

1 Sree Vidyanikethan Engineering College, India Dual-Region
2 Reputation based Resource Management in Mobile Ad Hoc
3 Networks DualRegionReputationbasedResourceManagementin-
4 MobileAdHocNetworks

5 K.Surendra¹ and K.Delhi Babu²

6 ¹ sree vidyanikethan engineering college

7 *Received: 8 February 2015 Accepted: 4 March 2015 Published: 15 March 2015*

8

9 **Abstract**

10 A mobile ad hoc network (MANET) is a kind of wireless ad hoc network. It is a
11 selfconfiguring network of mobile routers connected by wireless links. Since MANETs do not
12 have a fixed infrastructure, it is a challenge to manage both mobility as well as resource
13 utilizations for Ad hoc networks. In this paper, I propose a Reputation management scheme,
14 called reputation factor (RF) effective resource selection using the reputation based
15 approaches for node selection. The developed resource allocation algorithm is based on
16 different parameters like time, cost, number of processor request etc. The developed priority
17 algorithm is used for a better resource allocation of jobs in the network environment used for
18 the simulation of different models or jobs in an efficient way. After the efficient resource
19 allocation of various jobs, an evaluation is being carried out which illustrates the better
20 performance. Performance is evaluated by using simulation.

21

22 **Index terms—**

23 **1 I.**

24 Introduction & Background e can described the life cycle of mobile ad hoc network into the first ,second and
25 third generations. Present adhoc network are viewed as the third generation. The original ad hoc network can
26 be followed back to 1970's. In 1970's, these are called Packet Radio Network (PRNET). The Defense Advanced
27 Research Project Agency started examination of utilizing parcel changed radio correspondence to give solid
28 correspondence in the middle of PCs and urbanized PRNET. Essentially PRNET utilizes the blend of Areal
29 Location of Hazardous Atmospheres and Carrier Sense Multiple Access for various get to and separation vector
30 directing.

31 To dynamically identify the optimal selection of Reputation values per mobile node based on the following:
32 1. Minimize the network cost based on resource management. 2. By using Reputation based approaches. 3.
33 RF combines the strength of grid based location management and pointer forwarding strategy to achieve high
34 scalability and low signaling cost. 4. The communication module acts as an interface for the RMS to communicate
35 to neighbors RMS. The main purpose of this module is to exchange reputations with immediate neighbors through
36 three types of messages:

37 **2 Related Work**

38 ? We assume that every mobile node has knowledge about the global partitioning as well as the hash function
39 such that it is able to locate the center of the home region of any node. All mobile nodes within the home

40 region of a mobile node serve as home region location servers for that node. DrMoM varies the home region size
41 dynamically based on the mobile node's runtime mobility and service characteristics.

42 ? The home region size can be expanded as needed to ensure that at least one node exists to serve as the
43 location server. We assume that node distribution (e.g., random or city-style) is a predefined knowledge known
44 to every node, so every node knows how far R_h should be in order to cover at least one node from the center of its
45 home region. Besides the home region, each mobile node is also associated with a local region, and it exchanges
46 location information with neighbors in the local region. Unlike the home region, which

47 3 Year ()

48 does not move, the local region moves with the mobile node. ? The home region keeps location summary
49 information of the node, i.e., the coordinate of the center and radius of the node's local region. Whenever the
50 local region moves due to movement of the node, the location servers in the home region are updated with
51 the location summary information. ? To locate the local region of a destination node, the source node sends
52 a location query to the destination node's location servers. The coordinates of the center of a home region is
53 statically determined, whereas the radius is dynamically determined on a per-node basis, depending on the
54 node's mobility and service characteristics. The home region size, determined by its radius denoted by R_h , is a
55 key factor balancing the tradeoff between the overhead for location queries/updates and the robustness of the
56 location service. ? Specifically, a larger home region covers more location servers on average and consequently
57 increases the chance of a successful location query. However, a larger home region also leads to larger overhead for
58 location queries and updates. Because R_h is dynamic, the size of the home region is dynamic and not necessarily
59 restricted by the size of the rectangular region.

