N2 GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY: D
NEURAL & ARTIFICIAL INTELLIGENCE

Volume 24 Issue 2 Version 1.0 Year 2024

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals
Online ISSN: 0975-4172 & PRINT [SSN: 0975-4350

Global Journals Inc.

7 O
7
i\ )

Use of Robust Artificial Neural Networks and ARIMA in

Detecting Brief Anomalies in Gas Consumption
By Azizul Hakim Rafi

Abstract- This paper introduces an innovative system for outlier detection that combines the
strengths of an Auto-regressive Integrated Moving Average (ARIMA) model and an Artificial
Neural Network (ANN). While ARIMA is traditionally used for linear predictions and ANNs for non-
linear forecasting, this study demonstrates their synergistic capabilities in capturing complex,
non-linear relationships between meteorological forecast variables and gas consumption
patterns. The resulting system can identify anomalies, aiding building managers in reducing
energy waste in HVAC systems. The process comprises two phases: first, it predicts short-term
gas consumption patterns using historical data, and then it identifies outliers by detecting
deviations from expected values. Remarkably, this outlier detection process doesn’t require
predefined labeled examples, thanks to the system’s highly accurate gas consumption forecasts,
characterized by a root mean square error (RMSE) ranging from 8 m3 to 2.5 m3.

Keywords: energy forecasting, time series, robust artificial neural networks, arima models, anomaly
detection, outlier detection, gas consumption prediction, energy forecast.

GJCST-D Classification: LCC Code: QA76.9.D343

USEOFROBUSTARTIFICIALNEURALNETWORKSANDARIMAINDETECTINGBRIEFANOMALIESINGASCONSUMPTION

Strictly as per the compliance and regulations of:

© 2024. Azizul Hakim Rafi. This research/review article is distributed under the terms of the Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference this article if parts of
the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.



Use of Robust Artificial Neural Networks and
ARIMA in Detecting Brief Anomalies in Gas
Consumption

Azizul Hakim Rafi

Abstract This paper introduces an innovative system for outlier
detection that combines the strengths of an Auto-regressive
Integrated Moving Average (ARIMA) model and an Artificial
Neural Network (ANN). While ARIMA is traditionally used for
linear predictions and ANNs for non-linear forecasting, this
study demonstrates their synergistic capabilities in capturing
complex, non-linear relationships between meteorological
forecast variables and gas consumption patterns. The
resulting system can identify anomalies, aiding building
managers in reducing energy waste in HVAC systems. The
process comprises two phases: first, it predicts short-term gas
consumption patterns using historical data, and then it
identifies outliers by detecting deviations from expected
values. Remarkably, this outlier detection process doesn’t
require predefined labeled examples, thanks to the system’s
highly accurate gas consumption forecasts, characterized by
a root mean square error (RMSE) ranging from 8 m3 to 2.5
m3.

Keywords: energy forecasting, time series, robust
artificial  neural networks, arima models, anomaly
detection, outlier detection, gas consumption prediction,
enerqy forecast.

[. INTRODUCTION

. nergy utilization in structures is perhaps one of the
=== quickest developing areas. Roughly 41% of the
e All-OUL  €nergy in Europe is consumed by
structures (families and administrations) [1]. Studies and
states’ mandates about limiting energy utilization and
utilizing sustainable power expanded consistently with
the decrease of petroleum derivatives, the line contacts
with eastern nations like Russia, and the increment of
different natural issues. In light of this, the European
association, with a new order [2], has the objective to
raise EU energy utilization created from sustainable
assets to 20%, to lessen by 20% the EU ozone-depleting
substance discharges and to improve by 20% the EU’s
energy productivity. This implies speculations to re-
qualify old structures, new nation regulations, and
energy analysis, yet in addition, new productivity
frameworks from the pre-owned apparatuses.
Determining energy requests has become one
of the significant exploration fields in the energy
divisions since it can assist with gassing utility
organizations and families. Gas utilities purchase gas
from pipeline organizations on an everyday basis, so
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they need to know the necessities ahead of time to be
cutthroat. Organizations and families have the point of
decreasing  energy utilization and  increment
effectiveness.

Lately, enormous organizations like Google
have also shown their premium in this new market,
creating indoor regulators that consequently control the
house environment and putting together choices with
respect to the client’s timetable. Home, an organization
procured by Google, pronounced that clients saved the
11.3% of AC-related energy use without compromising
solace [3], because of the programmed learning carried
out in their indoor regulators. On the off chance that, on
the one hand, the programmed indoor regulator
program setting in light individuals conduct can assist
them with setting aside cash, peculiarity location can
diminish the energy utilization. It is displayed by [4] and
[5], that business structures consume from 15% to 30%
more energy than needed due to ineffectively kept up
with,  corrupted, and inappropriately  controlled
hardware. These inconsistencies can turn out to be
simply fixable issues with a dependable shortcoming
location and conclusion (FDD) framework.

