

GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY: F
GRAPHICS & VISION
Volume 15 Issue 2 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Text Attribute Noise Variation based Multi-Scale Image Analysis

By Dr. M. Ashok, Dr. T. Bhaskara Reddy & S. Bhargav Kumar

S.K. University, India

Abstract- For image reconstruction, the particular constant quantity of the received image should be same as original image with the given analysis. This paper implements an analysis algorithm, where the particular constant quantity are analysed via image texture leaning with an appropriate variable variation's. In this paper, a three level decomposed multi-wavelet (3LMW)-based multi-scale image noise variation analysis scheme for image text attribute noise variation (TANV) and image analysis algorithm is proposed and the determination of the optimal 3LMW basis with respect to the proposed scheme is also discussed. The proposed method is applied to image noise variation analysis, and the experimental results validated its generality and effectiveness in multi-style image noise variation analysis.

Keyword: *quantity; TANV; 3LMW; resolution; multi-style.*

GJCST-F Classification: I.3.3

TEXT ATTRIBUTE NOISE VARIATION BASED MULTISCALE IMAGE ANALYSIS

Strictly as per the compliance and regulations of:

Text Attribute Noise Variation based Multi-Scale Image Analysis

Dr. M. Ashok ^a, Dr. T. Bhaskara Reddy ^o & S. Bhargav Kumar ^p

Abstract- For image reconstruction, the particular constant quantity of the received image should be same as original image with the given analysis. This paper implements an analysis algorithm, where the particular constant quantity are analysed via image texture leaning with an appropriate variable variation's. In this paper, a three level decomposed multi-wavelet (3LMW)-based multi-scale image noise variation analysis scheme for image text attribute noise variation (TANV) and image analysis algorithm is proposed and the determination of the optimal 3LMW basis with respect to the proposed scheme is also discussed. The proposed method is applied to image noise variation analysis, and the experimental results validated its generality and effectiveness in multi-style image noise variation analysis.

Keywords: quantity; TANV; 3LMW; resolution; multi-style.

I. INTRODUCTION

In many image recognition applications, people often send images from different sources and consequently they were received at different destinations. In addition, low resolution obtained at multiple receivers should be up-converted to a higher level of resolution for better interpretation at end user. Research works on such image analysis problems should benefit the practical applications under image interpretation and image human visual distinctive information analysis [1][2].

In this paper, a generic model to solve these multi-style[7] image TANV analysis problems has been proposed. The pair of book keeping aim to characterize the two domains, multi-scale[3] and semi-quad[6], the mapping functions is to reveal the relation between two variable variation's [4][5] for noise variation analysis. The

$$\hat{R}_{jxy}(mx,ny) = [R_{jxy}(mx,ny) \ R_{jxy+xy}(mx,ny)]^{Txy} = \dot{x}_{jxy} + \dot{y}_{jxy} \pm \sqrt{|L_{jxy-xy}| \sigma_{:xy}} \quad (2)$$

$$\hat{R}_{jyz}(mx,ny) = [R_{jyz}(mx,ny) \ R_{jyz+yz}(mx,ny)]^{Tyz} = \dot{x}_{jyz} + \dot{y}_{jyz} \pm \sqrt{|L_{jyz-yz}| \sigma_{:yz}} \quad (3)$$

$$\hat{R}_{jxz}(mx,ny) = [R_{jxz}(mx,ny) \ R_{jxz+xz}(mx,ny)]^{Txz} = \dot{x}_{jxz} + \dot{y}_{jxz} \pm \sqrt{|L_{jxz-xz}| \sigma_{:xz}} \quad (4)$$

where

$$\dot{x}_{jxyz}(mx,ny) = [x_{jxyz}(mx,ny) \ x_{jxyz+1}(mx,ny)]^{Txyz} \text{ and } \dot{y}_{jxyz} = [y_{jxyz}(mx,ny) \ y_{jxyz+1}(mx,ny)]^{Txyz}.$$

