise referred to as tablets (55% of order volume), Product B otherwise known as capsules (35%
88 of order volume) and Product C otherwise referred to as pills (10% of order volume).

89 5 c) Layout

90 Because of the type of manufacturing processes, the Drug Process Plant employs product flow layout as shown
91 in the Figure ???. The benefit of this layout is that the process paths are clear so everyone understands what
92 the next process is. Unfortunately, because of space constraint and the size of particular machines, most process
93 paths are not straight lines so the processes necessitate extra time for transport as a result of extra distances.
94 Moreover, these problems also lead to other problems such as unfixed locations of buffers so WIP and inventory
95 are not observable.

96 6 d) Designing Mechanisms or Operating Procedures for

97 Running the System system understand how to accomplish the task. Diagrammatically, the mechanisms of the
98 pull system at the Drug Process Plant are based on the design of the system as shown in Figure ??.

99 7 Global Journal of Computer Science and Technology

100 Volume XVII Issue I Version I The mechanisms of the novel pull system can be illustrated in the following
101 procedures. Customers pull in to pick up full containers of sub-pallets from the Operators in the blister
102 packing/strip sealing section must check the board whether there are cards or not. If there are cards, they
103 take the cards and start production by taking raw materials from buffer 2 and putting them into the unfilled
104 containers. The quantity of raw materials taken is equal to the total Kanban quantity detached from the board.
105 If buffer storage area (end buffer). When taking the containers, they must put green Kanbans from the full
106 containers on board 2.

107 2 reaches the trigger point, they place the yellow Kanban from buffer 2 onto board 1. Operators in the
108 mixing/blending section must check this board. If there is a yellow Kanban, they must take this card and start
109 the production. In this block, the production quantity is 360 units as printed on the yellow Kanban. The numbers
110 in the flow chart refer to activities as shown in Figure ???. Because the data were generated through an ARENA
111 simulation model and manually entered into an Excel spreadsheet for sorting and calculations uploading into
112 SPSS, the possibility of researcher error in transferring the data exists. The product costs were first determined
113 in the simulation model by using different manufacturing system alternatives: Mass Production System (MPS),
114 Material Resource Planning System (MRP), and Just in Time Manufacturing System (JIT). The product cost
115 data were then input into the Integer Linear Programming (ILP) model to determine the optimal product mix,
116 which was then input into the simulation model for use in the product mix decision. Average performance data
117 were collected for 60 replications of 30 days each for 27 experimental condition groups, representing three different
118 Manufacturing Systems (MAS) (Mass Production System (MPS), Material Resource Planning System (MRP),
119 and Just in Time Manufacturing System (JIT)), three levels of manufacturing overhead (low, medium, high),
120 and three levels of product mix complexity (low, medium, high) for a total of 1620 data points. Table ?? below
121 shows the number of observations by experimental factor.

122 8 b) Practical Implications

123 Because the primary focus of this study is to examine the impact of kanban based scheduling on manufacturing
124 performance in the context of a timebased competitive environment, it is necessary to take a more detailed look
125 at this impact on each individual performance measure. The three performance measures were chosen because
126 they represent both internal and external and financial and non-financial measures of performance. Table ??
127 below presents a summary of the results in performance measures by manufacturing system alternative.

128 Demand fulfillment rate measures an external (market) non-financial representation of manufacturing perfor-
129 mance. It corresponds to the percentage of demand that is ultimately fulfilled by the production system. The
130 maximum performance in terms of this measure was Material Resource Planning System (MRP) (MAS_2) with
131 86.6% of demand fulfillment rate and Just in Time Manufacturing System (JIT) (MAS_3) with 85.4% of demand
132 fulfillment rate. The most abysmal performance was Mass Production System (MPS) (MAS_1) with 69.8% of
133 demand fulfillment rate. Even though the difference between MRP and JIT in terms of demand fulfillment rate
134 was statistically significant, from a practical perspective, this difference may not corroborate the high cost of
135 implementing an MRP system.

