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Optimizing Real-Time Intelligent Traffic Systems
with LSTM Forecasting and A* Search: An
Evaluation of Hypervisor Schedulers

Azizul Hakim Rafi

Abstract- This research explores an Intelligent Traffic System
(ITS) designed for real-time optimal routing using traffic
forecasting and an A* search algorithm. Leveraging a pre-
trained Long Short-Term Memory (LSTM) neural network, |
predict traffic flow based on historical data to inform heuristic
functions, ensuring optimal route calculations. The heuristic is
constructed to be permissible and consistent by incorporating
predicted traffic flow and average speed measurements. The
experimental setup involves a messaging virtual machine (VM)
and a real-time VM within a Xen hypervisor environment,
utilizing Apache Kafka and Apache Flink for data flow and
processing. | empirically evaluate the latency performance of
the ITS under three different Xen schedulers: RTDS, Credit,
and Credit2. My findings indicate that the RTDS scheduler
provides superior latency guarantees, making it suitable for
applications requiring ultra-low latency, whereas the Credit
and Credit2 schedulers offer better median performance.
These insights highlight the impact of hypervisor scheduler
choice on the efficiency and responsiveness of real-time ITS
applications.

[. INTRODUCTION

ntelligent Transportation Systems (ITSs) are one of

the most anticipated smart city services and have

already seen widespread adoption. The Sydney
Coordinated Adaptive Traffic System (SCATS) is a fully
adaptive urban traffic control system that optimizes
traffic flow and currently operates in more than 37,000
intersections  worldwide.  Optimizing  traffic  flow
conditions not only shortens travel times but can also
reduce the carbon emissions generated from road
vehicle activity [5]. Unfortunately, city-wide traffic control
models are difficult to study using realworld data. While
it is possible to develop a model of an ITS using
historical data, it is difficult to determine its effectiveness
because traffic conditions would morph under the use of
the ITS. Therefore, instead of considering city-wide
coordination, this research focuses on intelligent routing
based on real-time prevailing traffic conditions, similar to
the service provided by Google Maps.

Traditional traffic flow models rely on shallow
learning algorithms and only a few conditions to predict
traffic flow. While these models have been moderately
successful, they fail to capture the deeper relationship
between their features and also fail to adapt to changing
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conditions quickly [17]. Deep learning methods, on the
other hand, have drastically improved the state-of-the-
art in a variety of fields, such as speech recognition and
object detection. Deep learning’s success is largely
based on its ability to discover intricate structures and
relationships between features in large datasets [9]. The
evolution of traffic flow over time is dynamic and non-
linear, which makes it a perfect candidate for deep
learmning methods. With the advent of the Interet of
Things (loT), wireless sensors are able to capture a
variety of real-world conditions such as traffic accidents,
weather, and external events like sports games. ITSs are
then able to aggregate these features to build hybrid
multimodal methods for traffic flow forecasting using
deep learning [7,10].

However, this data transmission and analysis
must be performed at ultra-low latency and in real time
in order to have the intended effect of optimizing the
operations of a smart city. The combination of compute-
intensive workloads and latency-sensitive applications
motivates the use of real-time cloud computing. [8] have
recently introduced a framework for efficient edge and
cloud computing specifically designed for ITSs but do
not provide empirical results to substantiate their claims.
Moreover, current clouds lack service level agreements
on latency; these clouds provision resources and not
latency. Such a service level agreement is critical for
applications like ITSs.

In this paper, | empirically study the latency
performance of a simplified ITS on a real-time cloud.
The rest of this paper is organized as follows. Section I
presents related work. In Section lll, | provide relevant
background information for the technologies used.
Section IV covers design and implementation strategies.
Section V presents my empirical study using a real traffic
dataset and evaluates the latency of the application on a
real-time cloud. Finally, Section VI offers conclusions
and directions for future research.

II. RELATED WORK

Traffic flow forecasting has a long history in
transportation literature, and many techniques have
been proposed to address this problem. [17] introduce
an autoregressive integrated moving average (ARIMA)
process for estimating traffic flows. While the ARIMA
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model has the benefit that it is easy to interpret, it is not
able to accurately capture the non-linear, stochastic
nature of traffic flow evolution. [13] have utilized an
efficient Bayesian particle filter for tracking traffic flows
and demonstrated its effectiveness on a dataset from
the 1-55 highway system in lllinois. The authors then
used the same dataset to evaluate a deep neural
network with €, regularization and applied this model to
predict traffic flows during a baseball game accurately
[14]. [11] develop a novel model, called LC-RNN, that

combines both convolutional and recurrent neural
networks in order to learn the time-series and
spatiotemporal nature of traffic patterns  more
meaningfully.