In this paper, an automatic outlier detection
system is proposed, where days/hours with abnormally
high and low gas consumption are labeled and reported
to the building manager. He can further analyze and fix
the HVAC system, minimizing the energy waste caused
by the outliers. Gas consumption is very irregular and
not easily predictable with classic methods. The outlier
detection system presented is based on predictions
made by a hybrid ARIMA-ANN, which can model linear
and non-linear behavior of the data with very reliable
results and a comparison between the predicted
value/trend and the actual one to find outliers.

Since the definition of outlier is highly
application dependent, in section Il they are defined. In
the same section, ANNs and ARIMA are briefly
explained because they will be lately used in the
proposed solution (section V), based on a gas
consumption forecaster. In section Il some related
works are discussed. In section V, some experiments on
synthetic and real data are shown. Section VI presents
some future ideas for the readers based on techniques
that the author didn’t have the time to apply.
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[I. BACKGROUND

a) Whatis an outlier

An exception, by definition [6], is a perception
that goes astray fundamentally from different
perceptions, so it makes doubt that various elements
made it. Regardless of this overall definition, the more
fitting approach to characterizing exceptions is
exceptionally application-subordinate since even similar
situations might require various judgments of anomalies.

In this paper, exceptions are firmly connected
with the issue of time-series gauging since anomalies
are proclaimed based on deviations from expected (or
estimated) values. In this unique circumstance, a worth
is viewed as an exception due to its relationship to its
connected information (contextual exception [7] or
contingent oddities [8]). An unexpected pinnacle (fig. 1)
in a period series is a contextual exception in light of the
fact that its worth is totally different from the upsides of
its nearby items.

100~

At the point when a gathering of focuses are
proclaimed exceptions, it is alluded as collective
peculiarity or anomaly [7]. It initially shows up at a point,
and afterward, it influences the qualities promptly close
to it. Sooner or later, this impact vanishes, passing on
the time series to a typical way of behaving. This
situation is normally difficult to identify. Outliers can have
distinct main reasons:

1. Defective system (e.g., a defective heater in a
room).

2. Bad human behavior (e.g., people who leave open
the window in a room while the system is trying to
heat it).

3. Defective monitoring system, where the system
monitors different values from the real one due to a
malfunction, computing process errors, or recording
negligence.

In literature, outliers are also referred to as
abnormalities, deviants, novelties or anomalies.
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Fig. 1: Different Types of Outliers. On the Left an Unusual Data Point is Presented, on the Right an Unusual Pattern
of Changes can be Recognized if Compared to the other Days Shape

b) Artificial Neural Networks

Counterfeit Brain Organizations (ANNs) were
initially evolved to impersonate the mind’s usefulness.
There is definitely not a broadly acknowledged definition
yet by [9]: "A brain network is a circuit made out of an
extremely huge number of straightforward handling
components that are neurally based. Every component
works just on nearby data. Moreover, every component
works nonconcurrently; in this manner, there is no
general framework clock. ” From section II-B, it is
feasible to see a completely associated ANN with five
sources of info, 3 neurons on the secret layer (purported
on the grounds that the ANN resembles a black box),
and one result. The data sources are additionally called
elements, and they address the attributes to portray the
result.

The secret neurons will plan this connection.
Every association has an initiation that addresses the
significance (weight) of the associated neuron. ANNs
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with something like a 1-stowed away layer can plan non-
direct relations.

The hidden neurons are usually represented
with logistic sigmoid units, which internally calculate the
sigmoid function of the inputs, but also with a hyperbolic
tangent. Recent findings argued that rectifier units seem
to be more biologically plausible [10], and they also
seem to perform better in ANNs.
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Fig. 2: Artificial Neural Network with Backpropagation. Example with 5 Inputs, 3 Hidden Neuron in the First Hidden
Layer, and One Output (in the Case of This Paper, the Gas Consumption Value)

The ANNs are commonly applied with the
Stochastic Gradient Descent algorithm, which tries to
find the right weights of each connection to have the
right output value. It is usually combined with the
Backpropagation algorithm which calculates the error in
the output layer and then backpropagates it to the
previous layers in order to adjust the weights [11]. More
information can be found in [12].

Nowadays, ANNs are a
technigue that has many applications.

state-of-the-art

c) Autoregressive Models

Let X, X,,...X; be the values in an univariate time-
series. In the Auto-Regressive Moving Average model,
the value of X; is defined in terms of the values of the last
window of length p and g moving average terms.

p q
X = Z iXe—i + Z Oici—i +c+ e
i=1 i=1

The left-hand part is called the auto-backward
part since it relies upon the past (slacked) values
X1 Xi—0..Xi_p, the right-hand part is called moving
normally in light of the fact that the blunder at time t is
the direct mix of the past mistakes &—,&—5,....&—.