136 9 Table 1: Multiple Comparisons by MAS

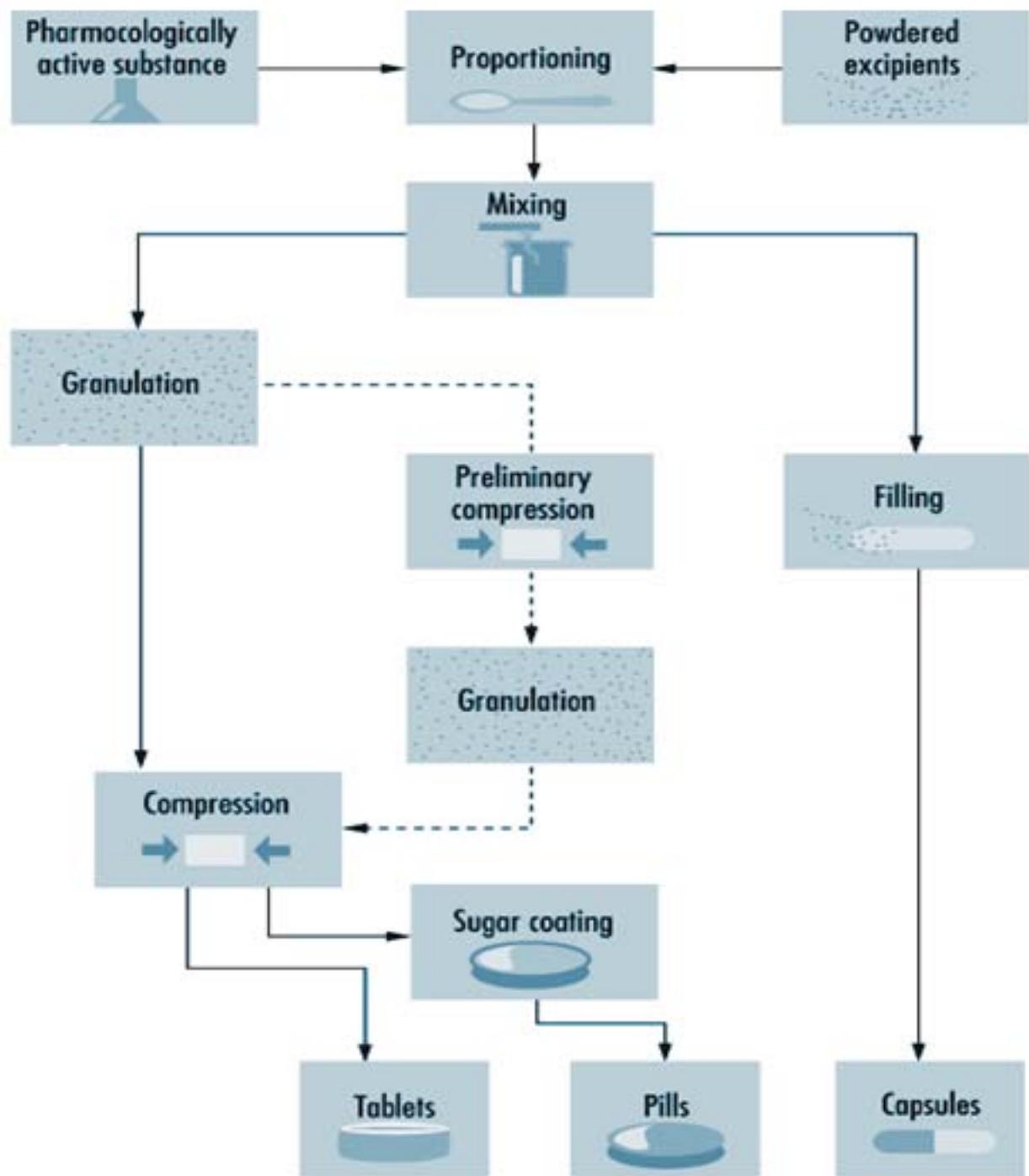
137 10 IV. Conclusion

138 Based on this evaluation, the differences between using the previous system and the new system are recapitulated
139 in the Table 2. The JIT system is not just associated to Kanban implementation but it involves an all-inclusive
140 approach for enhancing the performance of a system that covers batch size reduction, setup time reduction, quality
141 improvement, production planning, and human resources management. Therefore, there will be more significant
142 results if the enhancement also covers those areas using an integrated approach. Based on the assessment of
143 the implementation of the new system, there are some factors that must be put into consideration for further
144 improvement including inventory reduction, improving visibility, batch size reduction and matching with other
145 systems.

