

1 Detection and Counter Measure of AL-Ddos Attacksin Web 2 Traffic

3 R.Sreenath¹ and E.S.Phalgunakrishna²

4 ¹ SREE VIDYANIKETHAN ENGINEERING COLLEGE

5 *Received: 6 February 2015 Accepted: 3 March 2015 Published: 15 March 2015*

6

7 **Abstract**

8 Distributed Denial-of-Service (DDoS) assaults are a developing danger crosswise over Internet,
9 disturbing access to Information and administrations. Presently days, these assaults are
10 focusing on the application layer. Aggressors are utilizing systems that are exceptionally hard
11 to recognize and relieve. In this task propose another technique to recognize AL-DDoS
12 assaults. This work separates itself from past techniques by considering AL-DDoS assault
13 location in overwhelming spine activity. In addition, the identification of AL-DDoS assaults is
14 effectively deceived by glimmer group movement. By analyzing the entropy of AL-DDoS
15 assaults and glimmer swarms, these model output be utilized to perceive the genuine
16 AL-DDoS assaults. With a quick AL-DDoS identification speed, the channel is equipped for
17 letting the real demands through yet the assault movement is halted.

18

19 *Index terms—*

20 **1 Introduction**

21 Denial-of-Service (DoS) assault is an endeavor by aggressors to keep the true blue clients from utilizing the data
22 administration. In a DDoS assault, these endeavors originate from an extensive number of circulated hosts that
23 organize to surge the exploited person with a plenitude of assault bundles all the while. Conveyed foreswearing
24 of-administration (DDoS) assaults present genuine dangers to servers in the Internet. DDoS assaults include in
25 soaking the target machine with appeals, such that it can't react to authentic movement. Such assaults for the
26 most part prompt a server over-burden.

27 To dispatch a DDoS assault, the aggressors first creates a system of bargained PCs that are utilized to produce
28 the colossal volume of activity expected to refuse any assistance to honest to goodness clients of the victimized
29 person. At that point the aggressor introduces assault apparatuses on the bargained hosts of the assault system.
30 The hosts running these assault apparatuses are known as zombies, and they can be utilized to complete any
31 assault under the control of the aggressor. The vast majority of the current procedures can't segregate the DDoS
32 assaults from the surge of honest to goodness getting to.

33 These assaults are focusing on the application level. Application layer DDoS assaults may concentrate on
34 debilitating the server assets, for example, Sockets, CPU, memory, circle/database data transmission, and I/O
35 transfer speed. These assaults are normally more productive than TCP or UDP-based assaults, obliging less
36 system associations with accomplish their malevolent purposes. They are likewise harder to distinguish, both on
37 the grounds that they don't include a lot of activity and in light of the fact that they appear to be like ordinary
38 kind movement.

39 **2 II.**

40 **3 Rival Methods**

41 ? We have adopted a hidden semi-Markov process to present the behavior of Internet users .The hidden semi-
42 Markov approach is a complex algorithm. When users visit a website, it traces and records the whole visiting

6 BLOCK DIAGRAM

43 history of each user. ? It is noticeable that the hidden semi-Markov method is unlikely to perform effectively
44 in backbone traffic. ? Another typical approach against AL-DDoS attacks is to use CAPTCHA. This method
45 requires users to recognize strings in a fuzzy picture and submit a response to a web server for authentication.
46 However, users sometimes consider this operation as a negative experience to surf the Internet. ? The introduced
47 wavelets to identify anomalies in network traffic. But wavelet analysis is generally a post-mortem analysis and
48 cannot be used for online processing.

49 Previously proposed signal analysis of network traffic anomalies mechanism to voluntarily increase the
50 bandwidth utilization of legitimate users. However, this approach cannot reduce the network congestion and
51 the load of web servers. A countermeasure that consisted of a suspicion assignment process and a DDoS-resilient
52 scheduler.

53 The suspicion process assigns a continuous 'valued vs. binary' measure onto each client session. It further
54 utilizes these values to determine if and when to schedule the requests of a session. However, this approach is
55 still too time-consuming to detect AL-DDoS attacks in large volume traffic.

56 4 III.

57 5 Proposed System

58 In this paper, we are motivated to design a defense system at the backbone level. This system is able to detect
59 AL-DDoS attacks targeting Internet web servers. Currently, most of these web servers are deployed together in a
60 data center connecting directly to the backbones. Thus, it is critical to implement an effective method to detect
61 AL-DDoS attacks and filter the malicious traffic in backbones before they causes detriments to the web servers.
62 The proposed system has low complexity and can real-timely run in high volume traffic.

