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Abstract-

 

This paper introduces an innovative system for outlier 
detection that combines the strengths of an Auto-regressive 
Integrated Moving Average (ARIMA) model and an Artificial 
Neural Network (ANN). While ARIMA is traditionally used for 
linear predictions and ANNs for non-linear forecasting, this 
study demonstrates their synergistic capabilities in capturing 
complex, non-linear relationships between meteorological 
forecast variables and gas consumption patterns. The 
resulting system can identify anomalies, aiding building 
managers in reducing energy waste in HVAC systems. The 
process comprises two phases: first, it predicts short-term gas 
consumption patterns using historical data, and then it 
identifies outliers by detecting deviations from expected 
values. Remarkably, this outlier detection process doesn’t 
require predefined labeled examples, thanks to the system’s 
highly accurate gas consumption forecasts, characterized by 
a root mean square error (RMSE) ranging from 8 m3 to 2.5 
m3.
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I.

 

Introduction

 nergy utilization in structures is perhaps one of the 
quickest developing areas. Roughly 41% of the 
all-out energy in Europe is consumed by 

structures (families and administrations) [1]. Studies and 
states’ mandates about limiting energy utilization and 
utilizing sustainable power expanded consistently with 
the decrease of petroleum derivatives, the line contacts 
with eastern nations like Russia, and the increment of 
different natural issues. In light of this, the European 
association, with a new order [2], has the objective to 
raise EU energy utilization created from sustainable 
assets to 20%, to lessen by 20% the EU ozone-depleting 
substance discharges and to improve by 20% the EU’s 
energy productivity. This implies speculations to re-
qualify old structures, new nation regulations, and 
energy analysis, yet in addition, new productivity 
frameworks from the pre-owned apparatuses.

 
Determining energy requests has become one 

of the significant exploration fields in the energy 
divisions since it can assist with gassing utility 
organizations and families. Gas utilities purchase gas 
from pipeline organizations on an everyday basis, so 

they need to know the necessities ahead of time to be 
cutthroat. Organizations and families have the point of 
decreasing energy utilization and increment 
effectiveness.  

Lately, enormous organizations like Google 
have also shown their premium in this new market, 
creating indoor regulators that consequently control the 
house environment and putting together choices with 
respect to the client’s timetable. Home, an organization 
procured by Google, pronounced that clients saved the 
11.3% of AC-related energy use without compromising 
solace [3], because of the programmed learning carried 
out in their indoor regulators. On the off chance that, on 
the one hand, the programmed indoor regulator 
program setting in light individuals conduct can assist 
them with setting aside cash, peculiarity location can 
diminish the energy utilization. It is displayed by [4] and 
[5], that business structures consume from 15% to 30% 
more energy than needed due to ineffectively kept up 
with, corrupted, and inappropriately controlled 
hardware. These inconsistencies can turn out to be 
simply fixable issues with a dependable shortcoming 
location and conclusion (FDD) framework. 

In this paper, an automatic outlier detection 
system is proposed, where days/hours with abnormally 
high and low gas consumption are labeled and reported 
to the building manager. He can further analyze and fix 
the HVAC system, minimizing the energy waste caused 
by the outliers. Gas consumption is very irregular and 
not easily predictable with classic methods. The outlier 
detection system presented is based on predictions 
made by a hybrid ARIMA-ANN, which can model linear 
and non-linear behavior of the data with very reliable 
results and a comparison between the predicted 
value/trend and the actual one to find outliers. 

Since the definition of outlier is highly 
application dependent, in section II they are defined. In 
the same section, ANNs and ARIMA are briefly 
explained because they will be lately used in the 
proposed solution (section IV), based on a gas 
consumption forecaster. In section III some related 
works are discussed. In section V, some experiments on 
synthetic and real data are shown. Section VI presents 
some future ideas for the readers based on techniques 
that the author didn’t have the time to apply. 
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II. Background

a) What is an outlier
An exception, by definition [6], is a perception 

that goes astray fundamentally from different 
perceptions, so it makes doubt that various elements 
made it. Regardless of this overall definition, the more 
fitting approach to characterizing exceptions is 
exceptionally application-subordinate since even similar 
situations might require various judgments of anomalies.

In this paper, exceptions are firmly connected 
with the issue of time-series gauging since anomalies 
are proclaimed based on deviations from expected (or 
estimated) values. In this unique circumstance, a worth 
is viewed as an exception due to its relationship to its 
connected information (contextual exception [7] or 
contingent oddities [8]). An unexpected pinnacle (fig. 1) 
in a period series is a contextual exception in light of the 
fact that its worth is totally different from the upsides of 
its nearby items.

At the point when a gathering of focuses are 
proclaimed exceptions, it is alluded as collective 
peculiarity or anomaly [7]. It initially shows up at a point, 
and afterward, it influences the qualities promptly close 
to it. Sooner or later, this impact vanishes, passing on 
the time series to a typical way of behaving. This 
situation is normally difficult to identify. Outliers can have 
distinct main reasons:

1. Defective system (e.g., a defective heater in a 
room).

2. Bad human behavior (e.g., people who leave open 
the window in a room while the system is trying to 
heat it).

3. Defective monitoring system, where the system 
monitors different values from the real one due to a 
malfunction, computing process errors, or recording 
negligence.