Author ^a: Dept. of Computer Science & Engineering, SSJ Engineering College, JNTUH, Hyderabad, Telangana.
e-mail: maram_ashokssjec@yahoo.com

Author ^o: Dept. of Computer Science & Tech, S.K. University, Anantapuram, Andhra Pradesh. e-mail: bhaskarreddy_sku@yahoo.co.in

Author ^p: Hyderabad, Telangana. e-mail: kumar.s.bhargav@gmail.com

proposed model is called as auto-coupled image noise variation analysis and apply it to image noise variation analysis to validate its performance.

The rest of the paper is organized as follows. Section 2 discusses about Multi-Scale Image Text Attribute Noise Variation (MSTANV) scheme. Analysis Model is presented in section 3. Section 4 presents the proposed model Multi-Scale Image Analysis method. Section 5 discuss the results and Section 6 concludes the paper.

II. MSTANV

The MSTANV scheme presented in this work adopts partitioned and relevant (P&R) 3LMW stretch (P&R3L) and two-stage decomposition structure is implemented. Here w_{jx}^H , w_{jy}^V and w_{jz}^D are the 3LMW particular constant quantity at horizontal, vertical and diagonal particular constant quantity.

Let S_{xyz} denote input image to analyse. Filters H_{jx} , H_{jy} and H_{jz} used in P&R3L are replaced with $(2^{j-xyz} - xyz)$ zeros of the variable quantity of original filter $H_{0:xyz}$, so does for $H_{0:xyz} || V_{jxyz}$. The analysed signal by proposed 3LMW, is an average of several MSTANV signal by P&R3L. Noise variations of s_j at scale j in a direction is

$$\sigma_{jxyz} = |L_{jxyz-xyz}| \sigma_{:xyz} \quad (1)$$

where $|L_{jxyz-1}|$ is the corresponding filter ($|L_{jx-1}^D|$), ($|L_{jy-1}^H|$ and ($|L_{jz-1}^V|$)).

The orientation vector are represented as,

III. ANALYSIS MODEL

Let \hat{R}_{xyz} denote MSTANV image to analyse and set of variants $h_{xyz} = \{\check{h}_{xyz}\}$. Let $\hat{R}_{i xyz}$ denote a path of \hat{R}_{xyz} at image text location i_{xyz} , then,

$$\hat{R}_{i xyz} = \hat{R}_{xyz} \mathcal{P}_{i xyz} \quad (5)$$

where $\mathcal{P}_{i xyz}$ denotes a P&R operator,

$$\hat{R}_{xyz} = (\sum \mathcal{P}_{i xyz}^{Txyz} \mathcal{P}_{i xyz})^{-xyz} (\sum \mathcal{P}_{i xyz}^{Txyz} \hat{R}_{i xyz}) \quad (6)$$

For mapping \hat{H}_{xyz} ,

$$\hat{R}_{i xyz} = \hat{H}_{xyz} \check{h}_{i xyz} \quad (7)$$

Substituting (6) into (7),

$$\hat{R}_{xyz} = F_{xyz} \check{h}_{xyz} = (\sum \mathcal{P}_{i xyz}^{Txyz} \mathcal{P}_{i xyz})^{-xyz} (\sum \mathcal{P}_{i xyz}^{Txyz} \hat{H}_{xyz} \check{h}_{i xyz}) \quad (8)$$

where F_{xyz} is used to reconstruct image \mathcal{P}_{xyz} . variant particular constant quantity are represented by

$$\check{h}_{xyz} = \arg \check{h}_{xyz} \min [1/xyz |X_{xyz} - F_{xyz} \check{h}_{xyz}|^{xyz}_{xyz} + \lambda_{xyz} |\check{h}_{xyz}|_{xyz}] \quad (9)$$

where $X_{xyz} = \hat{R}_{xyz} + \check{h}_{xyz}$ and λ_{xyz} is the deviation variable,