60 4 a) Taxonomy of Wireless Ad hoc Networks

61 In a MANET, mobile hubs shape an always showing signs of change topology. The configuration of effective and
62 adaptable directing conventions is consequently a basic test. Two sorts of ad-hoc steering conventions have been
63 proposed: topology-based and position-based (or geographic based). The topologybased steering conventions
64 utilization message broadcasting to develop courses coordinated to every hub. In addition, every hub additionally
65 keeps up a directing table to record courses to alternate hubs in the network. These conventions intensely depend
66 on finding and keeping up virtual connection states, yet they additionally include some potential issues.

67 One of the issues comes from the breakage of the connections on a course where hubs move. Another issue
68 would be the high activity overhead. Rather than topology-based steering conventions, position-based directing
69 conventions are broadly considered as a possibly adaptable steering arrangement since they don't have to keep up
70 steering tables. These conventions use location data of neighboring hubs and destination hub to settle on their
71 sending choices with geographic sending calculations. One of the downsides of the position-construct conventions
72 is their reliance in light of additional situating gadgets, for example, GPS (Global Positioning System) for securing
73 location indevelopment. These situating gadgets for the most part lead to additional cost and force utilization.
74 Yet, mobile gadgets with situating capacity are getting prevalent as of late because of the wealth of location-based
75 applications. Case in point, situating gadgets have been generally conveyed in different hubs.

76 5 b) Worldwide Mobile Information System(GloMo)

77 ? The objective of the undertaking is to make the mobile environment a five star native in the Defense Information
78 Infrastructure by giving easy to use integration and access to administrations for remote mobile clients.

79 6 Proposed Work

80 To diminish the general network activity caused by mobility administration and parcel conveyance herewith we
81 propose proficient mobility administration.

82 ? The proposed plans to oversee both mobility and in addition asset uses for Ad hoc networks.

83 7 Global Journal of Computer Science and Technology

84 Volume XV Issue III Version I Year ()

85 ? For ideal home area size and nearby locale size (characterized by their particular radii meant by R_h
86 and R_l) for every mobile hub in light of the mobile hub's runtime mobility and administration qualities to
87 minimize the general network expense caused for location administration and information parcel conveyance.
88 ? To rapidly distinguish the ideal determination of Reputation qualities every mobile hub taking into account
89 the accompanying: ? Minimize the network expense taking into account asset administration. ? By utilizing
90 Reputation based methodologies.

91 ? RF joins the quality of framework based location administration and pointer sending system to accomplish
92 high versatility and low flagging expense. ? Simulation utilizing NS2.

93 Mobility in remote networks can take diverse structures „ for example, Terminal mobility: the capacity for a
94 client terminal to keep on getting to the network when the terminal moves;

95 8 a) Client mobility

96 The capacity for a client to keep on getting to network administrations from distinctive terminals under the same
97 client personality when the client moves.

98 9 b) Administration mobility

99 The capacity for a client to get to the same administrations paying little respect to where the client is.

100 In addition, a terminal or a client may be considered by a network to have "moved" regardless of the
101 possibility that the terminal or the client has not transformed its physical location. This may happen when
102 the terminal changed its association starting with one kind of remote network then onto the next, e.g., from
103 Mobility administration is the essential innovation to empower the consistent access to cutting edge remote
104 networks and mobile administrations.

105 Future IP-based remote networks, for example, a wide range of media administrations including ongoing
106 administrations, for example, voice and feature gushing and also non-continuous administrations, for example,
107 email, web-perusing, and FTP. Fundamental necessities of mobility administration in cutting edge.remote
108 networks ought to include: first and foremost, the backing of all types of mobility; second, the backing of mobility
109 for both constant and nonongoing applications; third, the backing of clients consistently moving crosswise over
110 heterogeneous remote networks in the same or diverse administrative areas.

111 Fourth, the backing of an on-set client application session to proceed without noteworthy interferences as the
112 client moves. This session congruity ought to be kept up when a client changes its network connection focuses or
113 moves starting with one sort of remote network then onto the next; and last, the backing of worldwide wandering,
114 i.e., the capacity for a client to move into and use distinctive administrators' networks of home areas.

115 10 c) Location administration

116 A procedure that empowers the framework to focus a mobile gadget's present location, i.e., the present network
117 connection point where the mobile gadget can get activity from the framework.