While deep-learning, specifically time-series-
based approaches, have seen the greatest empirical
success, it is apparent that no single method works best
for every situation. In general, the most successful
methods are hybrid methods that can combine
techniques to improve the accuracy of prediction under
the prevailing traffic conditions [4].

a) Traffic Flow

Traffic flow forecasting is a challenging problem
in the space of intelligent traffic management. In this
paper, | consider traffic flow in a macroscopic context.
That is, instead of considering each vehicle in a traffic
stream individually, | rather think of the traffic flow as a
measurement at a single fixed location in space. The
traffic flow forecasting problem is thus formally defined
as follows. At time T, | seek to predict the future traffic
flow g, attime T + 1 orqgy,,attime T + n based on the
history of traffic data.

Flow may be considered a temporal
measurement and is usually expressed in terms of units
over a period of time. For a single lane of traffic, | can
define the flow g in region R as

=7, (1)

where N is the number of vehicles observed crossing
region R during timespan T [12]. For multiple-lane traffic,
| can sum the partial flows across each of the L lanes

L o
QZZQI:TZNI, @)
=1 =1

where N, is the number of vehicles that passed a
detector’s site in lane /. | also define the mean speed of
the traffic stream, expressed in terms of miles (or
kilometers) per hour. In this paper, | consider the time-
mean speed, which is calculated as the arithmetic
average of the vehicles’ instantaneous speeds in the
region R,. The time-mean speed is denoted by v,

1 N
6t=N;vi, 3)
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where v; is the instantaneous speed of the ith vehcile
[12].

b) Vanishing Gradient

The vanishing gradient problem as described in
[3] is particularly prevalent in training recursive neural
networks. Most neural networks learn weight parameters
through some gradient-based optimization method,
such as backpropagation through time. For deep or
recursive neural networks, backpropagation yields
lengthy update equations in which gradients may
become vanishingly small, effectively preventing the
weight from ever updating its value. There are many
methods to combat the vanishing gradient problem in
recurrent neural networks, namely the introduction of
long short-term memory networks.

c) Long Short-Term Memory Networks

Given their capacity to memorize long-term
dependencies, long short-term memory (LSTM) neural
networks have special advantages for traffic flow
prediction. LSTMs are a specific type of recurrent neural
network. Recurrent neural networks are comprised of
memory cells; memory cells add a loop to the traditional
perceptron model of a neural network. These loops
make the network recursive, thereby allowing
information to persist. Recurrent neural networks have
been notable in language modeling, speech-to-text
transcript, and other applications with time-series
patterns. Whereas traditional recurrent neural networks
suffer from the vanishing gradient problem during
training, LSTM networks are specifically designed to
address the vanishing gradient problem [15]. Just like
recurrent neural networks, LSTMs are comprised of
many memory cells. LSTM networks combat the
vanishing gradient problem through the use of forgetting
gates, which are special structures added to the
memory cell designed to allow the cell to forget certain
information. The typical structure of an LSTM memory
cell is shown in Figure 1.
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Fig.1: Structure of LSTM Memory Cell

[15] describes the information flow for a typical LSTM
memory cell- an LSTM memory cell has three gates: an
input gate, a forget gate, and an output gate. Each of
these gates is a way to let information flow optionally
and is comprised of a sigmoid activation function. The
sigmoid function squashes values between the range of
[0,1], representing how much information to let through
a given gate. At the tth timestep, the output from the
previous LSTM memory cell, h,_;, is fed into the forget
gate, which determines how much information from the
previous gate to keep, f,. The output of the forget gate is
then multiplied by the previous cell state. The input gate
determines how much information from the most recent
observation, x,, to include in the cell state. The current
cell state, C, is first passed through the tanh activation
function and then multiplied with the output from the
input gate, i, yielding C',. Finally, the current cell state, C,
is updated:

Cy= frxCiq +1iy % C, (4)

The updated cell state, C,, is then fed into the
output gate, which determines the output from the

current cell state using the sigmoid function, producing
o;. The memory cell applies the tanh activation function
to the current cell state to squash the values between
[—1,1] and multiplies the result with o,, producing:

hy = o¢ x tanh(Cy) (5)