$$(\check{h}_{xyz}, \check{a}_{xyz}) = \arg \check{h}_{xyz, \check{a}_k} \min [1/xyz |X_{xyz} - F_{xyz} \check{h}_{xyz}|^{xyz}_{xyz} + \lambda_{xyz}^{-1} |\check{h}_{xyz}|_{xyz}] + \lambda_{xyz}^2 \sum_{k=xyz}^K \sum_{i \in C_{k:xyz}} |\hat{H}_{xyz} \check{h}_{i xyz} - \check{a}_k|^{xyz}_{xyz} \quad (10)$$

where \check{a}_k stands for k_{xyz} -th $C_{k:xyz}$ of particular constant quantity \check{h}_{xyz} . By rewriting the (10) as,

$$(\check{h}_{xyz}, \check{g}_{xyz}) = \arg \check{h}_{xyz, \check{a}_k} \min [1/xyz |X_{xyz} - F_{xyz} \check{h}_{xyz}|^{xyz}_{xyz} + \lambda_{xyz}^{-1} |\check{h}_{xyz}|_{xyz}] + \lambda_{xyz}^2 \sum_{k=xyz}^K \sum_{i \in C_{k:xyz}} |\hat{H}_{xyz} \check{h}_{i xyz} - \hat{H}_{xyz} \check{g}_{k xyz}|^{xyz}_{xyz} \quad (11)$$

resulting $|\hat{H}_{xyz} \check{h}_{i xyz} - \hat{H}_{xyz} \check{g}_{k xyz}|^{xyz}_{xyz} = |\check{h}_{i xyz} - \check{g}_{k xyz}|^{xyz}_{xyz}$. From these, by re-writing the (11) as,

$$(\check{h}_{xyz}, \check{g}_{xyz}) = \arg \check{h}_{xyz, \check{a}_k} \min [1/xyz |X_{xyz} - F_{xyz} \check{h}_{xyz}|^{xyz}_{xyz} + \lambda_{xyz}^{-1} |\check{h}_{xyz}|_{xyz}] + \lambda_{xyz}^2 \sum_{k=xyz}^K \sum_{i \in C_{k:xyz}} |\check{h}_{i xyz} - \check{g}_{k xyz}|^{xyz}_{xyz} \quad (12)$$

By substituting norm in (12), resulting in

$$(\check{h}_{xyz}, \check{g}_{xyz}) = \text{norm}(\arg \check{h}_{xyz, \check{a}_k} \sum \min [1/xyz |X_{xyz} - F_{xyz} \check{h}_{xyz}|^{xyz}_{xyz}]) + \text{norm}(\lambda_{xyz}^{-1} |\check{h}_{xyz}|^{xyz}_{xyz}) + \text{norm}(\lambda_{xyz}^2 \sum_{k=xyz}^K \sum_{i \in C_{k:xyz}} |\check{h}_{i xyz} - \check{g}_{k xyz}|^{xyz}_{xyz}) \quad (13)$$

Classify \hat{R}_{xyz} in to P_{xyz} and Q_{xyz} , as in to N_{xyz} and M_{xyz} respectively. Having a set of $N_{xyz} \{\Gamma_{k:xyz}^P, 1 \leq k:xyz \leq N\}$ for P_{xyz} and a set of $M_{xyz} \{\Gamma_{l:xyz}^Q, 1 \leq l:xyz \leq M\}$ for Q_{xyz} , where $\Gamma_{k:xyz}^P$ denotes the index of k in P_{xyz} and $\Gamma_{l:xyz}^Q$ denotes the index of l in Q_{xyz} . The QC Model corresponding to above projection is given by,