146 V. Acknowledgement 1 2 3 4

¹ M© 2017 Global Journals Inc. (US)

² © 2017 Global Journals Inc. (US) 1


³ © 2017 Global Journals Inc. (US)

⁴ Year 2017 () © 2017 Global Journals Inc. (US) 1

1

Figure 1: Figure 1 :

2

Figure 2: Figure 2 :

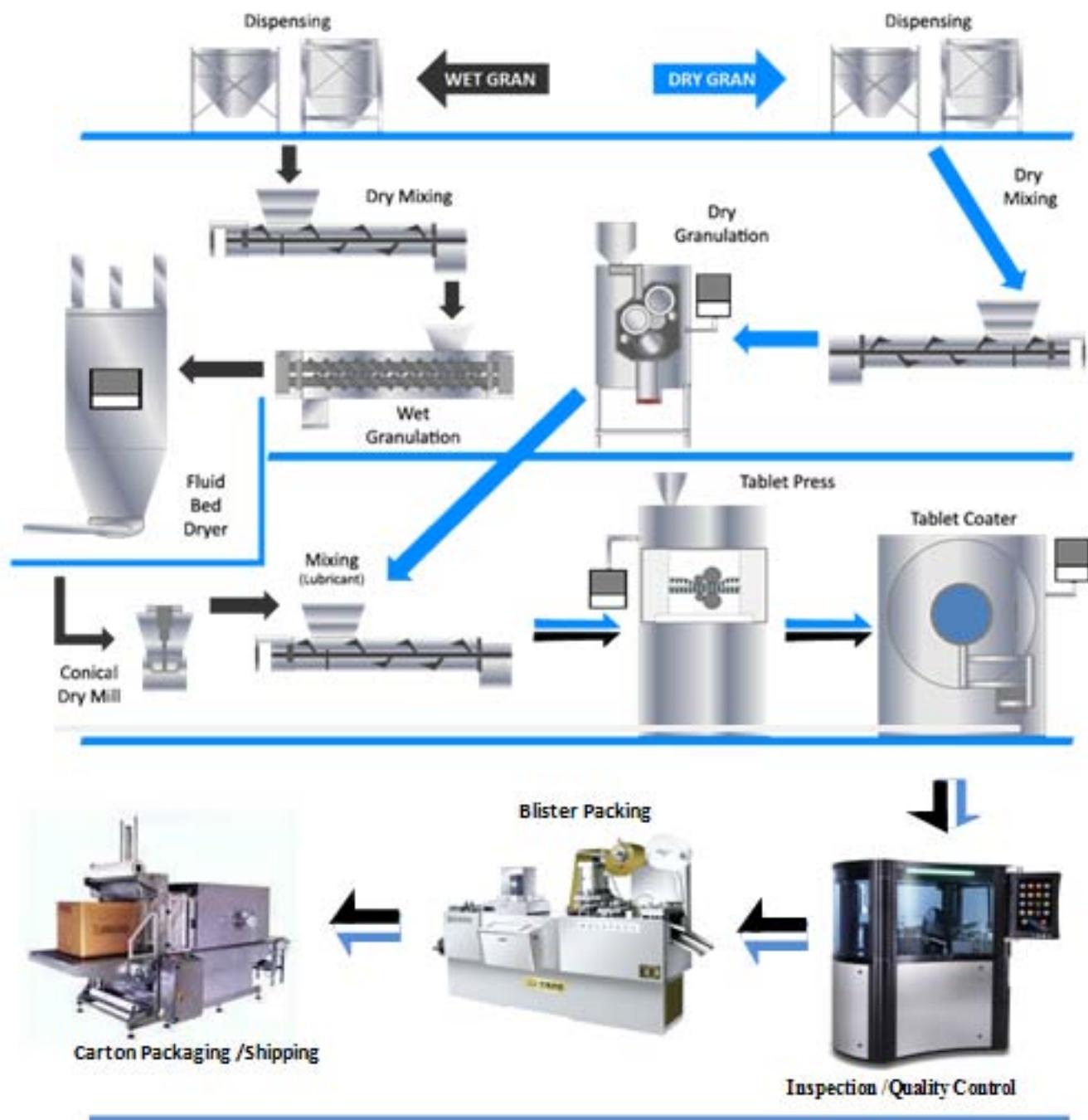
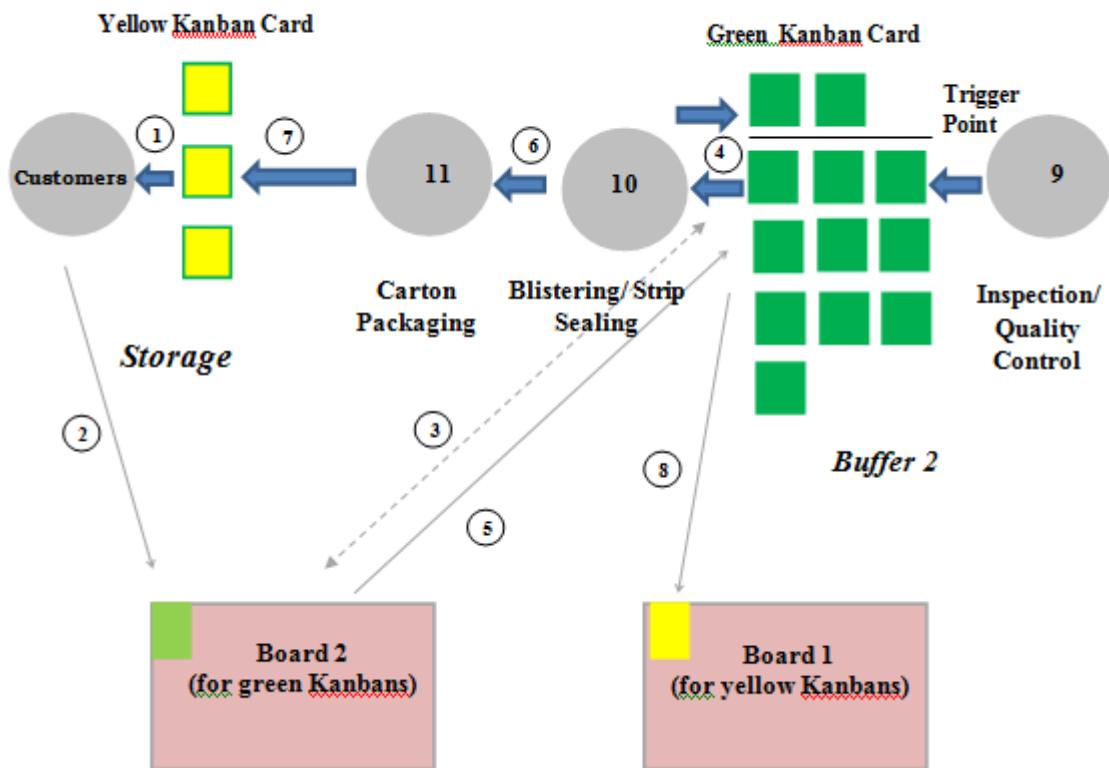