These techniques are applied to stationary time-
series, alleged when the mean, fluctuation, and
autocorrelation structure don’t change over the long run.
Tragically, many time series make occasional impacts or
patterns. Specifically, arbitrary strolls, which describe
many sorts of series, are non-fixed. Differencing the
information focuses can frequently change a non-fixed
time series into a fixed one. In view of the Crate Jenkins
models of the 1970s, ARIMA models are separate,
where a series with deterministic patterns ought to be

differentiated first, and then an ARMA model is applied.
ARIMA models are typically referenced as ARIMA (p, d,
q), to show the ARMA boundaries and the d request of
difference. ARIMA models are likewise fit for displaying a
lot of information.

ARIMA(p,d,q)(P, D, Q)

where m is the quantity of periods per season. The
capitalized documentation is utilized for the occasional
pieces of the model, and the lower-case documentation
for the nonoccasional pieces of the model.

The decision of the boundaries p, d, g is exceptionally
application ward, and it depends on a hypothesis that is
past the extent of this paper. More data can be found in
[13].

[1I. RELATED WORK

Since this paper declares outliers based on
deviations from the expected (or forecast) value, this
section is divided into related work in forecasting and
outlier detection.

a) OQutlier Detection

Outlier detection systems are a wide range of
areas, from introduction detection systems to fraud
detection systems, law enforcement systems to earth
science anomaly detection systems.

Outlier detection can be supervised when
available data is labeled indicating previously known
examples of anomalies, semi-supervised, where only
examples of normal data or anomalies are available, or
unsupervised, where previous examples of interesting
anomalies are not available. Typically, most of the
unsupervised outlier mechanisms use a measure of
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outlierness of a data point, such as sparsity of
underlying region, nearest neighbor distance, or the fit to
underlying distribution [7]. In these cases, a data point
is unusual due to one or more variables rather than a
specific one (like in the supervised methods).

In energy consumption outlier detections,
literature is usually based on the Gaussian error theory,
stating that when the measurement accord with normal
distribution, the probability that the residual falls in three
times the variance is more than 99.7%. Therefore, the
residuals falling outside can be considered outliers. In
[14], the author further improved this system by
considering a rolling window median, which seems to
improve the results when the distribution is not fixed.
Supervised methods are usually based on
classifications using trees, ANNs, and other different
algorithms, thanks to the presence of previous examples
of anomalies. In the energy consumption field,
unsupervised methods are usually based on clustering,
where an algorithm tries to find similarities between
points/trends and cluster them into groups, calculating
the distance between them. A cluster is considered
good when the intra-cluster distance is minimized, and
the intra-cluster distance is maximized. Popular
methods in this group are kmeans, one-class SVM, and
self-organizing maps.

For example, in [15], some clustering methods,
like CART, k-means, and DBScan, were applied to
detect outliers in the office lighting energy consumption.
The author showed different techniques applied with the
Generalized Extreme Studentized Deviate (GESD) and
listed some irregularities found. He also stated that the
clustering methods were not able to detect faults
strongly related to time variables.

Clustering methods are very difficult to apply in
timeseries data, and the results are usually poor. For
this reason, this paper will build a prediction algorithm,
where outliers are declared based on deviations from
expected (or forecast) values. The more accurate the
predictor, the more abnormal data points will be
detected.

b) Forecasting

Traditionally, several techniques have been
used for energy use forecasting, but short-term,
medium-term, and long-term energy forecasting needs
to be differentiated. The former usually refers to
prediction with a horizon of hours or days; the second
refers to weeks, and the latter refers to a monthly or
annual horizon. Long-term forecasting usually deals with
data that rarely presents significant distortions and
irregularities, so they have a small effect on the overall
value. On the contrary, short-term forecasting has to
deal with irregularities and sudden changes in values
(due to weather changes, human behavior, etc.).

There are essentially five types of prediction
models [16]: Engineering methods, Statistical methods,

© 2024 Global Journals

Artificial Neural networks, Support Vector Machines, and
Grey models. Engineering methods use physical
principles to calculate thermal dynamics and energy
behavior of the building, Statistical methods build
empirical models to apply a regression to a time series
of values, Neural networks try to predict energy using an
artificial intelligence network of interconnected neurons,
Support vector machines are based in a machine
learning algorithm and Grey models apply a mixture of
the models. All the principal methods are extensively
reviewed in [16] and [17].

Several techniques have been traditionally
applied for energy use forecasting, and among the
statistical methods, Kalman filtering and ARIMA/ARMAX
time-series techniques are the most famous.

The first reports about applications of Artificial
Neural Networks (ANNs) were published in the early
1990s [18]. Since then, the number of publications
increased steadily. Kalogirou et al. [19] used back
propagation neural networks to predict the required
heating load of 225 buildings; Ekici and Aksoy used the
same model to predict building heating loads in three
buildings. Nizami and Al-Garni [20] tried a simple feed-
forward NN and related the electric energy consumption
to weather data and population, Taylor and Buizza [21]
used an ANN with weather data (51 variables) to predict
load of 10 days ahead. Gonzales [22] built an ANN to
predict hourly energy consumption. Some researchers
tried to specialize the ANNs: Neto and Fiorelli [23]
compared generic ANNs with working days ANNs and
week-end ANNSs, Lazzerini and Rosario [24] specialized
them to predict electric lighting with weather data.

