

1 Detecting Sentiments from Movie Reviews by Integrating 2 Reviewer's Own Prejudice

3 Swati Gupta¹, Kalpana Yadav² and Sumit K. Yadav³

4 ¹ INDIRA GANDHI DELHI TECHNICAL UNIVERSITY

5 *Received: 10 April 2015 Accepted: 2 May 2015 Published: 15 May 2015*

6

7 **Abstract**

8 Presently, sentiment analysis algorithms are widely used to extract positive or negative
9 feedback scores of various objects on the basis of the text/reviews. But, an individual may
10 have a certain degree of biasness towards a certain product/company and hence may not
11 objectively review the object. We try to combat this biasness problem by incorporating the
12 positive and negative bias component in the existing sentiment score of the object. This paper
13 proposes several algorithms for a new system of implementing individual bias in the corpus of
14 data i.e. movie reviews in this case. Each review comment has an unadjusted sentiment score
15 associated with it. This unadjusted score is refined to give an adjusted score using the positive
16 and negative bias score. The bias score is calculated using certain parameters, the weightage
17 of which has been determined by conducting a survey. We lay emphasis on the degree of
18 biasness an individual has towards or against the review parameters for the movie reviews
19 corpus namely actor, director and genre. We equip the system with the capability to handle
20 various scenarios like positive inclination of the user, negative inclination of the user, presence
21 of both positive and negative inclination of the user and neutral attitude of the user by
22 implementing the formulae we developed.

23

24 **Index terms**— natural language processing, sentiment analysis, opinion mining, text classification, online
25 customer reviews, social network analysis.

26 Detecting Sentiments from Movie Reviews by Integrating Reviewer's Own Prejudice Kalpana Yadav ? , Sumit
27 K. Yadav ? & Swati Gupta ? Abstract-Presently, sentiment analysis algorithms are widely used to extract
28 positive or negative feedback scores of various objects on the basis of the text/reviews. But, an individual may
29 have a certain degree of biasness towards a certain product/company and hence may not objectively review the
30 object. We try to combat this biasness problem by incorporating the positive and negative bias component in the
31 existing sentiment score of the object. This paper proposes several algorithms for a new system of implementing
32 individual bias in the corpus of data i.e. movie reviews in this case. Each review comment has an unadjusted
33 sentiment score associated with it. This unadjusted score is refined to give an adjusted score using the positive
34 and negative bias score. The bias score is calculated using certain parameters, the weightage of which has been
35 determined by conducting a survey. We lay emphasis on the degree of biasness an individual has towards or
36 against the review parameters for the movie reviews corpus namely actor, director and genre. We equip the
37 system with the capability to handle various scenarios like positive inclination of the user, negative inclination
38 of the user, presence of both positive and negative inclination of the user and neutral attitude of the user by
39 implementing the formulae we developed. Hence, the system computes an objective score sans any individual
40 bias for several scenarios making inferences better.

41 **1 Introduction**

42 sentiment analysis or opinion mining is the field of natural language processing dedicated to the computational
43 analysis of opinions for the purpose of decision making (Kim, & Hovy, 2004). An opinion is a statement about a
44 subject which expresses the sentiments and emotions of the opinion maker on the subject.

45 The main objective of sentiment analysis is to extract relevant information about the various sentiments
46 articulated by authors about a particular subject, forming relationship patterns between the sentiments and the
47 subject and helping users by presenting the huge volume of unstructured Web data in a structured form. ??Wu,
48 Wang, & Yi, 2013). In the present Internet age there is a plethora of information available to the users in every
49 possible arena. Users are exposed to various sources of information like blogs, online reviews, and social sites.

50 The current trend is to look up reviews, expert opinions and discussions on the Web, so that one can make
51 an informed decision pertaining to day-to-day tasks and purchases. (Cui, Mittal, & Datar, 2003). With so much
52 information around, the user finds it difficult to process all of it and make an informed and rational decision.
53 Here, sentiment analysis plays an important role by analysing all the data available and providing an over-all
54 positive or negative feedback. (K. ??ave etc. Hence, it becomes imperative to have a mechanism to sift through
55 this prejudiced information and get a collective objective consensus on the whole. For this evaluation, the validity
56 of the source becomes equally important along with the content expressed.