$$J(\bar{E}_{k:xy, l:xy}, \check{a}_{k:xy}, \check{g}_{l:xy}, \check{a}_{k:xy, l:xy}) = \sum_{k=1:xy}^N \sum_{l=1:xy}^M \left| \Gamma_{k:xy}^P \right| \left| \Gamma_{l:xy}^Q \right| \left| (\bar{E}_{k, l:xy} - \bar{E}_{k, l:xy})^{xy} \right| + \sum_{k:xy=1}^N \check{a}_{k:xy} \left(\sum_{l=1:xy}^M \left| \Gamma_{l:xy}^Q \right| \left| \bar{E}_{k:xy, l:xy} - \bar{E}_{k:xy, l:xy} \right| \right) + \sum_{l=1:xy}^M \check{g}_{l:xy} \left(\sum_{k=1:xy}^N \left| \Gamma_{k:xy}^P \right| \left| \bar{E}_{k:xy, l:xy} - \bar{E}_{k:xy, l:xy} \right| \right) \quad (14)$$

$$J(\bar{E}_{k:yz, l:yz}, \check{a}_{k:yz}, \check{g}_{l:yz}, \check{a}_{k:yz, l:yz}) = \sum_{k=1:yz}^N \sum_{l=1:yz}^M \left| \Gamma_{k:yz}^P \right| \left| \Gamma_{l:yz}^Q \right| \left| (\bar{E}_{k, l:yz} - \bar{E}_{k, l:yz})^{yz} \right| + \sum_{k:yz=1}^N \check{a}_{k:yz} \left(\sum_{l=1:yz}^M \left| \Gamma_{l:yz}^Q \right| \left| \bar{E}_{k:yz, l:yz} - \bar{E}_{k:yz, l:yz} \right| \right) + \sum_{l=1:yz}^M \check{g}_{l:yz} \left(\sum_{k=1:yz}^N \left| \Gamma_{k:yz}^P \right| \left| \bar{E}_{k:yz, l:yz} - \bar{E}_{k:yz, l:yz} \right| \right) \quad (15)$$

$$J(\bar{E}_{k:xz, l:xz}, \check{a}_{k:xz}, \check{g}_{l:xz}, \check{a}_{k:xz, l:xz}) = \sum_{k=1:xz}^N \sum_{l=1:xz}^M \left| \Gamma_{k:xz}^P \right| \left| \Gamma_{l:xz}^Q \right| \left| (\bar{E}_{k, l:xz} - \bar{E}_{k, l:xz})^{xz} \right| + \sum_{k:xz=1}^N \check{a}_{k:xz} \left(\sum_{l=1:xz}^M \left| \Gamma_{l:xz}^Q \right| \left| \bar{E}_{k:xz, l:xz} - \bar{E}_{k:xz, l:xz} \right| \right) + \sum_{l=1:xz}^M \check{g}_{l:xz} \left(\sum_{k=1:xz}^N \left| \Gamma_{k:xz}^P \right| \left| \bar{E}_{k:xz, l:xz} - \bar{E}_{k:xz, l:xz} \right| \right) \quad (16)$$

where $\bar{E}_{k:xyz, l:xyz}$, $\check{a}_{k:xyz}$, $\check{g}_{l:xyz}$ and $\check{a}_{k:xyz, l:xyz}$ are the index constraints. In the scenario of image analysis, re-writing the (13), we get by considering ϕ initial values,

$$(\check{h}_{xyz}, \check{g}_{xyz}) = \arg \check{h}_{xyz, \check{a}_k} \min [1/xyz |X_{xyz} - F_{xyz} \check{h}|^{xyz}_{xyz} + \lambda_{xyz}^{-1} |\check{h}_{xyz}|_{xyz}] + \lambda_{xyz}^2 \sum_{k=1:xyz}^K \sum_{i \in C_{k:xyz}} |\hat{H}_{xyz} \check{h}_{i xyz} - \hat{H}_{xyz} \check{g}_{k xyz}|_{1:xyz} \quad (17)$$

and $\check{a}_{y:xyz} = \arg \check{a}_{y:xyz} \min |\check{a}_{y:xyz}|_{1:xyz}$, by stating

$$|S_{xyz} - n_{xyz} \phi_{y:yz:zx} \check{a}_{y:xyz}|_{xyz} < \epsilon_{xyz} \quad (18)$$

and then the reconstructed S is obtained as $S_{j:xyz} = \phi_{y:yz:zx} \check{a}_{y:xyz}$ which is very close to the true image S_{xyz} .