Some researchers have also tried to apply a
hybrid model to increase the performance of the ANN.
One example above all is [25] which applied a hybrid
ARIMA and neural network model to forecast electricity
use, another one is [26] who improved the previous one.
This paper is based also on his work.

Until now, only electric forecasting was
presented because the majority of the existing
forecasters are related to electric forecasting. There are
only a few of them are about natural gas forecasting:
Brown et al.[27] built one of the first predictors for
natural gas consumption, and Khotanzad et al. [28]
developed a two-stage system ANN with very good
results.

Even if ANNs might outperform traditional
methods, the researchers are still not convinced about
the results of ANNSs in this field. Nevertheless, it is also
stated that “a significant portion of the ANN research in
forecasting and prediction, lacks validity” [29] and that
most of the papers seem misspecified models that had
been incompletely tested (no standard benchmarks, no
synthetic data, etc.) [17]. This paper will try to avoid
these mistakes.
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It also needs to be pointed out that ANNs are
multistep ahead forecasters, while Auto-Regressive
methods are potentially useless in long ahead data
points.

IV. PROPOSED SOLUTION

As stated before, this paper proposes a
regression algorithm in which outliers are declared
based on deviations from the expected (or forecast)
value.

A time-series is a sequence of data-points
typically measured at successive points of a uniform
time interval t (eq. (1)).

{l‘(to),x(tl),...x(ti),il'(t7;+1)...} (1)

where x is the value and f the time.
Time-series forecasting is about predicting
future values given past data (eqg. (2)).

Et+s)=f(z@),z(t-1)...) )

where s is the step size. A multivariate time-series is a
(nx1) vector of n time-series variables.

It can be seen that in academic and industry
research, linear regression-based systems are the
standard “de facto” of energy forecasting, and in recent
works, this problem is treated by combining weather
forecast data. However, this relationship is clearly non-
linear [17]. Consequently, even if some papers have
acceptable results with measured datasets, these
systems cannot adequately capture the relationship in
all the situations and data. Since ANNs are the state-of-
the-art technique of many machine learning problems
where there is complex nonlinear hypotheses, the
proposed solution is composed of a multilayer feed-
forward neural network with backpropagation.

Table I: Buildings used

Building name | Date interval | Number of rows
HVA 740 - NTH |01/2008 - 03/2014 54.725
Hva 761 - KMH |01/2009 - 09/2013 40.407
Hva 882 - WBW |01/2008 - 03/2014 54.647

a) Experimental Data

Ebatech gathers the energy utilization datasets
utilized in various structures of the Hogeschool van
Amsterdam. The Universiteit van Amsterdam gave these
datasets to this undertaking. These structures are
situated in Amsterdam, the capital city of The
Netherlands. This city has a sea environment like Britain,
firmly impacted by the North Ocean. Winters are
genuinely cold, and summers are seldom sweltering,
according to European guidelines. Amsterdam is
described by the normal presence of downpours and
wind, and the weather patterns change frequently.

Ebatech gathered various sorts of elements in
every structure, with various granularity. For this

undertaking, three structures are utilized: HVA 740 -
NTH, Hva 882 - WBW, and Hva 7671 - KMH. In these
structures, the organization gathered the energy
utilizations and the gas utilizations as different factors. It
should be noted that gas is utilized exclusively to warm
the structures.

The weather data was collected by KNMI'in
Schipol, the Amsterdam airport 16 km far from the
tested buildings. The dataset, findable on the website,
consists of over 21 variables collected hourly. The
proposed solution only uses a few of them, as explained
in the section IV-B, and they are used as forecast
values: the measured weather conditions are linked to
the previous hour of energy consumption. It is
necessary to consider that there will be an error in the
built model since the weather data is collected in a
different location from the building’s positions, and in
practice, the error will be larger than those obtained in
this simulation due to the effect of the weather forecast
uncertainty [30], [31]. The advice is to keep it in mind
before applying the methods contained in this paper
with days forecasting.

1. Data Analysis: The energy consumption dataset
covers a very large period ranging more than 5
years, allowing us to see similar patterns even with
different yearly/season behavior (one year could be
different from another one for external factors like
weather or building use). It is very rich (with more
than 50 variables) but also sparse because the
monitored variables are not the same in all the
buildings. For this reason, only common variables,
such as total electric and gas consumption, were
used in this paper. In this way, it is possible to
generalize and compare the models.

The gas consumption data is highly seasonal:
daily and weekly cycles are quite perceptible, as it can
be seen from fig. 4 and fig. 3. From the latter, the weekly
behavior is clear: the last two days of the week
(Saturday and Sunday) are completely different from the
others, and Monday seems a bit different from the rest
of the days. Every day, around 4:00-5:00 AM, the
system seems to react by turning on the heating system,
whereas in the previous hours of the night, it seems only
to keep a minimum temperature. The system reveals to
us that after a couple of hours, it decreases the
consumption again. In fig. 4 the Temperature has a clear
daily/hourly relation with the gas consumption while in
fig. 5 the electric consumption is shown to be very
smoothed and more regular than the gas one.