118 11 d) Handoff administration

119 A procedure that empowers a mobile gadget to change its network connection point while keeping its on-going
120 activity continuous. In the event that the network connection point change includes the meandering into another
121 network with an alternate administrator, then network access control is likewise included in the handoff process.
122 Network access control incorporates confirmation (check the character of a client), approval (figure out if a client
123 ought to utilize the network administration), and bookkeeping (gather data on the assets utilized by a client).

124 The framework model exhibited in this paper is in light of the taking after presumptions. Every hub has an
125 interesting id and it can't be parodied.

126 ? The network is sufficiently thick so that every hub has at least two one-bounce neighbors. ? A remote
127 interface of every hub underpins indiscriminate mode operation: a hub dependably listens to each transmission
128 within its one-jump neighborhood despite the fact that it doesn't involve in those transmissions. ? Links are
129 bidirectional. At time t, if hub B can get a message from hub A, hub An ought to have the capacity to get a
130 message from hub B at time t too. ? A radio wire utilized on every hub is an omnidirectional antenna which
131 empowers its transmission to be observed by its one-jump neighbors.

132 ? Each hub is free from one another, no conspiracy.

133 ? We don't consider pernicious hubs, just egotistical hubs seeking to moderate their own asset. ? Flood to
134 get a hub's location.

135 ? Excessive flooding messages ? Central static location server.

136 ? Not blame tolerant ? Too much load on focal server and close-by hubs ? The server may be far away/
137 parceled ? Every hub goes about as server for a couple of others. ? Good for spreading load and enduring
138 disappointments.

139 12 Year ()

140 ? Limited assets and physical security.

141 ? Intrinsic common trust helpless against assaults.

142 ? Lack of approval offices.

143 13 e) Solution Strategy

144 The Reputation of the node can be calculated based on below assumptions:

145 i. The time used to send the packet to their adjacent nodes and ii. The number of processor requests it attains
146 The equation to find the neighbors based on the above two parameters is :

147 Reputation Factor (RF) for individual node = (min-time, max-processing power) Similarly, The below figure
148 shows the comparision of DrMOMand RMS with respect to the power.

149 The evaluation is measured in terms of cost factor i.e, based on max-power and number of nodes, the
150 comparision is takes place.

151 14 IV.

152 15 Conclusion

153 A Reputation-based system as an extension to the existing resource management for detecting the neighbour nodes
154 in mobile ad-hoc networks. The proposed system is evaluated by implementing it on ns2 Simulator. Although
155 they could save their resources by not forwarding packets for others, their packets would not be delivered as well.
156 some simulation results are provided to validate work and show its performance.

157 And also the evaluation of proposed system is expressed in the presence of nodes who forward only the necessary
158 amount of packets so that they are not detected as malicious. This means that they try to keep their reputation
159 in between the two thresholds which was categorized as suspicious nodes. To refer to this type of nodes, we use
the term "partially cooperative". Where the indication of hardness level is $h80 \gg h40 \gg h20 \gg h10$ ^{1 2 3}

Figure 1:

¹Dual-Region Reputation based Resource Management in Mobile Ad Hoc Networks © 2015 Global Journals Inc. (US)

²© 2015 Global Journals Inc. (US)