In literature, outliers are also referred to as 
abnormalities, deviants, novelties or anomalies.

b) Artificial Neural Networks
Counterfeit Brain Organizations (ANNs) were 

initially evolved to impersonate the mind’s usefulness. 
There is definitely not a broadly acknowledged definition 
yet by [9]: ”A brain network is a circuit made out of an 
extremely huge number of straightforward handling 
components that are neurally based. Every component 
works just on nearby data. Moreover, every component 
works nonconcurrently; in this manner, there is no 
general framework clock. ” From section II-B, it is 
feasible to see a completely associated ANN with five 
sources of info, 3 neurons on the secret layer (purported 
on the grounds that the ANN resembles a black box), 
and one result. The data sources are additionally called 
elements, and they address the attributes to portray the 
result.

The secret neurons will plan this connection. 
Every association has an initiation that addresses the 
significance (weight) of the associated neuron. ANNs 

with something like a 1-stowed away layer can plan non-
direct relations.

The hidden neurons are usually represented 
with logistic sigmoid units, which internally calculate the 
sigmoid function of the inputs, but also with a hyperbolic 
tangent. Recent findings argued that rectifier units seem 
to be more biologically plausible [10], and they also 
seem to perform better in ANNs.
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Fig. 1: Different Types of Outliers. On the Left an Unusual Data Point is Presented, on the Right an Unusual Pattern 
of Changes can be Recognized if Compared to the other Days Shape
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The ANNs are commonly applied with the 
Stochastic Gradient Descent algorithm, which tries to 
find the right weights of each connection to have the 
right output value. It is usually combined with the 
Backpropagation algorithm which calculates the error in
the output layer and then backpropagates it to the 
previous layers in order to adjust the weights [11]. More 
information can be found in [12].

Nowadays, ANNs are a state-of-the-art 
technique that has many applications.

c) Autoregressive Models
Let X1,X2,...Xt be the values in an univariate time-

series. In the Auto-Regressive Moving Average model, 
the value of Xt is defined in terms of the values of the last 
window of length p and q moving average terms.

The left-hand part is called the auto-backward 
part since it relies upon the past (slacked) values 
Xt−1,Xt−2,...Xt−p, the right-hand part is called moving 
normally in light of the fact that the blunder at time t is 
the direct mix of the past mistakes εt−1,εt−2,...,εt−q.

These techniques are applied to stationary time-
series, alleged when the mean, fluctuation, and 
autocorrelation structure don’t change over the long run. 
Tragically, many time series make occasional impacts or 
patterns. Specifically, arbitrary strolls, which describe 
many sorts of series, are non-fixed. Differencing the 
information focuses can frequently change a non-fixed 
time series into a fixed one. In view of the Crate Jenkins 
models of the 1970s, ARIMA models are separate, 
where a series with deterministic patterns ought to be 

differentiated first, and then an ARMA model is applied. 
ARIMA models are typically referenced as ARIMA (p, d, 
q), to show the ARMA boundaries and the d request of 
difference. ARIMA models are likewise fit for displaying a 
lot of information.

where m is the quantity of periods per season. The 
capitalized documentation is utilized for the occasional 
pieces of the model, and the lower-case documentation 
for the nonoccasional pieces of the model.
The decision of the boundaries p, d, q is exceptionally 
application ward, and it depends on a hypothesis that is 
past the extent of this paper. More data can be found in 
[13].

III. Related Work

Since this paper declares outliers based on 
deviations from the expected (or forecast) value, this 
section is divided into related work in forecasting and 
outlier detection.

a) Outlier Detection
Outlier detection systems are a wide range of 

areas, from introduction detection systems to fraud 
detection systems, law enforcement systems to earth 
science anomaly detection systems.

Outlier detection can be supervised when 
available data is labeled indicating previously known 
examples of anomalies, semi-supervised, where only 
examples of normal data or anomalies are available, or 
unsupervised, where previous examples of interesting 
anomalies are not available. Typically, most of the 
unsupervised outlier mechanisms use a measure of 

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

error

Error back propagation

Xt =

p∑
i=1

φiXt−i +

q∑
i=1

θiεt−i + c+ εt.

ARIMA(p, d, q)(P,D,Q)m

Fig. 2: Artificial Neural Network with Backpropagation. Example with 5 Inputs, 3 Hidden Neuron in the First Hidden 
Layer, and One Output (in the Case of This Paper, the Gas Consumption Value)



 

 

 

 

 
 

 

 

 

 

 

 

 

  

 

 

   

 

 

 

  

  
  
  

  
 

Use of Robust Artificial Neural Networks and ARIMA in Detecting Brief Anomalies in Gas Consumption

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
T
ec

hn
ol
og

y 
( 
D
 )
 X

X
IV

 I
ss
ue

 I
I 
V
er
si
on

 I
 

 Y
ea

r 
20

24

4

© 2024 Global Journals

outlierness of a data point, such as sparsity of 
underlying region, nearest neighbor distance, or the fit to 
underlying distribution [7]. In these cases, a data point 
is unusual due to one or more variables rather than a 
specific one (like in the supervised methods).