! Koninklijk Nederlands Meteorologisch Instituut http://www.knmi.nl
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Fig. 3: Typical weekly and daily gas consumption behavior in building 740NTH. The weekly pattern can be noticed
by observing that the last two days of the week (Saturday and Sunday) have a completely different shape than the
others. During the week, the daily behavior is very similar, with one peak around 4:00-5:00 AM
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Fig. 4: Typical Monthly gas Consumption Behaviour in Building 740-NTH and its Relation with the Temperature on
Building 740-NTH

2. Data Cleaning: The data presented some
irregularities like repeated and missing data points.
Although the first one may not influence the
performance of the ANN, it could lead to problems
when other algorithms are used (like ARIMA in this
paper). Repeated data points were deleted, keeping
only the last one, while missing data points were
reconstructed by linear interpolation. Cubic and
spline interpolation were also considered, but the
performance was heavily affected by these
methods.

Missing and repeated data points represent
some problems in the data collection that will be further
investigated.
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Fig. 5: Relation between Electric and Gas Consumption in Building 740-NTH

b) Artificial Neural Network Forecaster

Time series are characterized by more or less
complex dependencies: Known dependencies like date-
time dependencies. Hidden dependencies include the
behavior of the HVAC system (when it starts, when it
raises the temperature, etc). Short/long -term
dependencies between variables.

Data scientists and experts are focused on
known dependencies, while the proposed ANNs will be
focused on the hidden ones. The short/long-term
dependency is realized by a moving window containing
a “memory” of the previous states for the interesting
variables, using a Tapped delay line memory [32].

These memories form a new set of states-

{21(2), 22(1), ... Zn (1)}
from the original states
{z(1),z(2)...z(n)}

where X (t) x(t—i+1). The window types will be
explained later in this section.

Since the value to predict is time-dependent,
the first element to consider is adding the time feature.
Energy consumption depends on the hour of the day
but also on the day of the week and the seasonality of
the year (month and day of the year) (as explained in
section IV-A1, fig. 4 and fig. 3). The day of the week is a
number from 0 to 6, where 0 is Monday and 6 is
Sunday. Since the behavior of the holidays was
considered similar to the weekends (particularly similar
to Sundays), a function encoded all the holidays as
weekend days?. In the future, this can be improved by
asking for a timetable list for the buildings, indicating
when these are closed. The day of the year is a number

2 Thanks to an Open source Dutch weekend list https://github.com/
PanderMusubi/dutch-holidays

between 0 and 366, and the first one is the first of
January. All these date-time features by means of their
sine and cosine values as usual, reported in literature
[33], [34], [22]. This transforms the time component into
a cyclic feature that spans a fixed length (a single day
for the hour), and it is bounded in [—1,1].

Another added feature was the current system
load, which is the energy consumption at the k state
when the load at k+1 needs to be predicted. This was
believed to be an important measure for determining
building usage and holidays.

Many elements influence the energy needs of
structures. These variables can be separated into three
principal bunches, specifically  the  physical
environmental, the artificial planning parameters, and the
human warm discomfort. The first is made out of weather
conditions related to boundaries like open-air
temperature, wind speed, sun-powered radiation, and
so forth. The artificial planning parameters are connected
with the structure development: straightforwardness
proportion, direction, and so on [35]; however, these
factors were inaccessible in the dataset. The human
impression of warm discomfort is connected not
exclusively to the temperature but also to different
factors, for example, relative stickiness, illumination, and
wind speed. Regardless of whether this large amount of
information was accessible, the main climate factors
found were the temperature and the breeze speed.

The framework utilization was accepted to be connected
with the distinction of the open air temperature between
two moments (eq. (3)), addressing a positive/negative
difference in the outer natural circumstances.

ATy = Thyr — T 3)
where T,.,is the predicted temperature for the period k
+ 1 and T, is the value measured in the instant k. It
needs to be noted that the real behavior of the system
was unknown, so it was not possible to know if this
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change would have an immediate effect on the HVAC
system and/or its reaction time. Gas usage has a daily
cycle but there are also secondary weekly and annual
cycles that the ANN may not be able to capture. Gas
usage u(f) is defined as u(t) = s(t) + f(t) + r()

u(t) = s(t) + f(t) +r(t)

where s(t) is the seasonality at time ¢, f(f) is the trend and
rit) is called remainder, irregular component or
difference. The time series were analyzed by the STL
decomposition by LOESS [36](fig. 6), which

decomposes a time series into seasonal, trend, and
irregular components by an additive method. Since the
ANN is interested in the remainder and the trend can be
found from the historical part, the daily, weekly, and
yearly remainders were added as features. For the same
reason also, the Temperature, the wind speed, and the
electric consumption were decomposed by the STL
decomposition, resulting in a stationary time series
added to the input.