IV. MULTI-SCALE IMAGE ANALYSIS ALGORITHM

The proposed analysis approach shown in fig 1; involves multi-scale image TANV analysis algorithm :

Algorithm : Multi-scale Image Analysis Algorithm

Input : Book keeping pairs B_{xy} , B_{yz} and B_{zx} and 3LMW pairs $3L_{xy}$, $3L_{yz}$ and $3L_{zx}$.

1. Update S_{xyz} in 3L as $X_{j:xy}$, $X_{j:yz}$, $X_{j:zx}$ and $Y_{j:xy}$, $Y_{j:yz}$, $Y_{j:zx}$.
2. Update B_{xy} , B_{yz} and B_{zx} .
3. Update $3L_{xy}$, $3L_{yz}$ and $3L_{zx}$.
4. Update k_{xyz} .
5. Update J by multi-style TANV analysis.
6. Update k_{xyx}

Output: Analysed image.

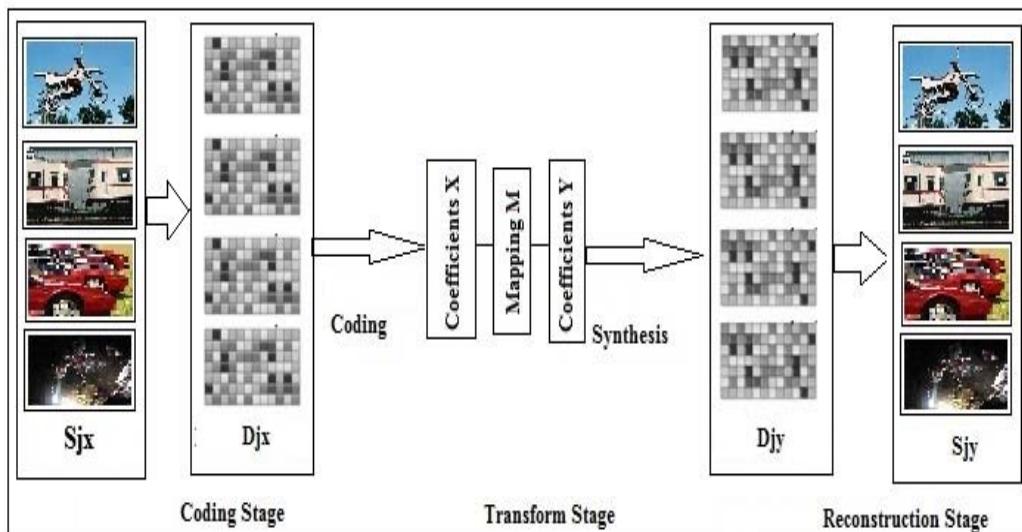


Figure 1 : Flowchart of the proposed analysis based multi-scale image TANV analysis

In the above fig 1, at coding stage, input images with styles were defined at initial. Dictionary or book keeping matrix is defined with the randomness in the image style selected, based on these coding is done. At tranform stage, coding coefficeints X are mapped in to relevnat coefficients Y image analysis values.

At reconstruction stage, the coefficients are analysed in to their original styles by the same dictionary mapping or book keeping.