In energy consumption outlier detections, 
literature is usually based on the Gaussian error theory, 
stating that when the measurement accord with normal 
distribution, the probability that the residual falls in three 
times the variance is more than 99.7%. Therefore, the 
residuals falling outside can be considered outliers. In 
[14], the author further improved this system by 
considering a rolling window median, which seems to 
improve the results when the distribution is not fixed. 
Supervised methods are usually based on 
classifications using trees, ANNs, and other different 
algorithms, thanks to the presence of previous examples 
of anomalies. In the energy consumption field, 
unsupervised methods are usually based on clustering, 
where an algorithm tries to find similarities between 
points/trends and cluster them into groups, calculating 
the distance between them. A cluster is considered 
good when the intra-cluster distance is minimized, and 
the intra-cluster distance is maximized. Popular 
methods in this group are kmeans, one-class SVM, and 
self-organizing maps.

For example, in [15], some clustering methods, 
like CART, k-means, and DBScan, were applied to 
detect outliers in the office lighting energy consumption. 
The author showed different techniques applied with the 
Generalized Extreme Studentized Deviate (GESD) and 
listed some irregularities found. He also stated that the 
clustering methods were not able to detect faults 
strongly related to time variables.

Clustering methods are very difficult to apply in 
timeseries data, and the results are usually poor. For 
this reason, this paper will build a prediction algorithm, 
where outliers are declared based on deviations from 
expected (or forecast) values. The more accurate the 
predictor, the more abnormal data points will be 
detected.

b) Forecasting
Traditionally, several techniques have been 

used for energy use forecasting, but short-term, 
medium-term, and long-term energy forecasting needs 
to be differentiated. The former usually refers to 
prediction with a horizon of hours or days; the second 
refers to weeks, and the latter refers to a monthly or 
annual horizon. Long-term forecasting usually deals with 
data that rarely presents significant distortions and 
irregularities, so they have a small effect on the overall 
value. On the contrary, short-term forecasting has to 
deal with irregularities and sudden changes in values 
(due to weather changes, human behavior, etc.).

There are essentially five types of prediction 
models [16]: Engineering methods, Statistical methods, 

Artificial Neural networks, Support Vector Machines, and 
Grey models. Engineering methods use physical 
principles to calculate thermal dynamics and energy 
behavior of the building, Statistical methods build 
empirical models to apply a regression to a time series 
of values, Neural networks try to predict energy using an 
artificial intelligence network of interconnected neurons, 
Support vector machines are based in a machine 
learning algorithm and Grey models apply a mixture of 
the models. All the principal methods are extensively 
reviewed in [16] and [17].

Several techniques have been traditionally 
applied for energy use forecasting, and among the 
statistical methods, Kalman filtering and ARIMA/ARMAX 
time-series techniques are the most famous.

The first reports about applications of Artificial 
Neural Networks (ANNs) were published in the early 
1990s [18]. Since then, the number of publications 
increased steadily. Kalogirou et al. [19] used back 
propagation neural networks to predict the required 
heating load of 225 buildings; Ekici and Aksoy used the 
same model to predict building heating loads in three 
buildings. Nizami and Al-Garni [20] tried a simple feed-
forward NN and related the electric energy consumption 
to weather data and population, Taylor and Buizza [21] 
used an ANN with weather data (51 variables) to predict 
load of 10 days ahead. Gonzales [22] built an ANN to 
predict hourly energy consumption. Some researchers 
tried to specialize the ANNs: Neto and Fiorelli [23] 
compared generic ANNs with working days ANNs and 
week-end ANNs, Lazzerini and Rosario [24] specialized 
them to predict electric lighting with weather data.

Some researchers have also tried to apply a 
hybrid model to increase the performance of the ANN. 
One example above all is [25] which applied a hybrid 
ARIMA and neural network model to forecast electricity 
use, another one is [26] who improved the previous one. 
This paper is based also on his work.

Until now, only electric forecasting was 
presented because the majority of the existing 
forecasters are related to electric forecasting. There are 
only a few of them are about natural gas forecasting: 
Brown et al.[27] built one of the first predictors for 
natural gas consumption, and Khotanzad et al. [28] 
developed a two-stage system ANN with very good 
results.

Even if ANNs might outperform traditional 
methods, the researchers are still not convinced about 
the results of ANNs in this field. Nevertheless, it is also 
stated that “a significant portion of the ANN research in 
forecasting and prediction, lacks validity” [29] and that 
most of the papers seem misspecified models that had 
been incompletely tested (no standard benchmarks, no 
synthetic data, etc.) [17]. This paper will try to avoid 
these mistakes.
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It also needs to be pointed out that ANNs are 
multistep ahead forecasters, while Auto-Regressive 
methods are potentially useless in long ahead data 
points.