data
100 200 300

0

seasonal

trend
25 30 35 40 45

remainder

200

100

-100

-
¥}
w

4 5 6 7

time

Fig. 6: Yearly STL Decomposition by LOESS in Building 740-NTH

In Zhang et al. [37], it is expressed that ANN
models truly enjoy benefits while managing a lot of
verifiable burden information with non-direct trademarks.
Yet, the scientists ignored the straight relations,
including the information. Hence a cross breed
approach is proposed, where the ANN will be helped in
direct guaging by the famous strategy ARIMA
(autobackward  coordinated moving  midpoints),
generally known as the Container Jenkins approach. To
apply ARIMA, the time series was handled iteratively with
a moving window of 21 days where the ARIMA model
was fitted. After the fitting, the upsides of the following
24 hours were determined prior to moving the window
and doing the same for the following day. The
occasional ARIMA fitting was finished by the assistance
of the Figure R bundle [38] and its auto.arima technique,
which finds the best ARIMA (p,d,q)(P,D,Q),, boundaries
by looking at the Akaike data criterion (AIC) of the tried
models. Only for the peruser interest, the most fitted
model was ARIMA (3,0,3)(2,0,1),,. An ARIMA model with
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temperature sham factors was tried. However, it did not
advance the ANN: the least complex models were liked.

Taking into account the points made in this
section, the ANN is predicting the gas consumption
“seeing” without knowing its shape and its behavior in
the previous hours/days. This limit is surpassed by
some rolling windows, which will somehow simulate the
Recurrent neural networks’ behavior. Two rolling
windows were created for the gas consumption,
memorizing the sum and the peak load of the previous
five hours, and two moving rolling windows were created
for the STL yearly residuals, memorizing sum and peak
of them.
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Table II: Ann Features

Variable Data

Electricity load E(t)

Hour sin(2m(h)/24); cos(2mw(h)/24)
Week day sin(2m(wDay)/6); cos(2m(wDay)/6)
Month sin(2m(mon)/12); cos(27(mon)/12)
Year day sin(2m(d)/366); cos(2m(d)/366)
Temperature T(t)

Gas peak’ maxi<k<s G(t — k)

Gas sum’ S8 Gt —1)

Gas mean’ ﬁ 28 Gt —1)

Gas peak" maxi]<g<24 G(t - k)

Gas sum’’ Z?il G(t—1)

Electricity peak’”  max;<y<5 E(t — k)

Electricity sum’’ 5 E(t—1)

Temp peak maxi<p<s T(t — k)

Temp sum S5 Tt —4)

Wind speed FH(t)

ATy Try1 — Tk

ARIMA forecast  forecast(ARIMA(3,0,3)(2,0,1)24)
STL year res. YearRes(t)

STL day res. DayRes(t)

STL E res. Res(E(t))

ARIMA peak’ maxi<k<s5 ARIMA(t — k)

ARIMA sum’ 5_ ARIMA(t — i)

All the features that were not between the limits
[—1,1] were scaled to have a faster convergence [39] of
the Stochastic Gradient Descent (eq. (4)).(4)

maz(z)+min(z)
p T 2
T = maz(x)—min(x) (4)

2

where x; is the original value and x| is the scaled one.
Many practical tricks like the shuffling of the elements,
the normalization and initialization were taken from [39],
[40].

All the process described so far is also called
feature engineering and was done almost iteratively,
cumulatively introducing and removing features from the
model and comparing the performance.

Choosing a number of hidden units for the ANN
is always a tricky task. As stated by [41], [42], using
early stopping in an oversized Backpropagation ANN,
where the number of hidden neurons is higher than the
number of the features, makes it easier to find the global
optimum and avoid bad local optima. For this reason,
the number of hidden units was chosen to be greater
than 2 x |features| and then test-driven, and the
training was early stopped to prevent overfitting.

Architecture: ANNs are trained trying to minimize a cost
function of the form

1 n
E:—E )2
N £ p(ri)

where the error function p is symmetric and continuous,
r,= Y—Yis the residual between the actual value and
the forecast one, and N is the number of training
patterns.

© 2024 Global Journals

Global Journal of Computer Science and Technology ( D ) XXIV Issue II Version I n Year 2024



Global Journal of Computer Science and Technology ( D ) XXIV Issue II Version I H Year 2024

USE OF ROBUST ARTIFICIAL NEURAL NETWORKS AND ARIMA IN DETECTING BRIEF ANOMALIES IN GAS CONSUMPTION

6.0

# epochs

- - valid_objective:softmax_re
— train_objective:softmax_re

Fig. 7: Training Curve of the Hybrid Model with 80 Hidden Neurons

Using the notations defined above, the most
used cost function is based on the Mean Squared Error
(MSE), commonly, known in data modeling as the Least
Mean Squares (LMS) method. The basic idea of LMS is
to optimize the fit of a model with respect to the training
data by minimizing the square of residuals

p(r) =5

but it is greatly influenced by outliers [43]. In order to
control the damage caused by outliers, in this paper the
Least Mean Log Squares (LMLS) method (eq. (5)),
presented by [43] is used. The ANN will try to minimize
the Mean Log Squared Error (MLSE).

p(r) = log(1 + ;%) ®)

The ANN is a 1-hidden-layer Multilayer
Feedfoward ANN with a feedback structure, called
Backpropagation. This ANN is composed by Rectifier
neurons and one output linear node. Training is done by
the Stochastic Gradient Descent algorithm with 10 batch
size and is characterized by a learning rate of 0.003 and
fixed by a Momentum of 0.05, which could help to
increase the speed, avoiding local minima.