57 The content authors can be classified into three types: promoters, the users who are positively prejudiced
58 towards the object; detractors, the users who are negatively prejudiced against the object and passives, the users
59 who are neither positively nor negatively inclined towards the object. (Wen, Dai, & Zhao, 2012). The bias or
60 prejudice mentioned above refers to the inclination of temperament to hold a partial perspective and a refusal to
61 even consider the possible merits of alternate points of view. The different forms of bias that have already been
62 explored in sentiment analysis field include herd behavior, (Chen, 2008) first impression bias, (Deffuant, & Huet,
63 2009) sequential bias, .

64 The system we propose aims to deal with the individual bias in order to evaluate the validity of the content
65 sources and hence get an objective consensus rather than the subjective (Liu, 2010) one that we are previously
66 exposed to. Our work focuses on movie reviews corpus dataset as it provides a wholesome sample data from
67 varied demographics since movies are watched by everyone.

68 **2 II.**

69 **3 Related Work**

70 In this section, we focus on the related work on various types of bias and sentiment classification especially in
71 the field of online reviews. In (Cui, Mittal, & Datar, 2003), the efficiency of high order n-grams is enhanced
72 using discriminating classifier. Also, the possibility of getting a consolidated result even with the data set
73 comprising of varied products and authors is explored in this paper. (Dou, & Hu, 2012) explores an automated
74 method incorporating semantic analysis and align technique to extract structured data from web pages has
75 been developed. (Huang, & Lin, 2013) has dealt with a system where product reviews are evaluated on three
76 parameters: product reviews, product popularity, and product release month and a proficient product ranking
77 system is created. In (Jusoh, & Alfawareh, 2013) the sentiment classification using possibility theory has been
78 implemented in order to determine varied degree of positive and negative sentiment score.

79 **4 b) Bias Reviews**

80 Various types of bias have also been discovered in the papers. In (Bencz, A. 2012), biclustering has been used
81 along with kernel methods and baseline text classifiers to improve trust, bias and factuality classification over
82 Web data on the domain level. The main aim is to aid researchers in obtaining large data that originates from
83 trustworthy sources.

84 In (Sikora, & Chauhan, 2012), the first impression bias i.e. the tendency of the individuals to modify their
85 opinions on the basis of first-third person review that he/she views which has been eliminated using the Kalman
86 filtering technique. In (Schweiger, Oeberst, & Cress, 2014), the confirmation bias in web based search was studied.
87 The two data samples taken were psychotherapy and pharmacotherapy both of which are scientifically equally
88 effective for depression treatments but the former was considered to be more effective by the public. The blog
89 entries by experts and tag clouds were recommended to counter biased information processing on these entries.
90 In (Wood, & Dellarocas, 2006), the reporting bias of the traders and its effects on the public feedback have been
91 studied. The basic assumption dealt with here is that the traders are more likely to report or give a feedback
92 when the experience has been positive rather than when it is negative. Hence, the lack of negative feedback
93 doesn't necessarily mean the absence of it. In (Hu, Bose, Gao, & Liu, 2011), a simple statistical method has
94 been developed in order to detect the online product reviews which are biased and how they affect the consumer
95 reaction to the products. The two parameters on which review manipulation were judged were manipulation
96 through ratings and manipulation through sentiments. The consumers were found to have detected successfully
97 only the former.

98 In (Piramuthu, Kapoor, Zhou, & Mauw, 2012) sequential bias in the online product of the recommender
99 systems are found and eliminated. In ??Sikora, & Liangjun, 2014) the various methods used by traders to alter

100 their reputation score in the online market have been studied. Here, the concept of replicator dynamics is used
101 to study the evolution of different types of sellers and buyers in the market. In (Chen, & Lin, 2013), decision
102 tree along with correlation analysis and extracted knowledge rules has been used to improve the detection of the
103 online review manipulation by introducing eight review manipulation attributes. In (Hu, Bose, Gao, & Liu, 2011)
104 the study on the increase in propensity of biasness in the book reviews increases with the passage of time has
105 been explored. In (Cipriani, Guarino, & Antonio, 2012), the herd behavior in financial markets has been studied
106 and eliminated using structural estimation framework.

