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7 Abstract

s Document clustering is primarily a method applied for an uncomplicated, document search,

o analysis and review of content or is a process of automatic classification of documents of

10 similar type categorized to relevant clusters, in a clustering hierarchy. In this paper a review
1 of the related work in the field of document clustering from the simple techniques of word and
12 phrase to the present complex techniques of statistical analysis, machine learning etc are

13 illustrated with their implications for future research work.

14

15 Index terms— Document clustering is primarily a method applied for an uncomplicated, document search,
16 analysis and review of content or is a process of automatic c

» 1 Introduction

18 ocument clustering [1], [2], [3], [4] techniques find relevance in a wide range of tasks from a simple search with a
19 few terms to vast information retrieval processes. The early document clustering techniques used were developed
20 for typically enhancing information retrieval systems [5], were designed to find documents according to the query
21 type, however could not perform the task of creating a query, generate a synopsis of the documents, or provide
22 an interface to the search results. The progress of internet, digital libraries, news sources and companywide
23 intranets has made available huge volumes of text documents. The tremendous increase in the already quantum
24 size of web data and the classification of the web documents into relevant and moderate number of clusters has
25 led to the development of large number of web clustering engines and high performing clustering algorithms.

26 The process of document clustering involves four stages which are, i) Data collection, crawling to accumulate the
27 documents, indexing the set of documents in a structured fashion, filtering of data with techniques of tokenization,
28 stop words removal and stemming, lemming etc. ii) preprocessing where the data is represented in suitable form,
29 vector etc. and measurable factors applied to determine the similarity, iii) Document clustering where a clustering
30 technique and an efficient clustering algorithm are identified for clustering based on preset criteria and iv) Post
31 processing involving applications of business and scientific requirements adaptation of the document clustering
32 technique.

33 The applications of document clustering are of diverse nature such as, i) Creation of document taxonomies ii)
34 IR process of search, accessing and collection [6],
35 Similar documents identification, review and classification of results [7], automatic topic extraction [8], content

36 summarization iii) Recommendation System, iv) Search Optimization, etc. For instance the processes are used
37 enormously in the data classification process such as Google Web Directory, Social media data classification etc.
38 The clustering techniques though being studied since several years, still face many of the same challenges. These
30 challenges [9,10] of document clustering are mostly of, i) Huge volume of data, ii) The high dimensionality of the
a0 feature space, iii) A feasible clustering method in terms of constraints such as cluster quality and performance
a1 and iv) Representing the results in an effective browsing interface. The current challenges associated with text
42 clustering are the requirement of dynamic clustering techniques to incrementally update clusters as new data is
43 added [11,12]. For instance the social media has to generate user specific content [13] instantly and this requires
44 real time data clustering methodologies.
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4 CONTEMPORARY AFFIRMATION OF THE

The remainder of this paper is organized as follows. In Section 2 we discuss the "Taxonomy” of document
clustering, in Section 3 the ”Contemporary literature work of clustering techniques” are evaluated and Section 4
gives the ”Conclusion” of the paper.

2 1II. Taxonomy

The clustering functionality can be expressed as a function comprising of a document set mapped to a D set
of clusters. Based on specified constraints the minimum and maximum of the function defines the clustering
difficulty and algorithms applied over the similarity criteria determine the clustering quality.

The preprocessing step of clustering for finding the document similarity is determined with methods based
on the following strategies, (i) phrase or pair-wise methodology, (ii) tree form data depiction, (iii) component
dependent data depiction, (iv) semantic relation dependent documents depiction, (v) concept and feature vector
dependent depiction.

The clustering methods of are generally of two types, 1) Word patterns and phrases based 2) Feature based.

The clustering methods algorithms are mostly of two types 1) hierarchical methods and 2) partitioning methods
(non hierarchical) [14,15.16]. The hierarchical algorithms for clustering represent data sets as a cluster tree and
are of two types 1-1) agglomerative [17] 1 -2) divisive hierarchical clustering methods. Partitional clustering
algorithms [17] are of two types, 2-1) iterative 2 -2) single pass methods. K means and its variants etc. are the
popular partitioning methods. The hierarchical clustering algorithms are considered efficient than the remaining
algorithms [18] however due to their inherent complexness they are not applicable to huge document sets.

The techniques for determining inter-cluster similarity in classification 7?19 20] ex. single link and for
enhancing the value of the clusters where the cluster size differs or fluctuates by a huge factor [17], especially in
case of high performing clustering algorithms have been studied widely in recent years.

The widely used document clustering methods are Spectral Clustering, LST dependent cluster development
and NMF technique based clustering. The Spectral clustering methods [21] are LPI, LSI etc. Latent semantic
indexing (LSI) [22] a feature extraction approach [23] tries to optimize the documents space compared to the
given document and is a widely used linear document indexing method [24]. LSI is inapplicable for processes
with a high range of documents [24] and similarly spectral clustering when used in a large dimensional space the
dimensionality reduction is very costly which limits its usability.