This project used Python and pandas for the
data analysis, Pylearn2 [44] to construct and test the
ANN and the R system with the zoo [45] and the
Forecast [38] packages for the ARIMA process.

c) Outlier Detection

According to Chebschev’s theorem [46], almost
all the observations in a data set of system states falls
into the interval [u — 3o,u + 30], where u and o are
respectively the mean and standard deviation of the
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data set, and the data points outside this interval are
declared outliers. In this paper the ANN is used to
predict the gas consumption, for this reason a point will
be considered outlier if it will fall outside the 95%
confidence interval®® expressed for the RMSE. If it is
assumed that the difference between the actual values x;
and the predicted value x”;have:

i‘i — T NN (0,0’2) (6)

« Mean zero.

. follow a Normal distribution (it is assumed that it
holds for the large amount of data utilized).

. and all have the same standard deviation o.

i —x; ~ N (0,0%) )

it is possible to say that eq. (7) follows a x?,
distribution with n degrees of freedom. Which means:

2
) nRMSE ) B
P (X;,n ST 2 SXiga)=l-a (g
RMSE? RMSE?
&P "zigazgnzi =1l-a (9
leg,n X%,n
n n
&P 5 RMSE< o < >—RMSE | =1 - a.
Xl—%,n X%,n

(10)

* For the following description user fabee of CrossValidated needs to
be mentioned: http://tinyurl.com/I9gvz65.
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Therefore

(11)

" RMSE,  |——RMSE
Xl—%,n X%,’ﬂ

V. EXPERIMENTAL EVALUATION

The ANN has been prepared with early halting,
with a decent number of preparing ages (stages) or
halting the preparation when the approval blunder rate
was expanding. Every one of the outcomes showed is
obtained from k-crease cross-approval strategies, where
the organization was prepared k times, each time
leaving out a subset of information from preparing to
test the ANN. The consequences of the k tests were
partitioned by k. The organization is constantly prepared
with 70% of the information, 15% is utilized for approval
and the other 15% for testing.

Albeit most of the Mean Outright Rate Blunder
(MAPE) is viewed as a norm for looking at the nature of
the model expectation of energy load, it is a satisfactory
mistake measure provided that the misfortune capability
were direct and ongoing investigations exhibited it isn’'t
[19][47]. Besides, the rate of blunder is limitless on the
off chance that there are no qualities on the series,
continuous in discontinuous information and in utilization
information, and it puts a heavier punishment on certain
mistakes than on regrettable mistakes [48]. In light of
these impediments, this paper will just consider the
minimization of the Root Mean Square Mistake (RMSE),
which punish huge blunders, as proposed in [49]. As
recommended in [17], for each analysis, likewise the
Mean Outright Blunder (MAE) will be determined.

MAPE‘*:EZMMOO (12)
n .

Y,
i=1 v

13)

1 A
MAE=-Y |Vi-Y
~> (14)

=1

where Y is the vector of the n predictions and Y is the
vector of the true values.

a) Synthetic Experiments

The strategy is tried wusing engineered
information. Twoday exceptions were created using
various calculations. In the first, the genuine utilization
was changed by an irregular worth, recreating the
framework estimation/control breakdown, which makes
the utilization bobbing all over (see eq. (15)). The

second artificially made day was made by adding 50m?®
of gas utilization to the genuine one, making an example
that recreates a weird way of behaving as well as a
glitch of the warming framework (see eq. (16)).

G(t)=G(t)+v%30 (15)
where

v~ N(0,0?)

G =Gt + 50 (16)

The two outliers were correctly detected, as it
can be seen in fig. 8.

b) Measured Data Experiments

The method is also tested with measured data
coming from a different type of day. For example, the
gas consumption of a weekend was placed in a
weekday, simulating a holiday. The purpose of this test
was to show that an unusual pattern was detected. In
fig. 9 it can be seen that the outlier mechanism works
perfectly when the Sunday gas consumption is placed in
a weekday.

The outlier was correctly detected, as it can be
seen in fig. 9. The robustness of the design was proved
with different building, listed in section IV-A1.