63 One way to protect from DoS attacks is to allow only authorized clients to access the web server. Compared
64 with non-attack cases, the number of requests in a session increases significantly in a very short time period
65 in DDoS attack cases. Considering the above two issues, a hybrid approach for countering application layer
66 DDoS attacks is proposed. This approach gives priority to the good (legitimate) clients, while severely limiting
67 the access to the attackers.

68 Each client is assigned with a trust value by the server based on the access behavior. A client's trust value is
69 embedded in a HTTP cookie that is included in all server responses to the client. Using the cookie, a legitimate
70 client can include the trust value in all its future requests to identify itself to the server. A client presenting a valid
71 trust value to the server will be given the priority over other requests. New clients are assumed to be assigned
72 with the lowest trust value by default by the server and updated in the response. The trust value varies according
73 to the access pattern of the client. The trust values are assigned in such a way that $\text{trust}_{\text{attacker}} < \text{trust}_{\text{new user}}$
74 $< \text{trust}_{\text{legitimate user}}$. In addition, the user's browsing behavior in multiple aspects is extracted from the system
75 log during non-attack cases. Then the entropy of requests per session is calculated. Entropy is an information
76 theoretical concept, which is a measure of randomness. The entropy is employed in this paper to measure changes
77 of randomness of requests in a session for a given time interval. Entropy is applied as a second layer of filtering
78 the suspicious flow. The second filtering mechanism is required to identify an attacker who acts like a legitimate
79 client because, an attacker may behave benignly until it attains a highest trust value and then begin to misbehave.

80 The detection mechanism is deployed at the server. A session connection request first reaches the system, and
81 then the proposed scheme either drops or forwards the requests based on the trust value obtained in the past
82 session, calculates the entropy deviation of request rate. If the deviation is more (exceeds threshold), then drop
83 the session immediately. Otherwise, schedule the session based on the system workload and the trust value of the
84 user. The client who behaves better in past session will obtain higher degree of trust. The highest trust value
85 first policy is used to schedule the requests for the server.

86 IV.

87 6 Block Diagram

88 The above figure shows system architecture of the application. A session connection request first reaches the
89 system, and then the proposed scheme either drops or forwards the requests based on the trust value obtained
90 in the past session, calculates the entropy deviation of request rate. If the deviation is more (exceeds threshold),
91 then drop the session immediately. Otherwise, schedule the session based on the system workload and the trust
92 value of the user. The client who behaves better in past session will obtain higher degree of trust. The highest
93 trust value first policy is used to schedule the requests for the server. Analogy The detection of DDoS attack is
94 carried out as follows:

95 ? Initially, the client embeds its trust value (Trust on the session request (r_{xy}) and sends it to the server. ?
96 The server, on receiving the session request, validates the trust value. ? If valid, it forwards the request (r).

97 ? Otherwise, the session is considered suspicious and dropped. ? Then the entropy ($H(R)$) for the incoming
98 requests in a session is calculated and the degree of deviation with the predefined value is estimated. ? The
99 greater the deviation, the more suspicious the session is. ? If the session is found suspicious, then it is assigned
100 with the lowest trust value and dropped immediately. ? Otherwise, the requests are scheduled to get the service
from the web server.

102 7 a) Trust value computation

103 Once the request is accepted, the request is forwarded to the application. When the server sends a response to
104 the client, it updates the trust value as follows:

105 Let req be the client's request and res be the corresponding response generated by the server. Let t be the
106 time taken by the server to respond for the request req and ut denotes the utility of the request, req .

107 In this approach, a simple benefit function [2] is used.

108 Where γ is a tunable parameter.

109 Here, additive increase multiplicative decrease strategy is used to calculate the new trust value.

110 If $B(req) > 0$, then the new trust value is computed as follows: $Trust_{new} = trust_{old} + \gamma * B(req)$..(2)

111 Otherwise, $Trust_{new} = trust_{old} / (1 - B(req))$..(3)

112 The additive increase ensures that the trust value slowly increases as the client behaves benignly; while the
113 multiplicative decrease ensures that the trust value drops very quickly upon detecting a DoS attack from the
114 client.