107 The paper (Knight, & Chiang, 2008) investigates the media bias and the influence the media has on casting
108 of votes during election time. The paper concludes that although newspapers do influence the opinion formation
109 of the voters, it is limited by the degree and direction of the bias. In (Wang, Zhang, X. M., & Hann, 2010), the
110 social bias in online product ratings has been explored. The degree of social influence was found to be greater
111 for the books with that were popular, if the rating was from less experienced user, the rating was given at a later
112 stage of review cycle and if the rating was given by a user with small social network.

113 After the literature review, we find that individual bias though mentioned in various papers has never been
114 worked upon or researched on before. Since, individual bias is one aspect that can greatly modify the sentiment
115 score, hence, we decided to concentrate on a) Sentiment Classification this topic as our area of work and present
116 the user with an objective score.

117 5 III.

118 6 Proposed Methodology

119 The proposed system has seven major steps which start from extraction of corpus for the formulae to be applied
120 upon. The next step is to extract the user data which are the likes from his/her Facebook® profile and the profile
121 URL and manage the database hence, created. This serves as input for the mathematical modeling of the system.
122 The corpus extracted is fed to ALCHEMY API to give an unadjusted score for the corpus. Further, steps include
123 mathematical modeling and application of the developed formulae to calculate adjusted and unadjusted score for
124 the corpus. In the end, we present the user with an unadjusted score which is an objective score i.e. sans any
125 individual bias. Framework of proposed approach is shown in Figure ??.

126 Step 1: Extraction of Movie Reviews (Sentimental Data) for Social Media Movie reviews are collected from
127 social media, weblogs, bloggers, social networking sites like Facebook®, Twitter etc. for further processing.

128 7 Figure1: Framework of the proposed methodology

129 Step 2 : Extraction of User Data In order to track the preferences and compute the likes and dislikes, the data
130 related to the user i.e. the user's likes, their comments, the user ID, etc. is extracted from Facebook® in form of
131 tokens. It is then sent to the website for further computation.

132 Step 3: Database Management

133 The comments, the likes, the user information and id are stored in Phpmyadmin database management system.
134 The calculated sentiment score and bias score is also stored in the database. Next, unadjusted score is calculated
135 using ALCHEMY API.

136 Step 4: Alchemy Api

137 The system makes use of a text analysis tool called ALCHEMY API (<http://www.alchemyapi.com/>). This
138 tool provides the real-time text analysis through the method of entity and keyword extraction and provides the
139 degree of positive and negative connotation they have.

140 It works on diverse document types including news articles, blog posts, product reviews, comments and Tweets.
141 The basic idea behind this framework is that it targets unstructured data, forms relationship between the keywords
142 and the data and gives the relevant structured result. Figure 3 showcases the working of the ALCHEMY API.

143 The keywords in this figure are of three types: the keywords representing Bollywood actor/actress namely
144 Ranbir, Deepika, Priyanka, Ranveer Singh; the keywords representing Bollywood movie names namely Ramleela
145 and Queen; the keywords representing movie genre namely Action, Comedy, Drama and Romance.

146 The ALCHEMY API applies multiple algorithms of text analysis, keyword extraction, negation handling and
147 modifier handling on these keywords and gives a structured relationship between them. The final result is in the
148 form of positive and negative bias score.

149 Step 5: Mathematical Modeling To determine the relevant parameters and their corresponding weightage to
150 analyze the corpus a preference survey of the varied sample of a movie audience was conducted.

151 Thus, the movie reviews are analyzed on two major factors namely genre and actor/director of the movie in
152 order to determine the bias of an individual.