The word patterns and phrases based approaches are the traditional strategies where the clustering is dependent
on the documents features such as words, phrases and sequences [25,26]. These methods are of four types, 1-
1) Clustering with Frequent Word Patterns 1-2) Application of Word Clusters in Document Clusters 1-3) Co-
clustering Words and Documents, Co-clustering with graph partitioning and Information-Theoretic Co -clustering
1-4) Clustering based on Frequent Phrases. The technique VSM is used in almost all the document clustering
methods used nowadays [27]. The vector space model is a data model for representing the terms related to the
words in a document as a feature vector.

The features based clustering approaches are of two types 2-1) Feature Extraction 2-2) Feature Selection.

The Feature Extraction approaches are based on the algorithm of two types i) linear and ii) nonlinear
techniques. The models of linear type algorithms are unsupervised PCA, OCA, MMC etc. The examples of non
linear algorithms are LLE, Laplacian Eigenmaps, and ISOMAP etc. The linear methods show better operational
performance in contrast to nonlinear approaches, however underperform in the clustering of huge and complicated
data of the internet. The feature extraction technique finds applications in the fields of IR based on human
language learning ability, comparing reviewed and submitted papers, of various languages or networks and filter
of data. Feature selection algorithms are of two types, 2-2-1) Feature Ranking that is metric based and 2-2-2)
Subset Selection from the possible features. The feature selection algorithms are of two categories, i) supervised
and ii) unsupervised. The supervised feature selection algorithms are the most researched as well as used and
they are IG, CHI, and MI. The unsupervised methods that are most popular are, i) DF-based selection dependent
on term strength and ranking dependent on entropy or term contribution, ii) LSI-based method and iii) NMF
based method. These techniques of unsupervised approach such as, decision trees, statistics, NLP and ML are
being used in BI or analytics, in neural networks for developing AI or bio neural networks, for developing systems
of AI that are rule based for intelligent content development, database development, information retrieval and
automatic grouping of web documents with Enterprise Search engines or open source software’s in web mining
or text mining.

The strategies of feature selection used mostly are i) wrapper, ii) filter and iii) embedded methods [28] however
a study [29] has shown, the methods of supervised feature selection dependent on algorithms using the filter metric
IG, are most efficient over others techniques.

3 III
4 Contemporary Affirmation of the

Recent Literature

An approach of bisecting k-means algorithm proposed by Steinbach, M, Karypis, G, & Kumar, V [14] breaks
up a large cluster into small clusters repetitively to generate k numbers of clusters of huge similarity for filtering
the clusters and collecting similar texts based on the method.
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A technique called CCA [30] widely used in the emerging technologies of ML etc applies correlation for
measuring the similar features in a document. However, CCA has its own limitations in clustering.

5 C

An approach of spectral clustering based on graph partitioning strategy called LPI [31] proposed however fails
in feature selection and comprises of the existing problems of distance based clustering documents.

An approach for document clustering called Frequent Term based Clustering or HFTC [32] is a topic of
extensive research. However it is not scalable for huge data or of documents.

A technique known as Hierarchical Document Clustering using Frequent itemsets (FIHC) approach proposed
by Fung, B., Wang, K., Ester, M, is discussed in [33]. The strategy of FIHC though performs better than HFTC
underperforms in clustering efficiency when compared to existing approaches such as UPGMA and Bisecting
K-means.

The TDC algorithm technique based on closed frequent itemsets for clustering is proposed by Yu, H., Searsmith,
D., Li, X., Han, J [34]. The algorithm performs better compared to HFTC and FIHC however the use of closed
itemsets makes it avoidable.

A strategy of Hierarchical Clustering using Closed Interesting Itemsets, referred to as HCCI proposed by Malik,
H.H., Kender, J.R [35], is the best clustering method available. However the technique may cause information
loss.

An approach based on PSSM histogram by Gad and Kamel [36] combines the text semantic with the process
of incremental clustering and measures the similarity of the documents for adjusting the insertion order of the
documents in the cluster for quality.

An improved incremental clustering technique for an efficient clustering algorithm proposed by Gavin and Yue
[37] improves categorization of web data incrementally. The method based on cluster specific multiple information
anew document is assigned to a cluster.

An approach for improving text clustering mining by Shehata, S, Fakhri, K, & Mohamed S, S. [38] outperforms
the existing techniques such as HAC, k-NN etc.

A progressive clustering algorithm by Liu, Y, Ouyang, Y, Sheng, H, & Xiong, Z. ( 7?7008) [39] based on Cluster
Average Similarity Area determines the cluster coherence and progressively assigns the new data items to the
clusters.

A technique for enhancing the clustering functionality based on the partial disambiguation of words by means
of their PoS [40] is recommended by the developers as the approach finds the inefficiency of considering synonyms
and hypermy my for selecting the right sense of the word disambiguated solely by PoS tags.

The CFWS technique proposed by Y. LI, and S.M. Chung, enhances the capability to process the document,
considering the word sequences apart from the words [41].

The technique of non linear representation of the data by J.B. Tenenbaum, V. de Silva, and J.C. Langford
[42] keeps specific local data simultaneously based on the optimization factors however is associated with high
complexity.