V. EXPERIMENT RESULTS AND DISCUSSIONS

As stated in above chapters, the TANV performance increases in variable variation's-information $Cl_{i:xyz}$ of original signal $S_{i:xyz}$ and noisy quantity $w_{i:xyz}$, related as $Cl_{i:xyz} = I(S_{i:xyz} + w_{i:xyz} \pm \sigma_{i:xyz})$, but decreases in noise error criteria $CN_{i:xyz}$. Therefore, good 3LMW basis for TANV should aim at maximizing $Cl_{i:xyz}$ and minimizing $CN_{i:xyz}$ is implemented in this research work. Denoting P&R 3LMW as P&R3L ($n_{:xyz}$), where $n=1,2,3,\dots,N$ and bi-

P&R 3LMW is denoted by $CDF(n_{:xyz}, n'_{:xyz})$, where n is analytic 3LMW and n' is analyzed 3LMW.

Proposed method has been implemented on nine 256 X 256 images Barbara, Boats, Butterfly, Cameraman, House, Straw, Lena, Baboon and Peppers as shown in fig 2, to compute their $Cl_{i:xyz}$ and $CN_{i:xyz}$ values with respect to wavelets CDF(3,3) and P&R3L (4). In table 2 and table 3, listed the values of $Cl_{i:xyz}$ and $CN_{i:xyz}$ when $j_{:xyz} = 2^{N-1}-1$ and $j_{:xyz} = j_{:xyz} = 2^{N-1}-2$. These results represent the information of the first three 3LMW scales indication H, V and D as horizontal, vertical and diagonal subbands respectively.

From the experimental results tabulated in table 1, table 2 and table 3, it can be observed that CDF(3,3) and P&R3L (4) are best of other 3LMW's under different TANV schemes available. From the experimental results shown in table 4, it is clear that proposed method generally outperforms reconstruction scheme. In table 4, Gaussian White Noise with standard deviation $\sigma_{i:xyz}$ is added to nine test images. σ_{xy} , σ_{yz} and σ_{xz} are the estimation by our scheme.

Figure 2 : Nine 256 X 256 images (a) Barbara, (b) Boats, (c) Butterfly, (d) Cameraman, (e) House, (f) Straw, (g) Lena, (h) Baboon and (i) Peppers

Table I. Text Attribute Noise Variation R Taken In Fig.2

(a) Barbara		(b) Boats		(c) Butterfly	
CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)
(d) Cameraman		(e) House		(f) Straw	
CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)
(g) Lena		(h) Baboon		(i) Peppers	
CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)

Table II : Values of Ci And Cn for Nine Images As Shown In Fig 2

	(a) Barbara		(b) Boats		(c) Butterfly		(d) Cameraman		(e) House		
	CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)	
$Cl_{j_{xyz}} = 2^{N-1}-1$	xy	0.3456	0.8125	0.8125	1.1010	0.3250	0.7522	0.6525	1.1526	0.8526	0.8152
	yz	0.2256	0.3251	1.1256	1.4521	0.3010	0.5261	0.4456	0.7522	1.1256	0.3956
$N=3$	zx	0.1859	0.3125	0.7852	0.8521	0.1215	0.2121	0.1526	0.2901	0.7256	0.2615
$Cl_{j_{xyz}} = 2^{N-1}-2$	xy	1.4256	2.6521	1.3689	2.0562	1.2568	2.4512	1.7582	2.2561	1.3156	2.6952
$N=5$	yz	0.7612	1.4589	1.5164	2.3215	1.0785	2.0658	1.2156	2.1325	1.5262	1.4256
	zx	0.7528	1.2156	1.2001	1.3596	0.5261	1.1026	0.7262	1.1952	1.1062	1.2935
$CN_{j_{xyz}} = 2^{N-1}-1$	xy	0.1305	0.1256	0.0123	0.0156	0.0852	0.1023	0.2012	0.2859	0.0126	0.1212
$N=3$	yz	0.1459	0.2121	0.0126	0.0326	0.0758	0.1256	0.1652	0.1900	0.0159	0.1956
	zx	0.2356	0.2456	0.0356	0.0358	0.1102	0.1126	0.2650	0.2156	0.0356	0.1822
$CN_{j_{xyz}} = 2^{N-1}-2$	xy	0.0212	0.0415	0.0070	0.0121	0.0162	0.0325	0.0725	0.1521	0.0069	0.0485
$N=5$	yz	0.0380	0.1001	0.0108	0.0182	0.0251	0.0568	0.0548	0.0698	0.0025	0.0910
	zx	0.0592	0.1011	0.0123	0.0121	0.0261	0.0589	0.1025	0.1985	0.0056	0.1023