Figure 3:

34

Figure 4: Figure 3 :Figure 4 :

				Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
Dependent Variable	(I) MAS	(J) MAS	Lower Bound	Upper Bound				
DFR_2	1	2	-.16799907*	.000245697	.000	.16860104	-.16739710	
		3	-.15545861*	.000245697	.000	-.15606058	-.15485664	
	2	1	.16799907*	.000245697	.000	.16739710	.16860104	
		3	.01254046*	.000245697	.000	.01193849	.01314244	
	3	1	.15545861*	.000245697	.000	.15485664	.15606058	
		2	-.01254046*	.000245697	.000	-.01314244	-.01193849	
CT_2	1	2	-.29.211410*	1.91319765	.000	-.33.89883996	-.24.52397938	
		3	.53.468745*	1.91319765	.000	.48.78131487	.58.15617545	
	2	1	.29.211410*	1.91319765	.000	.24.52397938	.33.89883996	
		3	.82.680155*	1.91319765	.000	.77.99272454	.87.36758512	
	3	1	-.53.468745*	1.91319765	.000	-.58.15617545	-.48.78131487	
		2	-.82.680155*	1.91319765	.000	-.87.36758512	-.77.99272454	
NOI_2	1	2	-.6.3592155*	.124743740	.000	-.6.66484388	-.6.05358703	
		3	-.10501750	.124743740	.702	-.41064593	.20061092	
	2	1	.6.35921545*	.124743740	.000	.6.05358703	.6.66484388	
		3	.6.25419795*	.124743740	.000	.5.94856952	.6.55982637	
	3	1	.10501750	.124743740	.702	-.20061092	.41064593	
		2	-.6.2541979*	.124743740	.000	-.6.55982637	-.5.94856952	

Figure 5:

2

OUTCOME	BEFORE JIT	AFTER JIT	IMPROVEMENT
Lead time	10 days	2 day	5 times
Inventory	1080 units (2 x360 +360)	540 units (90 + 360)	50%
Visual Control	None	Self-Driven	Better
Employee Motivation	Normal	Higher	Better

Figure 6: Table 2 :

147 The authors acknowledge that the manuscript submitted is their own original work. All authors participated
148 in the work in a substantive way. The submitted manuscript is reviewed and approved by all authors. The
149 authors thank Juhel Nigeria Ltd for providing data for the problem. This study was conducted at Juhel Nigeria
150 Ltd. The authors are grateful to all who provided various forms of assistance during this study.

151 [Uwakwe ()] 'Precision'. N Uwakwe . *System Approach to ComputerIntegrated Design and Manufacturing*, 2015.