A study of the approaches for reducing the complexity of feature extraction based on a new technique called
approximation algorithm [43], [44], [45] is found to be good.

A software for automatically retrieving information from websites by Zamir O Etzioni [46] is designed for
websites comprising of vast amount of data

The approach of integrating clustering and feature selection for text clustering based on the semantic relation
of the text documents with ontology was proposed by Thangamani.M and P.Thangaraj in [47]. The approach
minimizes dimensionality and improves feature selection.

The clustering technique, for finding the clustering quality based on WordNet [48] phrasal noun and semantic
relationships [49] shows better performance with hyperny my based strategy compared to other noun phrases.

A system for determining the ontology related semantic relations of the term or word and associated weight
measure is given by Prof. K. Raja, C. Prakash Narayanan [9]. However the technique has dimensionality and
other problems.

A description of the task of Ontology based automatic categorizing of web documents [50] and the scope
of Ontology in improving the current machine learning and IR approaches is given by Andreas Hotho. The
integration of ontology’s for combining various information types of multiple resources by Young-Woo et al. in
the paper [51].

The process of using domain specific ontology’s for enhancing performance of text classification where text
learning and IR are used to generate ontology’s with minimum user interaction is given in [52,53].

The methods utilizing Wikipedia ontology for improving primarily the document depiction and cluster quality
by Gabrilovich and Markovitch [54] and a further extension provided a structure based on the Wikipedia guidelines
and groups [55,56]. The Wikipedia ontology is most relevant as it is applicable to a large cross section of domains
and also restructured on a regular basis.

A technique for feature selection in text clustering based on supervised feature selection on the intermediary
clustering outcomes by Xu, J. Xu, B [57] generates a efficient subset for classification. The suggested techniques
performance is efficient compared to manual process.

A technique of feature selection dependent on the ACO algorithm by M. Janaki Meena,K.R.
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7 CONCLUSION
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Global Journal of C omp uter S cience and T echnology Volume XV Issue II Version I ( ) C Chandran,J. Mary
Brinda,” [58] is a unique method. Comparative tests of the approach with existing chisquare and CHIR techniques
shows the proposed approach achieves better performance in FS.

An entropy based FS approach i.e. a filter solution [59] tested with various data types that reduces
dimensionality and is efficient in finding the subset of major features.

A feature co-selection method called MFCC (multi type feature co-selection), proposed by Shen huang, Zheng
Chen, Yong Yu, and Wei-Ying main [60] shows enhanced clusters performance of web documents based on the
outcomes of intermediate clustering.

A method to remodel the matrix of data similarity as a bi-stochastic matrix prior to executing algorithms by
F. Wang, P. Li, and A. C. K Aonig showed better clustering performance [61].

The techniques of document clustering that are term based for clustering in dynamic environments, is given in
[11] by Wang, X, Tang, J, & Liu, H, synonyms and hypermy m\y by Bharathi and Vengatesan [62], Synonyms and
Hyponyms, Nadig, R, Ramanand, J, & Bhattacharyya, P in [12]. These approaches are however not applicable
to technically similar documents.

A document clustering approach [63] dependent on phrases and the STC technique by O. Zamir, O. Etzioni,
O. Madanim, and R.M. Karp builds the clusters on the common documents suffixes. The method though efficient
in cluster quality however is associated with high amount of term redundancy.

A study of the TF-IDF method of clustering [64], term frequency dependent algorithms [65] and a review of
clustering algorithms [66] showed that majority of clustering approaches are TF-IDF based, however associated
with several problems.

The NMF (Nonnegative Matrix Factorization) technique in text classification [67], improved clustering
performance compared to the existing approaches [68] , relationship study of NMF techniques with earlier
clustering techniques [69], [70] [71]. A review of established techniques of NMF such as multiplicative updates
[72], projected gradients [73] though efficient however are associated with the problems of memory for huge
datasets streamed and not disk based [74]. To overcome these problems, approaches such as random projections
[61.75] and sketch/sampling algorithms [76] have been proposed. An NMF based technique by Li and Zhu in 2011
[77] for research specific documents minimizes high dimensionality, finds relevant topics for clustering and shows
performance efficiency in classification comparatively. A study of the online algorithm based on Nonnegative
Matrix Factorization [78], a NMF based method that uses features based on weights and similar cluster property
by Sun Park, Dong Un An, Choi Im Cheon [79] performs comparatively more efficiently than the remaining NMF
based strategies.

V.

7 Conclusion

In this paper we analyzed several techniques developed for clustering documents with their applications and
relevance in terms of today’s requirements. The task of developing perfect strategies for classification of varied
forms and types of documents for a near optimal solution or finding accurate ways of assessing the quality of
the performed clustering though is impossible and is increasing in its complex nature, the field today deals
with extraordinary tasks like granular taxonomies generation, sentiment analysis and document summarization
for generating reliable and relevant insights applicable to several fields. In conclusion we can say document
clustering is going to be widely studied and will find relevance in a number of newer areas. * °

'© 2015 Global Journals Inc. (US)
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