Table III : Values of Ci And Cn for Nine Images As Shown In Fig 2

	(f) Straw		(g) Lena		(h) Baboon		(i) Peppers		
	CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)	CDF(3,3)	P&R3L (4)	
$Cl_{j_{xyz}} = 2^{N-1}-1, N=3$	xy	0.8952	1.1123	0.3592	0.8215	0.6528	1.2356	0.3056	0.7584
	yz	1.1256	1.4859	0.2012	0.3056	0.4582	0.7856	0.3025	0.5892
	zx	0.7819	0.8125	0.1856	0.2589	0.2458	0.2985	0.1265	0.2010
$Cl_{j_{xyz}} = 2^{N-1}-2, N=5$	xy	1.3826	2.0589	1.4002	2.6589	1.7515	2.8596	1.2689	2.4586
	yz	1.5246	2.3596	0.7852	1.4512	1.2659	2.1256	1.0789	2.0456
	zx	1.1256	1.3589	0.7528	1.2659	0.7526	1.2689	0.5286	1.1564
$CN_{j_{xyz}} = 2^{N-1}-1, N=3$	xy	0.0125	0.0185	0.1165	0.1456	0.1205	0.2456	0.0826	0.1025
	yz	0.0192	0.0356	0.1489	0.2158	0.1658	0.1986	0.0784	0.1035
	zx	0.0356	0.0356	0.2121	0.1589	0.3256	0.2256	0.1156	0.1029
$CN_{j_{xyz}} = 2^{N-1}-2, N=5$	xy	0.0072	0.0125	0.0256	0.0452	0.0756	0.1456	0.0125	0.0356
	yz	0.0105	0.0182	0.0356	0.0956	0.0456	0.0956	0.0256	0.0589
	zx	0.0123	0.0201	0.0589	0.1105	0.1005	0.1986	0.0214	0.0592

Table IV : Noise Level Estimation Results

	σ_{xvz}	5	10	15	20	25	30	35	40
(a) Barbara	σ_{xy}	5.45	10.2	14.56	19.56	24.56	29.56	34.56	40.41
	σ_{yz}	2015	6.89	12.56	17.25	23.25	28.26	33.25	40.11
	σ_{zx}	2.10	7.56	13.56	18.56	23.26	29.21	34.56	40.46
(b) Boats	σ_{xy}	5.68	9.56	13.25	19.25	23.56	27.89	33.25	40.11
	σ_{yz}	6.58	11.26	15.96	20.25	25.26	30.25	34.56	40.74
	σ_{zx}	3.96	7.85	13.58	18.69	24.56	29.86	34.58	40.70
(c) Butterfly	σ_{xy}	3.12	7.25	12.25	18.25	23.56	28.26	33.25	40.02
	σ_{yz}	6.58	10.25	14.58	20.15	24.58	28.69	34.25	40.51
	σ_{zx}	3.56	8.25	13.58	19.58	24.56	29.56	34.56	40.65
(d) Cameraman	σ_{xy}	6.58	10.25	14.15	19.25	23.15	29.25	33.25	39.56
	σ_{yz}	7.59	11.58	15.15	20.25	24.56	30.25	34.25	40.15
	σ_{zx}	3.58	8.59	14.56	19.58	24.56	29.58	34.58	40.85
(e) House	σ_{xy}	6.01	7.89	11.25	16.25	22.12	27.56	33.15	40.12
	σ_{yz}	13.25	17.25	21.26	25.25	29.58	34.38	38.59	43.25
	σ_{zx}	6.25	8.96	12.65	17.22	23.26	28.56	34.56	40.25
(f) Straw	σ_{xy}	3.22	6.25	12.56	17.25	23.15	28.15	33.56	40.12
	σ_{yz}	6.89	11.25	15.56	20.14	25.26	30.22	34.25	40.68
	σ_{zx}	3.25	7.85	13.56	18.25	24.56	29.56	34.89	40.52
(g) Lena	σ_{xy}	6.25	10.25	15.24	20.25	24.56	29.25	34.59	40.12
	σ_{yz}	3.26	6.59	12.56	17.56	23.45	28.56	33.56	40.52
	σ_{zx}	3.22	8.59	13.58	19.28	24.62	29.52	34.56	39.25
(h) Baboon	σ_{xy}	7.59	11.25	16.59	20.26	25.25	30.26	35.49	40.12
	σ_{yz}	3.22	6.56	12.25	17.25	23.56	28.25	33.26	40.12
	σ_{zx}	3.56	8.59	14.25	19.56	24.56	29.58	34.56	40.12
(i) Peppers	σ_{xy}	3.22	6.25	12.15	17.25	23.26	28.22	33.26	40.33
	σ_{yz}	13.59	17.16	21.25	25.65	29.25	34.25	38.59	43.25
	σ_{zx}	6.59	8.96	12.56	17.56	23.65	28.65	34.56	40.25