153 8 a) Genre

154 The genre refers to the style or category of the movie for example Drama, Romance, Action, among others.

155 9 b) Actor/Director

156 The user inclination towards or against certain actors and director in the movie can make a user biased towards
157 the movie as well. Here, '?' refers to the Genre Score and '?' refers to the Actor/ Director Score.

158 The impact ratio of genre to director/actor score i.e. 54: 46 has again been inferred using the user survey sample
159 conducted for over thousands Facebook® users. Given below is the step-by-step process for the implementation
160 flow of the framework. Algorithm 1: To calculate the Adjusted Sentiment Score.

161 10 i. Input

162 A corpus of movie review comments. ii. Variables An initially empty set of comments c, An initially empty set of
163 tags t, which comprise of the three keyword types described above i.e. the keywords representing actor/actress,
164 movie names and movie genre. An initially empty set of sentiments s. iii. Output Adjusted Sentiment Score A
165 1. C ? retrieve_comments(c i) 2. For each c i ? C do 3. s i ? retrievesentiment(c i); 4. pos i ? retrievpos(c i
166); 5. neg i ? retrieveneg(c i); 6. A ? adjstsentscore(s i , pos i , neg i)

167 11 return 'A'

168 The movie comments are collected in a set c. The index i refers to the fact that i th comment is being processed.
169 The total number of comments is taken to be n. For each comment in the set the keyword extraction is done and
170 tags are collected in another set t. These tags are used to get the negative inclination score. Each comment is
171 also manipulated to extract the sentiment types which are collected in a set s. The variables defining the positive
172 bias score, negative bias score and sentiment are passed on to the adjusted score function to get the composite
173 score.

174 Step 6: Unadjusted Score Calculation

175 The unadjusted score gives the subjective score of the user sentiments. This score needs to be refined to get
176 an objective adjusted score.

177 The unadjusted score is calculated using ALCHEMY API framework that is incorporated in the movies reviews
178 website. This score is calculated by applying the ALCHEMY API algorithm on the user comments in the website.

179 The unadjusted score thus calculated is given by S. Here, the number of users is taken to be m, while of
180 multiple posts by a single user a variable n is used to keep a count of comments. The score of a single user is
181 hence represented by, $1/n \sum y_i S_i = \bar{S}$

182 Step 7: Adjusted Score Calculation To incorporate individual bias we look at three different possible aspects.

183 Firstly, the positive inclination or the positive bias which shows overtly promoting behavior of the source.
184 Secondly, the negative inclination or negative bias, which shows the detractor behavior of the source. Thirdly,
185 when there is a mixed response of both positive and negative inclination by the source.

186 12 iv. Alchemy Api

187 The ALCHEMY API is then used to evaluate the unadjusted score for the user. The bias is incorporated in the
188 score after the implementation of the positive and negative bias algorithms.

189 IV.

190 13 Conclusion

191 The current systems lack the ability to objectively review a product based on user comments. This is because of
192 the inherent biasness present in their comments. We combat this biasness problem by incorporating the positive
193 and negative bias component in the existing unadjusted sentiment score of the object using various proposed
194 algorithms. We calculated the degree of biasness an individual has towards or against the review parameters for
195 the movie reviews corpus namely actor, director and genre. Finally, the system functions well in various scenarios
196 like presence of only positive inclination of the user, presence of only negative inclination of the user, presence of
197 both positive and negative inclination of the user and neutral attitude of the user. Hence, our system computes
198 an objective score sans any individual bias.