115 8 b) Entropy calculation

116 Let the request in a session be denoted as r_{xy} , where $x, y \in I$, a set of positive integers. 'x' denotes the request
117 number in session 'y'. Let $|(r_{xy}, t)|$ denote the number of requests per session y , at a given time t . Then, For a
118 given interval I in t , the variation in the number of requests per session y is given as follows;

119 The probability of the requests per session y , is given by Let R be the random variable of the number of
120 requests per session during the interval I , therefore, the entropy of requests per session is given as Based on
121 the characteristics of entropy function, the upper and lower bound of the entropy $H(R)$ is defined as $0 \leq H(R) \leq$
122 $\log N$ (8) where N is the number of the requests.

123 Under DoS attack, the number of request increases significantly and the following equation holds Where C is
124 the maximum capacity of the session.

125 9 c) Rate Limiter

126 To avoid falsely detection, rate-limiter is introduced. Once the entropy is calculated, compute the degree of
127 deviation from the predefined entropy. The system first sets a threshold for acceptable deviation. If the computed
128 deviation exceeds the threshold, then the session is forced to terminate immediately. Otherwise, second level
129 filter is applied by the rate limiter. The system also defines a threshold for validating a user based on the trust
130 score. A user is considered to be legitimate only if the trust score exceeds the threshold. Otherwise, the user
131 is considered malicious and the session is dropped immediately. The legitimate sessions are then passed to the
132 scheduler for getting service from the server.

133 10 d) Scheduler

134 If the user is legitimate, then the scheduler schedules the session based on the highest trust value first (user
135 with highest trust value) policy. The wellbehaved users will have a little or no deviation. In such case, the
136 legitimate user gets a quicker service. In addition to the scheduling policy, system workload is also considered
137 before scheduling the request for getting service.

138 11 e) Algorithms

139 Algorithm to compute the entropy from system log Input: system log 1. Extract the request arrivals for all
140 sessions, page viewing time and the sequence of requested objects for each user from the system log. 2. Compute
141 the entropy of the requests per session using the formula: a. Detection Algorithm Input the predefined entropy
142 of requests per session.

143 Define the threshold for allowable deviation (T_d) For each session waiting for detection Extract the trust value
144 from the request Validate the trust value If the trust value issued is valid Extract the requests arrivals Compute
145 the entropy for each session using (7) Compute the degree of deviation

146 12 Conclusion

147 In this paper, an effective and efficient hybrid scheme against DDoS attacks based on trust value and information
148 metric (entropy) is proposed. This approach not only counters the illegitimate flows but also avoids the flooding
149 of the legitimate flows. Further, the detection of trust value is used to detect the legitimate user from the attackers
150 at the first level. Then, based on the information metric of the current session, the sessions that are assumed
151 to be suspicious are dropped. The legitimate flows are then scheduled by the scheduler based on the system
152 workload and the trust value of the client. Thus the legitimate clients get more priority in accessing the information
153 and services.

¹© 2015 Global Journals Inc. (US)

²© 2015 Global Journals Inc. (US)