IV. Proposed Solution

As stated before, this paper proposes a 
regression algorithm in which outliers are declared 
based on deviations from the expected (or forecast) 
value.

A time-series is a sequence of data-points 
typically measured at successive points of a uniform 
time interval t (eq. (1)).

(1)

where x is the value and t the time.
Time-series forecasting is about predicting 

future values given past data (eq. (2)).

(2)

where s is the step size. A multivariate time-series is a 
(n×1) vector of n time-series variables.

It can be seen that in academic and industry 
research, linear regression-based systems are the 
standard “de facto” of energy forecasting, and in recent 
works, this problem is treated by combining weather 
forecast data. However, this relationship is clearly non-
linear [17]. Consequently, even if some papers have 
acceptable results with measured datasets, these 
systems cannot adequately capture the relationship in 
all the situations and data. Since ANNs are the state-of-
the-art technique of many machine learning problems 
where there is complex nonlinear hypotheses, the 
proposed solution is composed of a multilayer feed-
forward neural network with backpropagation.

Table I: Buildings used

Building name Date interval Number of rows
HvA 740 - NTH 01/2008 - 03/2014 54.725
Hva 761 - KMH 01/2009 - 09/2013 40.407
Hva 882 - WBW 01/2008 - 03/2014 54.647

a) Experimental Data
Ebatech gathers the energy utilization datasets 

utilized in various structures of the Hogeschool van 
Amsterdam. The Universiteit van Amsterdam gave these 
datasets to this undertaking. These structures are 
situated in Amsterdam, the capital city of The 
Netherlands. This city has a sea environment like Britain, 
firmly impacted by the North Ocean. Winters are 
genuinely cold, and summers are seldom sweltering, 
according to European guidelines. Amsterdam is 
described by the normal presence of downpours and 
wind, and the weather patterns change frequently.

Ebatech gathered various sorts of elements in 
every structure, with various granularity. For this 

undertaking, three structures are utilized: HvA 740 -
NTH, Hva 882 - WBW, and Hva 761 - KMH. In these 
structures, the organization gathered the energy 
utilizations and the gas utilizations as different factors. It 
should be noted that gas is utilized exclusively to warm 
the structures.

The weather data was collected by KNMI 1

1. Data Analysis: The energy consumption dataset 
covers a very large period ranging more than 5 
years, allowing us to see similar patterns even with 
different yearly/season behavior (one year could be 
different from another one for external factors like 
weather or building use). It is very rich (with more 
than 50 variables) but also sparse because the 
monitored variables are not the same in all the 
buildings. For this reason, only common variables, 
such as total electric and gas consumption, were 
used in this paper. In this way, it is possible to 
generalize and compare the models.

in 
Schipol, the Amsterdam airport 16 km far from the 
tested buildings. The dataset, findable on the website, 
consists of over 21 variables collected hourly. The 
proposed solution only uses a few of them, as explained 
in the section IV-B, and they are used as forecast 
values: the measured weather conditions are linked to 
the previous hour of energy consumption. It is 
necessary to consider that there will be an error in the 
built model since the weather data is collected in a 
different location from the building’s positions, and in 
practice, the error will be larger than those obtained in 
this simulation due to the effect of the weather forecast 
uncertainty [30], [31]. The advice is to keep it in mind 
before applying the methods contained in this paper 
with days forecasting.

The gas consumption data is highly seasonal: 
daily and weekly cycles are quite perceptible, as it can 
be seen from fig. 4 and fig. 3. From the latter, the weekly 
behavior is clear: the last two days of the week 
(Saturday and Sunday) are completely different from the 
others, and Monday seems a bit different from the rest 
of the days. Every day, around 4:00-5:00 AM, the 
system seems to react by turning on the heating system, 
whereas in the previous hours of the night, it seems only 
to keep a minimum temperature. The system reveals to 
us that after a couple of hours, it decreases the 
consumption again. In fig. 4 the Temperature has a clear 
daily/hourly relation with the gas consumption while in 
fig. 5 the electric consumption is shown to be very 
smoothed and more regular than the gas one.

                                                                
1 Koninklijk Nederlands Meteorologisch Instituut http://www.knmi.nl

{x(t0), x(t1), . . . x(ti), x(ti+1) . . .}

x̂(t+ s) = f (x(t), x(t− 1) . . .)
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Fig. 3: Typical weekly and daily gas consumption behavior in building 740NTH. The weekly pattern can be noticed 
by observing that the last two days of the week (Saturday and Sunday) have a completely different shape than the 
others. During the week, the daily behavior is very similar, with one peak around 4:00-5:00 AM

2. Data Cleaning: The data presented some 
irregularities like repeated and missing data points. 
Although the first one may not influence the 
performance of the ANN, it could lead to problems 
when other algorithms are used (like ARIMA in this 
paper). Repeated data points were deleted, keeping 
only the last one, while missing data points were 
reconstructed by linear interpolation. Cubic and 
spline interpolation were also considered, but the 
performance was heavily affected by these 
methods.