Excluding this little experiment, some interesting
behaviors were found through this work: Occasions:
Paying little mind to at whatever point the school was
functional, the main tests showed that the Ebatech
framework was typically warming the structures
(Christmas, on Tuesday, December 25, 2012, was
warmed like an ordinary Tuesday regardless of whether
‘MAPE errors will be calculated only on the non-zero
values, to avoid the problems described before the
structure was surely shut). This causes avoidable waste.
Utilization skips In fig. 10 an odd crisscross way of
behaving should be visible for building 740-NTH. It
appears to be that the framework is squandering
energy, and this shape is entirely unexpected from the
standard one (fig. 3). This goes on for quite a long time,
and obviously, likewise, the ANN preparation is
impacted by this exception-like way of behaving. Tops:
Around the underlying long periods of September, there
is an immense amount of utilization (up to multiple times
more than the maximal utilization of the year). Is it a
test? In building 761-KMH, sporadic tops were tracked
down each day during April 2013, likely while the
warming framework was turned on. August with
radiators in building 740-NTH, during August 2009 and
August 2011, the warmers were dynamic even with the
absence of a clear summer virus. Exceptions A few
different exceptions are viewed, yet they Time need to
be affirmed by the chiefs, ideally after checking the
recently referenced ways of behaving.
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Table Ill: Best Selected Results in Building 740-Nth, to
Compare the Arima, ANN and Hybrid Model. Hymse is
the Hybrid Model with MSE Cost Function, While Hymlse
is the Same Model with MLSE Cost Function

Model neurons epochs * RMSE MAPE MAE
ARIMAS - - 88.50 117.27 22.52
ANN 80 15 1195 3478 852
HyMSE 80 70 9.4 27.66 6.90
HyMLSE 150 140 10.02 30.05 7.26

Table |V: Best Selected Results for All the Buildings

Model neurons epochs ° RMSE MAPE MAE
740-NTH 150 140 10.02 30.05 7.26
761-KMH 150 140 249 1830 1.00

An ANN with the standard cost function MSE
was also trained, apparently resulting in a smaller RMSE
error in a faster way (section V-B). Although this can be
true, the Hybrid MLSE model was more precise and
better at detecting possible outliers. They contributed
the most to the error.

In section V-B the
buildings can be read.

results in the different

VI. FUTURE WORK

ARIMA models can't detect more than one
seasonality, but it can be helped with Fourier terms and
ARIMA  dummy variables to produce reasonable
forecasts. When multi-seasonality is present, an
algorithm like TBATS can overpass the ARIMA one and
detect it. This non-parametric model described in [50]
could be substituted for the ARIMA one as a feature of
the ANN. At the moment, it is very slow, but it is very
recent, so it will probably be improved.

The daily pattern could be seen in the
transformed Fourier space applying the Modified
Discrete Cosine Transform (MDCT) [51]. In theory, this
could help as well to understand the pattern, but it was
only applied once by [52], with scarce results.

ANNs are sensitive to missing values and
irregularities, but it was not possible to contact the
building managers in order to confirm/identify previously
known outliers. For this reason the ANN training was
done with not entirely perfect data, and this probably
affected the performance. It is necessary to contact
these building managers to further help with the training
of this algorithm.

The input variables were scaled, standardizing
them to a midrange 0 and range [—1,1]. It is also
possible to normalize them to have mean 0 and
standard deviation 1. In this case, Robust estimates of

“ epochs to converge
5 Calculated iteratively as described in section V-B
’epochs to converge

location and scale are desirable if the inputs contain
outliers. Some examples are [53] and the recent [54],
which can be the basis of a future refinement of the ANN
inputs.

In future work, it is possible to break down the
contrast between the MSE and the MLSE costs in the
forecast and in the exception recognition.

Before 2006, ANN was quite often connected
with the Backpropagation calculation and with the 1-
stowed away layer design. The issue with these designs
is that they stall out in unfortunate neighborhood optima.
In 2006, there was an enormous advancement
principally began by [55], which is called Deep learning,
and it addresses the new design of ANNs in light of
multi-stowed away layers and new calculations. Future
enhancements can be founded on Repetitive Brain
Organizations (RNNs) and Limited Boltzmann Machines
(RBMs), which were, as of late, ended up being
fascinating in time-series gauging [52], [56], [57]. The
Pylearn2 [44] RNN structure is being worked on.

VII. CONCLUSION

No model can treat all circumstances precisely
for a lot of verifiable burden information. The
unpredictable variance of the gas utilization was not
really unsurprising, thus the ANN model was assisted
with powerful expense capability and with the notable
ARIMA model. Although different papers introduced
comparative models to figure out electric utilization, the
mixture model introduced here is practically interesting
on the grounds that it centers around estimating
momentary gas utilization, which is extremely sporadic
and not effectively unsurprising with exemplary
techniques. Since the indicator is exceptionally precise
(with RMSE from 8 m®in building 740-NTH to RMSE 2.5
m?in building 761KMH), the anomaly component can
undoubtedly distinguish weird ways of behaving
characterizing an edge esteem in the certainty stretch
without the need to have past instances of anomalies.
The aim of this paper is to determine the profoundly
sporadic gas utilization time series. Yet, it is accepted
that comparable outcomes could likewise be acquired
with the electric utilization time series. It is trusted that
this could prompt another examination of the energy
utilization in open structures.
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