The PSNR results on a set of 9 images are reported in Table 5. From Table 5, clearly shows the proposed TANV method significantly outperforms for both uniform blurring and Gaussian blurring.

VI. CONCLUSIONS

In this paper, an image analysis algorithm has been introduced to improve the effectiveness of quality for images. In this paper, also presented a MSTANV scheme with a P&R3L 3LMW interscale model, which improved the signal estimation under noisy environment. Experimental results on image analysis demonstrated that the analysis approach can significantly outperform other leading image analysis methods. Finally, image analysis modelling techniques were employed to separate 3LMW particular constant quantity. The spatial classification of 3LMW pixels reduces the analysis estimation error and subsequently improving the TANV performance.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Xuejie Qin and Yee-Hong Yang, "Similarity Measure and Learning with Gray Level Aura Matrices (GLAM) for Texture Image Retrieval", Proceedings of the

2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04), 1063-6919/04 ,© 2004 IEEE.

2. Eric J. Balster, Yuan F. Zheng, and Robert L. Ewing, "Feature-Based Wavelet Shrinkage Algorithm for Image Denoising ", IEEE Transactions On Image Processing, VOL. 14, NO. 12, December 2005, pp.2024-2039.
3. Andrea Baraldi, Lorenzo Bruzzone, and Palma Blonda, "A Multiscale Expectation-Maximization Semisupervised Classifier Suitable for Badly Posed Image Classification ", IEEE Transactions On Image Processing, VOL. 15, NO. 8, August 2006, pp.2208-2225.
4. Jose A. Guerrero-Colón, Luis Mancera and Javier Portilla, " Image Restoration Using pace-Variant Gaussian Scale Mixtures in Overcomplete Pyramids ", IEEE Transactions on Image Processing, 15th August 2007, pp.1-15.
5. Manya V. Afonso, José M. Bioucas-Dias, Mário A. T. Figueiredo, " Fast Image Recovery Using Variable Splitting and Constrained Optimization ", IEEE Transactions On Image Processing, 2010, pp.1-11.

6. Ran He, Wei-Shi Zheng, Tieniu Tan and Zhenan Sun, " Half-quadratic based Iterative Minimization for Robust Sparse Representation ", Journal Of Latex Class Files, VOL. 1, NO. 8, APRIL 2011, pp-1-18.
7. Shifeng Chen, Ming Liu, Wei Zhang and Jianzhuang Liu, " Edge preserving image denoising with a closed form solution ", 2 September 2012, Pattern Recognition 46 (2013), pp-976–988.

This page is intentionally left blank