Missing and repeated data points represent 
some problems in the data collection that will be further 
investigated.
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Building 740-NTH
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b) Artificial Neural Network Forecaster
Time series are characterized by more or less 

complex dependencies: Known dependencies like date-
time dependencies. Hidden dependencies include the 
behavior of the HVAC system (when it starts, when it 
raises the temperature, etc). Short/long -term 
dependencies between variables.

Data scientists and experts are focused on 
known dependencies, while the proposed ANNs will be 
focused on the hidden ones. The short/long-term 
dependency is realized by a moving window containing 
a “memory” of the previous states for the interesting 
variables, using a Tapped delay line memory [32].

These memories form a new set of states-

from the original states

where x̄ i(t) = x(t−i+1). The window types will be 
explained later in this section.

Since the value to predict is time-dependent, 
the first element to consider is adding the time feature. 
Energy consumption depends on the hour of the day 
but also on the day of the week and the seasonality of 
the year (month and day of the year) (as explained in 
section IV-A1, fig. 4 and fig. 3). The day of the week is a 
number from 0 to 6, where 0 is Monday and 6 is 
Sunday. Since the behavior of the holidays was 
considered similar to the weekends (particularly similar 
to Sundays), a function encoded all the holidays as 
weekend days2

                                                                
2 Thanks to an Open source Dutch weekend list 

. In the future, this can be improved by 
asking for a timetable list for the buildings, indicating 
when these are closed. The day of the year is a number 

https://github.com/ 
PanderMusubi/dutch-holidays

between 0 and 366, and the first one is the first of 
January. All these date-time features by means of their 
sine and cosine values as usual, reported in literature 
[33], [34], [22]. This transforms the time component into 
a cyclic feature that spans a fixed length (a single day 
for the hour), and it is bounded in [−1,1].

Another added feature was the current system 
load, which is the energy consumption at the k state 
when the load at k+1 needs to be predicted. This was 
believed to be an important measure for determining 
building usage and holidays.

Many elements influence the energy needs of 
structures. These variables can be separated into three 
principal bunches, specifically the physical 
environmental, the artificial planning parameters, and the 
human warm discomfort. The first is made out of weather 
conditions related to boundaries like open-air 
temperature, wind speed, sun-powered radiation, and 
so forth. The artificial planning parameters are connected 
with the structure development: straightforwardness 
proportion, direction, and so on [35]; however, these 
factors were inaccessible in the dataset. The human 
impression of warm discomfort is connected not 
exclusively to the temperature but also to different 
factors, for example, relative stickiness, illumination, and 
wind speed. Regardless of whether this large amount of 
information was accessible, the main climate factors 
found were the temperature and the breeze speed.
The framework utilization was accepted to be connected 
with the distinction of the open air temperature between 
two moments (eq. (3)), addressing a positive/negative 
difference in the outer natural circumstances.

(3)

where Tk+1 is the predicted temperature for the period k 
+ 1 and Tk is the value measured in the instant k. It 
needs to be noted that the real behavior of the system 
was unknown, so it was not possible to know if this 

Feb
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Fig. 5: Relation between Electric and Gas Consumption in Building 740-NTH
2012

{x̄1(t), x̄2(t), . . . x̄n(t)}

{x(1), x(2) . . . x(n)}

∆Tk+1 = Tk+1 − Tk
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change would have an immediate effect on the HVAC 
system and/or its reaction time. Gas usage has a daily 
cycle but there are also secondary weekly and annual 
cycles that the ANN may not be able to capture. Gas
usage u(t) is defined as u(t) = s(t) + f(t) + r(t)

where s(t) is the seasonality at time t, f(t) is the trend and 
r(t) is called remainder, irregular component or 
difference. The time series were analyzed by the STL 
decomposition by LOESS [36](fig. 6), which 

decomposes a time series into seasonal, trend, and 
irregular components by an additive method. Since the 
ANN is interested in the remainder and the trend can be 
found from the historical part, the daily, weekly, and 
yearly remainders were added as features. For the same
reason also, the Temperature, the wind speed, and the 
electric consumption were decomposed by the STL 
decomposition, resulting in a stationary time series 
added to the input.

Fig. 6: Yearly STL Decomposition by LOESS in Building 740-NTH

In Zhang et al. [37], it is expressed that ANN 
models truly enjoy benefits while managing a lot of 
verifiable burden information with non-direct trademarks. 
Yet, the scientists ignored the straight relations, 
including the information. Hence a cross breed 
approach is proposed, where the ANN will be helped in 
direct guaging by the famous strategy ARIMA 
(autobackward coordinated moving midpoints), 
generally known as the Container Jenkins approach. To 
apply ARIMA, the time series was handled iteratively with 
a moving window of 21 days where the ARIMA model 
was fitted. After the fitting, the upsides of the following 
24 hours were determined prior to moving the window 
and doing the same for the following day. The 
occasional ARIMA fitting was finished by the assistance 
of the Figure R bundle [38] and its auto.arima technique, 
which finds the best ARIMA (p,d,q)(P,D,Q)m boundaries 
by looking at the Akaike data criterion (AIC) of the tried 
models. Only for the peruser interest, the most fitted 
model was ARIMA (3,0,3)(2,0,1)24. An ARIMA model with 

“seeing” without knowing its shape and its behavior in 
the previous hours/days. This limit is surpassed by 
some rolling windows, which will somehow simulate the 
Recurrent neural networks’ behavior. Two rolling 
windows were created for the gas consumption, 
memorizing the sum and the peak load of the previous 
five hours, and two moving rolling windows were created 
for the STL yearly residuals, memorizing sum and peak 
of them.