11

Figure 1: A 11 Global

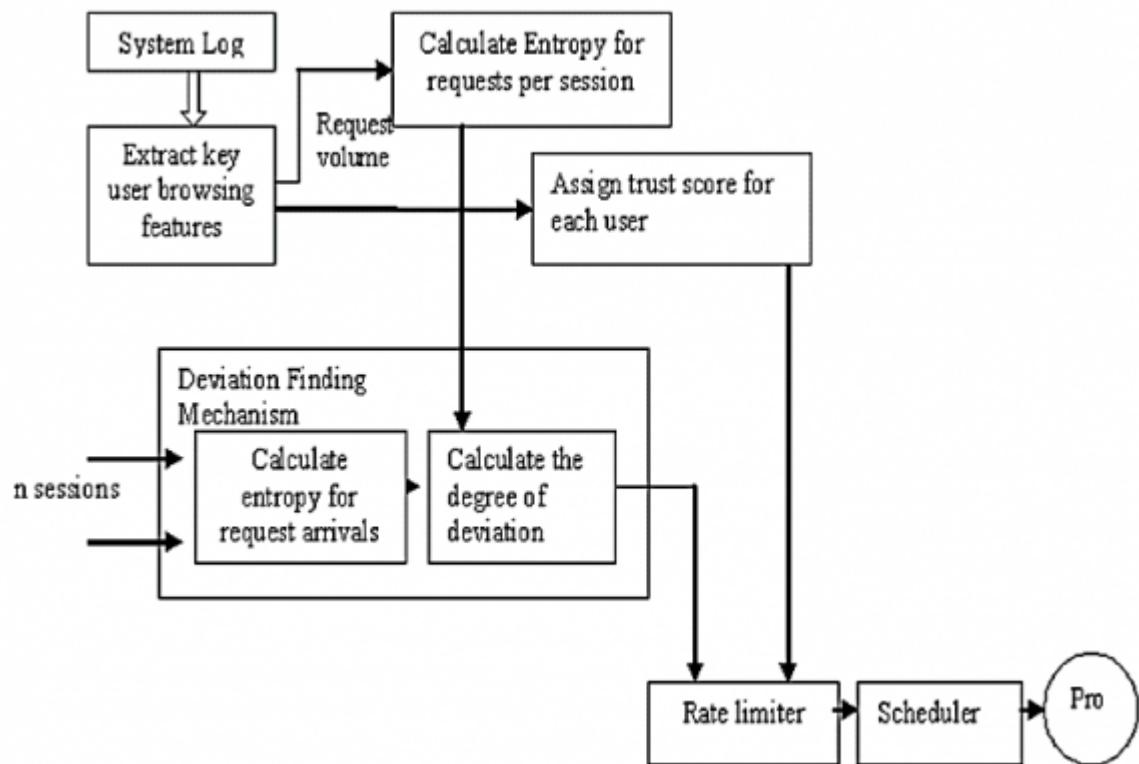


Figure 2: ?

Client IP Address	Trust value	Degree of derivation	Policy	Attack Type
172.016.112.100	4	20%	legitimate client	no
194.027.251.021	5	10%	legitimate client	no
135.008.060.182	1	50%	suspicious	Ntis attack
.....	
.....	

Figure 3:

1

Figure 4: Table 1 :

154 [D = |hnew (ed.)| , D = |hnew . R| -|H(R)| (ed.)

155 [Devi and Yogesh (2012)] ‘A Hybrid Approach to Counter Application Layer DDoS Attacks’ S Devi , P Yogesh
156 . *International Journal on Cryptography and Information Security (IJCIS)* June 2012. 2 (2) .

157 [Xie and Yu ()] ‘A large-scale hidden semi-Markov model for anomaly Detectionon user browsing behaviors’ Y
158 Xie , S Yu . *IEEE/ACM Trans.Netw* 2009. 17 (1) p. .

159 [Barford et al. ()] ‘A signal analysis of network traffic anomalies’ P Barford , J Kline , D Plonka , A Ron .
160 *Proceedings of the 2 nd ACMSIGCOMM Work shop on Internet Measurement*, (the 2 nd ACMSIGCOMM
161 Work shop on Internet MeasurementNew York, NY, USA) 2002. IMW’ 02, ACM. p. .

162 [Kandula et al. ()] ‘Botz-4-sale: surviving organized Ddos attacks that mimic flash crowds’ S Kandula , D Katabi
163 , M Jacob , A Berger . *Proceedings of the 2nd Conference On Symposiumon Networked Systems Design and*
164 *Implementation,” NSDI’05, USENIX Association*, (the 2nd Conference On Symposiumon Networked Systems
165 Design and Implementation,” NSDI’05,USENIX AssociationBerkeley, CA, USA) 2005. p. .

166 [Von Ahn et al. ()] *Captcha: using hardai problemsFor security*, L Von Ahn , M Blum , N J Hopper , J Langford
167 . 2003. EUROCRYPT. p. .

168 [Walfish et al. ()] ‘DDoS defense by offense’ M Walfish , M Vutukuru , H Balakrishnan , D Karger , S Shenker
169 . *ACM Trans. Comput. Syst* 2010. 28 (1) p. .

170 [Ranjan et al. ()] ‘DDoS-resilient scheduling to counter application layer attacks under imperfect detection’ S
171 Ranjan , R Swaminathan , M Uysal , E Knightly . *Proceedings” INFOCOM 2006. 25th IEEE International*
172 *Conference on Computer Communications, (”*. INFOCOM 2006. 25th IEEE International Conference on
173 Computer Communications) 2006. p. .

174 [Zhou et al. ()] ‘Detection and defense of application-layer DDoS attacks in backbone Web traffic’ Wei Zhou ,
175 Weijiajia , Yangxiang Shengwen , Wanlei Zhou . *Future Generation Computer Systems* 2014. 38 p. .

176 [Xie and Zhengyu ()] ‘Monitoring the application-layer ddos attacks for popular websites’ Y Xie , S Zhengyu .
177 *IEEE/ACM Trans. Netw* 2009. 17 (1) p. .

178 [Arbor and Networks ()] *Worldwide network infrastructure security report*, Arbor , Networks . 2011. Arbor
179 Networks. (Tech. Rep.)