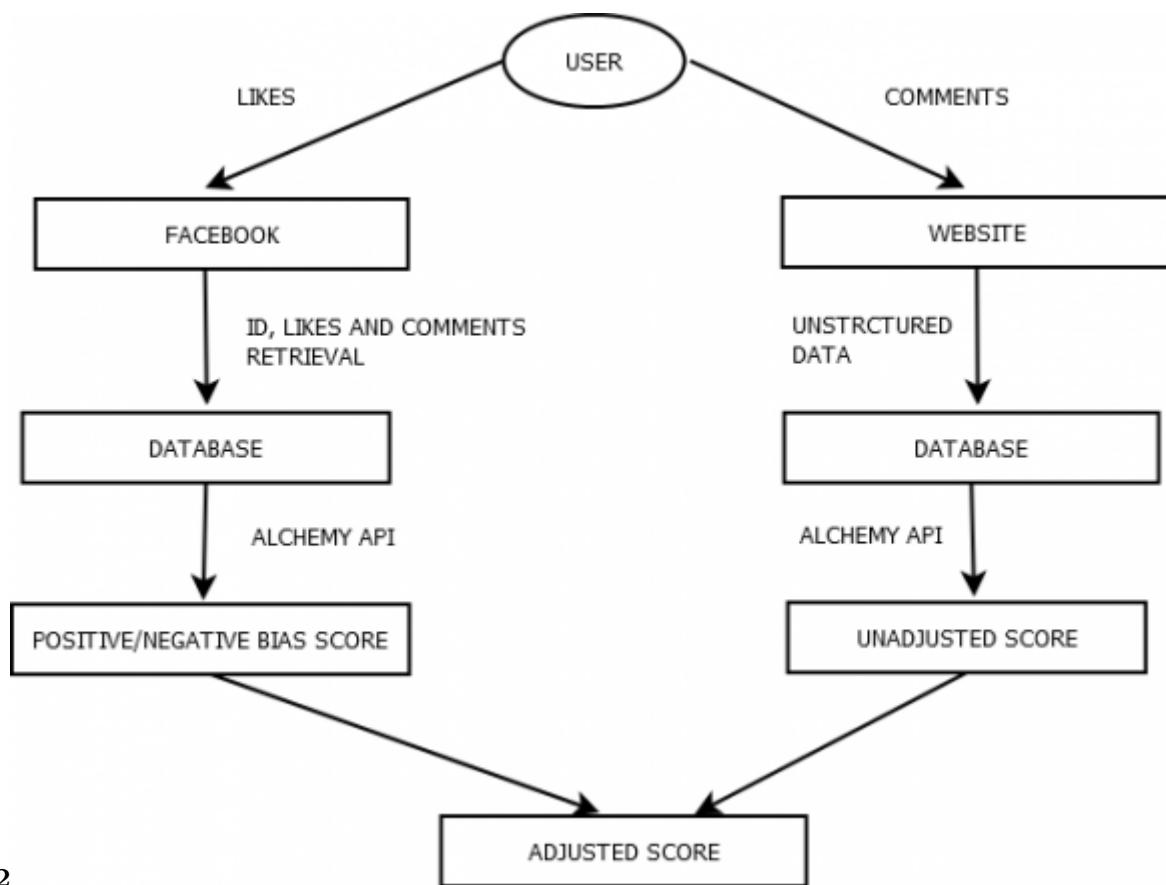
199 V.

200 14 Future Scope

201 The principal contribution of our research is the implementation of individual bias in the existing sentiment
202 analysis algorithms. This can be used in various fields like business, journalism, product development among
203 others. The research can be implemented across different algorithms and languages too.

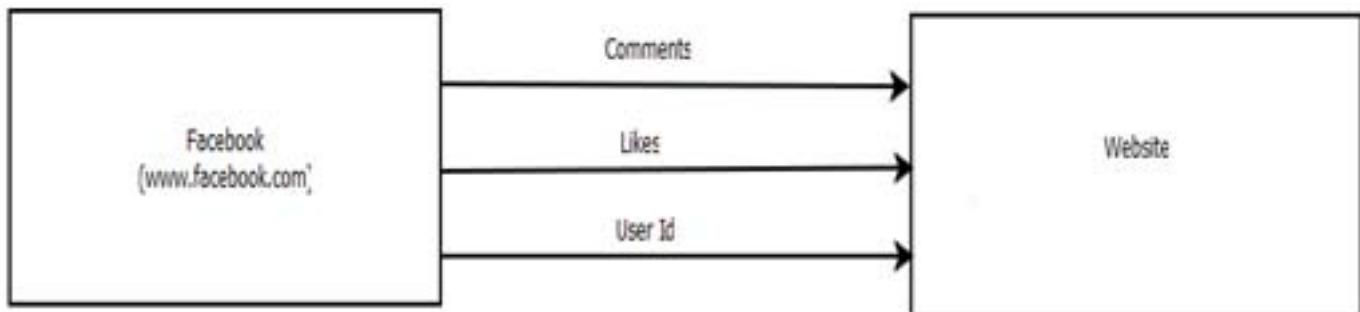
204 The future endeavor in this direction would be implementation of unexplored biases in the system like selection
205 bias, cognitive bias, first impression bias, herd bias, etc.