Taking into account the points made in this 
section, the ANN is predicting the gas consumption 

temperature sham factors was tried. However, it did not 
advance the ANN: the least complex models were liked.

u(t) = s(t) + f(t) + r(t)
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Table II: Ann Features

All the features that were not between the limits 
[−1,1] were scaled to have a faster convergence [39] of 
the Stochastic Gradient Descent (eq. (4)).(4)

where xi is the original value and x′
i is the scaled one. 

Many practical tricks like the shuffling of the elements, 
the normalization and initialization were taken from [39], 
[40].

All the process described so far is also called 
feature engineering and was done almost iteratively, 
cumulatively introducing and removing features from the 
model and comparing the performance.

Choosing a number of hidden units for the ANN 
is always a tricky task. As stated by [41], [42], using 
early stopping in an oversized Backpropagation ANN, 
where the number of hidden neurons is higher than the 
number of the features, makes it easier to find the global
optimum and avoid bad local optima. For this reason, 
the number of hidden units was chosen to be greater 
than 2 × |features| and then test-driven, and the 
training was early stopped to prevent overfitting.

Architecture: ANNs are trained trying to minimize a cost 
function of the form

where the error function p is symmetric and continuous, 
ri = Yi−Yˆ

i is the residual between the actual value and 
the forecast one, and N is the number of training 
patterns.

Variable Data
Electricity load E(t)
Hour sin(2π(h)/24); cos(2π(h)/24)
Week day sin(2π(wDay)/6); cos(2π(wDay)/6)
Month sin(2π(mon)/12); cos(2π(mon)/12)
Year day sin(2π(d)/366); cos(2π(d)/366)
Temperature T (t)
Gas peak′ max1≤k≤5 G(t− k)

Gas sum′ ∑5
i=1 G(t− i)

Gas mean′ 1
288

∑288
i=1 G(t− i)

Gas peak′′ max1≤k≤24 G(t− k)

Gas sum′′ ∑24
i=1 G(t− i)

Electricity peak′′ max1≤k≤5 E(t− k)

Electricity sum′′ ∑5
i=1 E(t− i)

Temp peak max1≤k≤5 T (t− k)

Temp sum
∑5

i=1 T (t− i)
Wind speed FH(t)
∆Tk+1 Tk+1 − Tk

ARIMA forecast forecast(ARIMA(3, 0, 3)(2, 0, 1)24)
STL year res. Y earRes(t)
STL day res. DayRes(t)
STL E res. Res(E(t))
ARIMA peak′ max1≤k≤5 ARIMA(t− k)

ARIMA sum′ ∑5
i=1 ARIMA(t− i)

x′
i =

xi − max(x)+min(x)
2

max(x)−min(x)
2

E =
1

N

n∑
i=1

p(ri)
2

(4)
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Fig. 7: Training Curve of the Hybrid Model with 80 Hidden Neurons

Using the notations defined above, the most 
used cost function is based on the Mean Squared Error 
(MSE), commonly, known in data modeling as the Least 
Mean Squares (LMS) method. The basic idea of LMS is 
to optimize the fit of a model with respect to the training 
data by minimizing the square of residuals

but it is greatly influenced by outliers [43]. In order to 
control the damage caused by outliers, in this paper the 
Least Mean Log Squares (LMLS) method (eq. (5)), 
presented by [43] is used. The ANN will try to minimize 
the Mean Log Squared Error (MLSE).

(5)

The ANN is a 1-hidden-layer Multilayer 
Feedfoward ANN with a feedback structure, called 
Backpropagation. This ANN is composed by Rectifier 
neurons and one output linear node. Training is done by 
the Stochastic Gradient Descent algorithm with 10 batch 
size and is characterized by a learning rate of 0.003 and 
fixed by a Momentum of 0.05, which could help to 
increase the speed, avoiding local minima.

This project used Python and pandas for the 
data analysis, Pylearn2 [44] to construct and test the 
ANN and the R system with the zoo [45] and the 
Forecast [38] packages for the ARIMA process.

c) Outlier Detection
According to Chebschev’s theorem [46], almost 

all the observations in a data set of system states falls 
into the interval [µ − 3σ,µ + 3σ], where µ and σ are 
respectively the mean and standard deviation of the 

data set, and the data points outside this interval are 
declared outliers. In this paper the ANN is used to 
predict the gas consumption, for this reason a point will 
be considered outlier if it will fall outside the 95% 
confidence interval3 3

(6)

expressed for the RMSE. If it is 
assumed that the difference between the actual values xi 

and the predicted value xˆi have:

• mean zero.
• follow a Normal distribution (it is assumed that it 

holds for the large amount of data utilized).
• and all have the same standard deviation σ.