³Dual-Region Reputation based Resource Management in Mobile Ad Hoc Networks

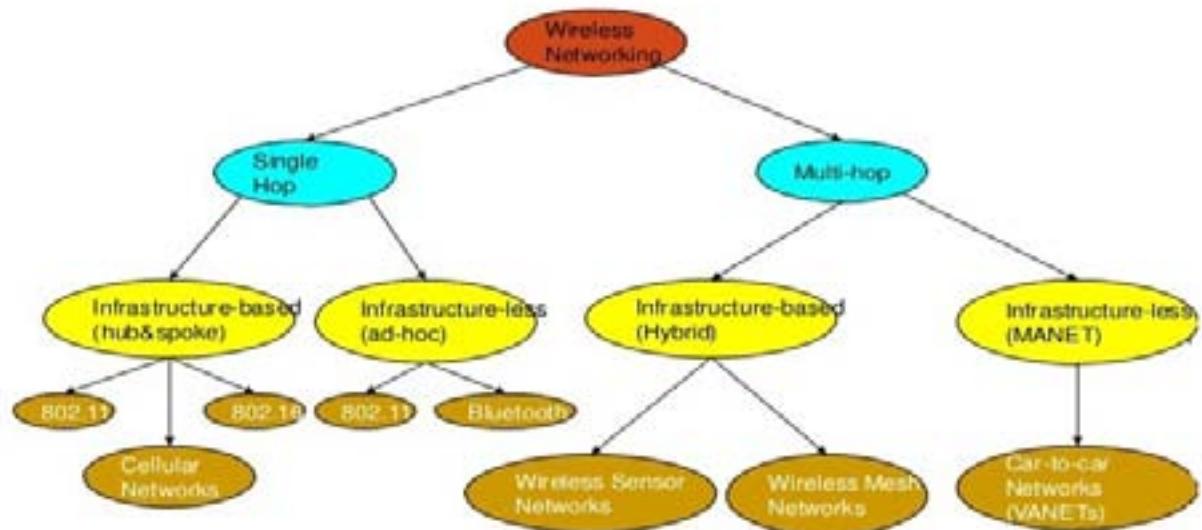


Figure 2: Fig:

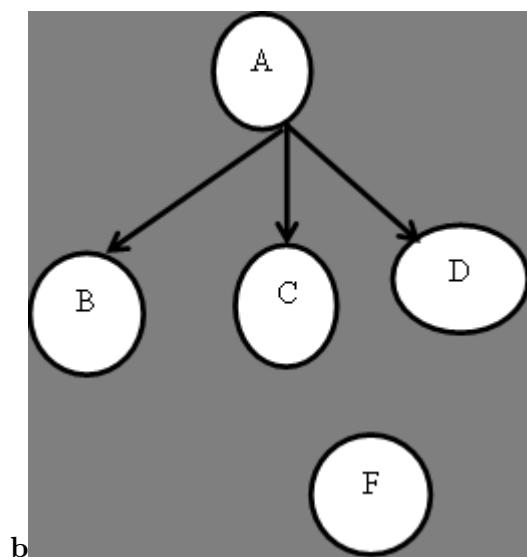


Figure 3: Fig b :

Upon receiving the REP REP, the communication module forwards the received RF values to the reputation manager.

3. ALARM Message: This message is sent to neighbors when there is a node whose state is changed.

communication module forwards the received RF values to the reputation manager.scratch pad, and so on. In the interim the Development of Standard IEEE 802.11 (i.e. WLAN's) profited the ad hoc network. Some different principles are likewise built up that give advantages to the MANET like Bluetooth and HIPERLAN.

II.

Upon receiving ALARM,

Figure 4:

1

Inputs	Node-B	Node-C	Node-D
Min-Time	10ms	12ms	5ms
Max-Proc.	100w	120w	130w
Power			
Intermediate Process : cross-checking based on conditions			
Output : Node D			
The Process now processed as follows :			

Figure 5: Table 1 :

2

Inputs	Intermediate Process	Outputs	
15-nodes	RF h10	Adj node can be easily identified	
20-nodes	RF h20	Adj identification slightly hard	node is
40-nodes	RF h40	Hard to resolve	
80-nodes	RF h80	Very Hard to find Reputation factor	

Figure 6: Table 2 :

161 [Chen et al. ()] ‘Agent-based forwarding strategies for reducing location management cost in mobile networks’
162 A R Chen , T Chen , C Lee . *ACM Mobile Netw. Appl* 2001. 6 (2) p. .

163 [Hsu and Wu (2012)] ‘An efficient cost based location service protocol for vehicular ad hoc networks’. C Hsu , S
164 Wu . *IEEE international Conference on Communication, Networks and Satellite*, July 2012. p. .

165 [Michiardi and Molva (2002)] ‘Core: A Collaborative Reputation mechanism to enforce node cooperation in
166 Mobile Ad Hoc Networks’. Y Michiardi , R Molva . *Communication and Multimedia Security Conference*,
167 September 2002.

168 [Bansal and Baker] *Observation-based Cooperation Enforcement in Ad hoc Networks*, Y Bansal , M Baker .

169 [Saleet et al. ()] ‘Regionbased location service management protocol for VANETs’. H Saleet , O Basir , R Langar
170 , R Boutaba . *IEEE Trans. Veh. Technol* 2010. 59 (2) p. .