Figure 1:



2

Figure 2: Figure 2 :



3

Figure 3: Figure 3 :

4

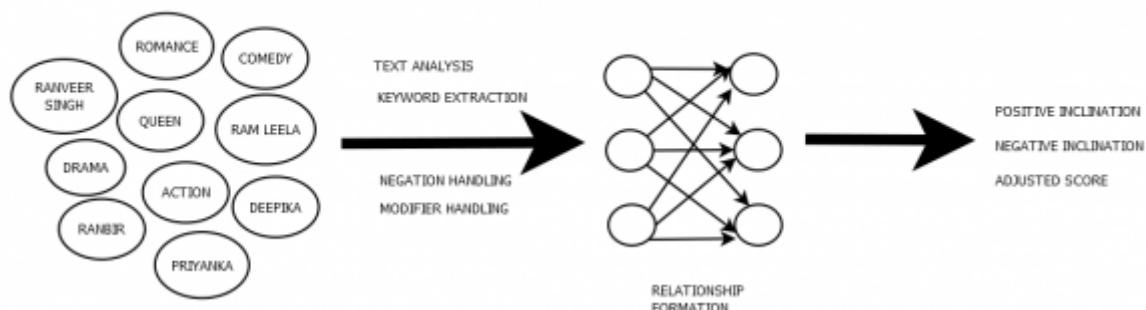


Figure 4: Figure 4 :

208 [Wu et al.] *A Novel Approach Based on Review Mining for Product Usability Analysis*, M Wu , L Wang , L Yi .
209 p. .

210 [Wu et al.] *A Novel Approach Based on Review Mining for Product Usability Analysis*, M Wu , L Wang , L Yi .
211 p. .

212 [Wu et al.] *A Novel Approach Based on Review Mining for Product Usability Analysis*, M Wu , L Wang , L Yi .
213 p. .

214 [Jusoh and Alfawareh ()] ‘Applying fuzzy sets for opinion mining’. S Jusoh , H M Alfawareh . 10.1109/IC-
215 CAT.2013.6521965. *International Conference on Computer Applications Technology (ICCAT)*, 2013. 2013.
216 p. .

217 [Chen ()] Yi-Fen Chen . *Herd behavior in purchasing books online*, 2008. 24 p. .

218 [Deffuant and Huet ()] ‘Collective increase of first impression bias’. Guillaume Deffuant , Sylvie Huet . *Complexity*
219 2009. 15 (5) p. .

220 [Bencz ()] *Content-Based Trust and Bias Classification via*, A Bencz . 2012. p. .

221 [Kim and Hovy ()] ‘Determining the sentiment of opinions’. S Kim , E Hovy . *Proceedings of the international*
222 *conference on computational linguistics (COLING 2004) East*, (the international conference on computational
223 linguistics (COLING 2004) EastStroudsburg, PA) 2004. p. 1367.

224 [Cipriani and Guarino ()] *Estimating a Structural Model of Herd Behavior in Financial*, M Cipriani , A Guarino
225 . 2012.

226 [Sikora and Chauhan ()] *Estimating sequential bias in online reviews: A Kalman filtering approach. Knowledge-
227 Based Systems*, R T Sikora , K Chauhan . 10.1016/j.knosys.2011.10.011. 2012. 27 p. .