(7)

it is possible to say that eq. (7) follows a χ2
n 

distribution with n degrees of freedom. Which means:

                                                                
3

For the following description user fabee of CrossValidated needs to 
be mentioned: http://tinyurl.com/l9gvz65.

0 20 40 60 80 100 120 140 160
# epochs

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

valid_objective:softmax_re

train_objective:softmax_re

p(r) =
1

2
r2

p(r) = log(1 +
1

2
r2)

x̂i − xi ∼ N
(
0, σ2

)

x̂i − xi ∼ N
(
0, σ2

)

P

(
χ2

α
2 ,n ≤ nRMSE2

σ2
≤ χ2

1−α
2 ,n

)
= 1− α

⇔ P
nRMSE2

χ2
1−α

2 ,n

≤ σ2 ≤ nRMSE2

χ2
α
2 ,n

)
= 1− α

(8)

(9)

⇔ P

√ n

χ2
1−α

2 ,n

RMSE≤ σ ≤
√

n

χ2
α
2 ,n

RMSE

= 1− α.

(10)
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V. Experimental Evaluation

The ANN has been prepared with early halting, 
with a decent number of preparing ages (stages) or 
halting the preparation when the approval blunder rate 
was expanding. Every one of the outcomes showed is 
obtained from k-crease cross-approval strategies, where 
the organization was prepared k times, each time 
leaving out a subset of information from preparing to 
test the ANN. The consequences of the k tests were 
partitioned by k. The organization is constantly prepared 
with 70% of the information, 15% is utilized for approval 
and the other 15% for testing.

Albeit most of the Mean Outright Rate Blunder 
(MAPE) is viewed as a norm for looking at the nature of 
the model expectation of energy load, it is a satisfactory 
mistake measure provided that the misfortune capability 
were direct and ongoing investigations exhibited it isn’t 
[19][47]. Besides, the rate of blunder is limitless on the 
off chance that there are no qualities on the series, 
continuous in discontinuous information and in utilization 
information, and it puts a heavier punishment on certain 
mistakes than on regrettable mistakes [48]. In light of 
these impediments, this paper will just consider the 
minimization of the Root Mean Square Mistake (RMSE), 
which punish huge blunders, as proposed in [49]. As 
recommended in [17], for each analysis, likewise the 
Mean Outright Blunder (MAE) will be determined.

Therefore√ n

χ2
1−α

2 ,n

RMSE,
√

n

χ2
α
2 ,n

RMSE



MAPE 4 =
1

n

n∑
i=1

|Yi − Ŷi|
Yi

× 100

RMSE =

√√√√ 1

n

n∑
i=1

(Ŷi − Yi)2 (13)

MAE =
1

n

n∑
i=1

∣∣∣Ŷi − Yi

∣∣∣
where Yˆ is the vector of the n predictions and Y is the 
vector of the true values.

a) Synthetic Experiments
The strategy is tried using engineered 

information. Twoday exceptions were created using 
various calculations. In the first, the genuine utilization 
was changed by an irregular worth, recreating the 
framework estimation/control breakdown, which makes 
the utilization bobbing all over (see eq. (15)). The 

second artificially made day was made by adding 50m3 

of gas utilization to the genuine one, making an example 
that  recreates a weird way of  behaving  as well as a 
glitch of the warming framework (see eq. (16)).

where
(15)

(16)

G(t) = G(t) + v ∗ 30

v ∼ N (0, σ2)

G′(t) = G′(t) + 50

The two outliers were correctly detected, as it 
can be seen in fig. 8.

b) Measured Data Experiments
The method is also tested with measured data 

coming from a different type of day. For example, the 
gas consumption of a weekend was placed in a 
weekday, simulating a holiday. The purpose of this test 
was to show that an unusual pattern was detected. In 
fig. 9 it can be seen that the outlier mechanism works 
perfectly when the Sunday gas consumption is placed in 
a weekday.

The outlier was correctly detected, as it can be 
seen in fig. 9. The robustness of the design was proved 
with different building, listed in section IV-A1.

Excluding this little experiment, some interesting 
behaviors were found through this work: Occasions: 
Paying little mind to at whatever point the school was 
functional, the main tests showed that the Ebatech 
framework was typically warming the structures 
(Christmas, on Tuesday, December 25, 2012, was 
warmed like an ordinary Tuesday regardless of whether
4MAPE errors will be calculated only on the non-zero 
values, to avoid the problems described before the 
structure was surely shut). This causes avoidable waste. 
Utilization skips In fig. 10 an odd crisscross way of 
behaving should be visible for building 740-NTH. It 
appears to be that the framework is squandering 
energy, and this shape is entirely unexpected from the 
standard one (fig. 3). This goes on for quite a long time, 
and obviously, likewise, the ANN preparation is 
impacted by this exception-like way of behaving. Tops: 
Around the underlying long periods of September, there 
is an immense amount of utilization (up to multiple times 
more than the maximal utilization of the year). Is it a 
test? In building 761-KMH, sporadic tops were tracked 
down each day during April 2013, likely while the 
warming framework was turned on. August with 
radiators in building 740-NTH, during August 2009 and 
August 2011, the warmers were dynamic even with the 
absence of a clear summer virus. Exceptions A few 
different exceptions are viewed, yet they Time need to 
be affirmed by the chiefs, ideally after checking the 
recently referenced ways of behaving. 