228 [Piramuthu et al. ()] ‘Input online review data and related bias in recommender systems’. S Piramuthu , G
229 Kapoor , W Zhou , S Mauw . 10.1016/j.dss.2012.02.006. *Decision Support Systems* 2012. 53 (3) p. .

230 [Piramuthu et al. ()] ‘Input online review data and related bias in recommender systems’. S Piramuthu , G
231 Kapoor , W Zhou , S Mauw . 10.1016/j.dss.2012.02.006. *Decision Support Systems* 2012. 53 (3) p. .

232 [Lin et al. ()] ‘Mining Online Book Reviews for Sentimental Clustering’. E Lin , S Fang , J Wang .
233 10.1109/WAINA.2013.172. *27th International Conference on Advanced Information Networking and Appli-
234 cations Workshops*, 2013. 2013. p. .

235 [Lin et al. ()] ‘Mining Online Book Reviews for Sentimental Clustering’. E Lin , S Fang , J Wang .
236 10.1109/WAINA.2013.172. *27th International Conference on Advanced Information Networking and Appli-
237 cations Workshops*, 2013. 2013. p. .

238 [Dave et al. ()] ‘Mining the peanut gallery: Opinion extraction and semantic classification of product reviews’.
239 K Dave , S Lawrence , D Pennock . *Proceedings of the 12 th international conference on World Wide Web*,
240 (the 12 th international conference on World Wide Web) 2003. ACM. p. .

241 [Park et al. ()] ‘Ontology-based sentiment analysis of twitter posts’. Park , Ko , Kim , Liu , ; E Song , C Berberidis
242 , T Dergiades , N Bassiliades . 10.1016/j.eswa.2013.01.001. *Kontopoulos*, 2011. 2013. 40 p. .

243 [Mishra and Jha ()] ‘Restricted Domain Opinion Mining in Compound Sentences’. N Mishra , C K Jha .
244 10.1109/CSNT.2013.132. *International Conference on Communication Systems and Network Technologies*,
245 2013. 2013. p. .

246 [Mishra and Jha ()] *Restricted Domain Opinion Mining in Compound Sentences*, N Mishra , C K Jha . 2013.
247 201363.

248 [Wen et al. ()] ‘Sentence Sentimental Classification Based on Semantic Comprehension’. B Wen , W Dai , J Zhao
249 . 10.1109/ISCID.2012.275. *Fifth International Symposium on Computational Intelligence and Design*, 2012.
250 2012. p. .

251 [Liu ()] *Sentiment analysis and subjectivity. Handbook of Natural Language Processing*, B Liu . 2010. Liu, Y.,
252 Huang.

253 [Cui et al. ()] *Sentiment Analysis Based Approaches for Understanding User Context in Web Content Dept of*
254 *Information Technology*, H Cui , V Mittal , M Datar . 10.1109/CSNT.2013.130. 2003. 2013. p. . (Comparative
255 Experiments on Sentiment Classification for Online Product Reviews)

256 [Larsson and Moe ()] ‘Studying political microblogging: Twitter users in the 2010 Swedish election campaign’.
257 A Larsson , H Moe . *New Media and Society* 2011. 14 p. .

258 [Wang et al. (2010)] C A Wang , X M Zhang , I Hann . *Social Bias in Online Product Ratings : A Quasi-
259 Experimental Analysis*, February 2010. p. .

260 [Huang and Lin ()] ‘Web product ranking using opinion mining’. Y Huang , H Lin . 10.1109/CIDM.2013.6597235.
261 *IEEE Symposium on Computational Intelligence and Data Mining (CIDM)*, 2013. 2013. p. .

262 [Gil De Zuniga et al. ()] ‘Weblogs, traditional sources online and political participation: An assessment of how
263 the internet is changing the political environment’. H Gil De Zuniga , E Puig-I-Abril , H ; S Rojas , Y Lin , D
264 Margolin , B Keegan , D Lazer . *New Media and Society* 2009. 11 p. . (Voices of Victory : A Computational
265 Focus Group Framework for Tracking Opinion Shift in Real Time Categories and Subject Descriptors)