(11)

(12)

(14)
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Fig. 8: Outlier Detection with Synthetic Generated Data. The Circle Represents the Hours Where an Outlier is 
Detected

Fig. 9: Outlier Detection Where A Sunday One Replaced the Gas Consumption of A Weekday. The (Three) Circles 
Represent the Outliers Detected by the System
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Fig. 10: Strange Zig-Zag Behaviour Found by the Algorithm
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Table III: Best Selected Results in Building 740-Nth, to 
Compare the Arima, ANN and Hybrid Model. Hymse is 
the Hybrid Model with MSE Cost Function, While Hymlse 
is the Same Model with MLSE Cost Function

Model neurons epochs 4 RMSE MAPE MAE
ARIMA5 - - 88.50 117.27 22.52
ANN 80 15 11.95 34.78 8.52
HyMSE 80 70 9.4 27.66 6.90
HyMLSE 150 140 10.02 30.05 7.26

Table IV: Best Selected Results for All the Buildings

Model neurons epochs 7 RMSE MAPE MAE
740-N TH 150 140 10.02 30.05 7.26
761- KMH 150 140 2.49 18.30 1.00

An ANN with the standard cost function MSE 
was also trained, apparently resulting in a smaller RMSE 
error in a faster way (section V-B). Although this can be 
true, the Hybrid MLSE model was more precise and 
better at detecting possible outliers. They contributed 
the most to the error.

In section V-B the results in the different 
buildings can be read.

VI. Future Work

ARIMA models can’t detect more than one 
seasonality, but it can be helped with Fourier terms and 
ARIMA dummy variables to produce reasonable 
forecasts. When multi-seasonality is present, an 
algorithm like TBATS can overpass the ARIMA one and 
detect it. This non-parametric model described in [50] 
could be substituted for the ARIMA one as a feature of 
the ANN. At the moment, it is very slow, but it is very 
recent, so it will probably be improved.

The daily pattern could be seen in the 
transformed Fourier space applying the Modified 
Discrete Cosine Transform (MDCT) [51]. In theory, this 
could help as well to understand the pattern, but it was 
only applied once by [52], with scarce results.

ANNs are sensitive to missing values and 
irregularities, but it was not possible to contact the 
building managers in order to confirm/identify previously 
known outliers. For this reason the ANN training was 
done with not entirely perfect data, and this probably 
affected the performance. It is necessary to contact 
these building managers to further help with the training 
of this algorithm.

The input variables were scaled, standardizing 
them to a midrange 0 and range [−1,1]. It is also 
possible to normalize them to have mean 0 and 
standard deviation 1. In this case, Robust estimates of 

                                                                
4 epochs to converge
5 Calculated iteratively as described in section IV-B 
7epochs to converge

location and scale are desirable if the inputs contain 
outliers. Some examples are [53] and the recent [54], 
which can be the basis of a future refinement of the ANN 
inputs.

In future work, it is possible to break down the 
contrast between the MSE and the MLSE costs in the 
forecast and in the exception recognition.

Before 2006, ANN was quite often connected 
with the Backpropagation calculation and with the 1-
stowed away layer design. The issue with these designs 
is that they stall out in unfortunate neighborhood optima. 
In 2006, there was an enormous advancement 
principally began by [55], which is called Deep learning, 
and it addresses the new design of ANNs in light of 
multi-stowed away layers and new calculations. Future 
enhancements can be founded on Repetitive Brain 
Organizations (RNNs) and Limited Boltzmann Machines 
(RBMs), which were, as of late, ended up being 
fascinating in time-series gauging [52], [56], [57]. The 
Pylearn2 [44] RNN structure is being worked on.

VII. Conclusion

No model can treat all circumstances precisely 
for a lot of verifiable burden information. The 
unpredictable variance of the gas utilization was not 
really unsurprising, thus the ANN model was assisted 
with powerful expense capability and with the notable 
ARIMA model. Although different papers introduced 
comparative models to figure out electric utilization, the 
mixture model introduced here is practically interesting 
on the grounds that it centers around estimating 
momentary gas utilization, which is extremely sporadic 
and not effectively unsurprising with exemplary 
techniques. Since the indicator is exceptionally precise 
(with RMSE from 8 m3 in building 740-NTH to RMSE 2.5 
m3 in building 761KMH), the anomaly component can 
undoubtedly distinguish weird ways of behaving 
characterizing an edge esteem in the certainty stretch 
without the need to have past instances of anomalies. 
The aim of this paper is to determine the profoundly 
sporadic gas utilization time series. Yet, it is accepted 
that comparable outcomes could likewise be acquired 
with the electric utilization time series. It is trusted that 
this could prompt another examination of the energy 
utilization in open structures.
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