While training LSTM networks takes a very long
time, stacking many of these LSTM memory cells
produces an extremely powerful model capable of
learning long-term dependencies, which is particularly
useful for predicting traffic flow [10].

d) A Star Search

The A Star Search Algorithm (A*) is an algorithm
used in graph traversal to find the optimal path between
any pair of nodes. In my case, | can express a city’s
roads and freeways as a directed graph in which
intersections are nodes, and the roads are edges. | can
use A*to find the optimal path between any two points in
the city. A~is an informed search algorithm that makes
use of heuristics to decide which path to consider next.
A+ determines which path to consider next by minimizing
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the cost of the current path to the next node and the
estimated cost from the next node to the end.
Mathematically, this is expressed as-

f(n) = g(n) + h(n), 6)

where g(n) is the cost from the start node to node n, and
h(n) is a heuristic that estimates the cost from node n to
the end. In order for A*to be optimal, this heuristic must
satisfy two properties: admissibility and consistency. An
admissible heuristic is any such heuristic that does not
overestimate the true cost of traveling to the next node.
A consistent heuristic is any such heuristic that supports
the following inequality for any two adjacent nodes, x
andy

h(z) < disty, + h(y) 7)

[1I. BACKGROUND

This section provides background on the Xen
hypervisor and the scheduling framework in Xen. It also
describes a stream-processing engine, Flink, and real-
time messaging middleware, Kafka.

a) Xen
Xen [2] is a popular open-source virtualization
platform that allows multiple virtual machines to share

[ veru

conventional hardware in a safe and resource-managed
fashion. Xen serves as a virtual machine monitor (VMM)
that lies between the hardware and guest operating
systems. Xen controls a special domain called domain
0, which is responsible for managing all other guest
domains. Each guest domain acts as a virtual machine
(VM) and can specify its resource requirement in terms
of the number of virtual CPUs (VCPUs). The typical Xen
architecture is shown in Figure 2. Each VM has a guest
operating system, which is responsible for scheduling
tasks on to VCPUs. Xen is not only responsible for
providing virtual resource interfaces to the VMs but is
also responsible for scheduling the VMs onto physical
CPUs (PCPUs). There are currently three different
schedulers in Xen: Credit, Credit2, and RTDS. Credit is
the default scheduler; it is a generalpurpose weighted
fair share scheduler. Credit2 is the evolution of the
default credit scheduler; it is still based on a general
purpose, a weighted fair share scheme, but it is more
scalable and efficient with latency-sensitive workloads.
RTDS is the real-time deferrable server scheduler that is
specifically designed to handle real-time and latency-
sensitive workloads [18].

@ Real-Time Task

0000

Guest 0S

(@ ®) (@ © O
Guest OS5 Guest 0S
) D D ort/1 ’: /arcrgnED D
Xen

------pcpmj

Fig. 2: Architecture of a Xen System

Credit Under the Credit scheduler, each VM
specifies a weight and optional cap. The weight
corresponds to the share of CPU a VM will have relative
to other VMs, and the cap encodes the maximum CPU
resource a VM can receive. The scheduling algorithm
itself is implemented with a partitioned queue: each
PCPU maintains a local run queue of VCPUs, sorted by
VCPU priority. While a VCPU is scheduled onto a PCPU,
it burns credits; once the VM is preempted, VCPU
priorities are recalculated based on the weight, cap, and
amount of credits consumed. By default, Credit
uCreditwork stealing load-balancing scheme: if a PCPU
has no VCPUs in its run queue, it will steal VCPUs from
other cores.

Credit2 The Credit2 scheduler is similar to the
default Credit scheduler in that it focuses on fairness,

© 2024 Global Journals

but Credit2 also aims to address issues of latency and
scalability. Credit2 uses a similar weighting scheme as
Credit Credit, assigning a weight to each VM. Credit2,
however, does not have support for caps like Credit
credit and is also not CPU mask-aware. As a result, a
VM cannot pin its workload to specific CPUs.

RTDS Under the RTDS scheduler, each VM
specifis a budget and period. While a VCPU is
scheduled onto a PCPU, it consumes its budget until
the budget is exhausted. The end of the period marks
the deadline for a VCPU; at this time, any remaining
budget is discarded, and then the budget is
replenished. The scheduling algorithm is implemented
using a global run queue sorted by VCPU deadline. This
event-driven approach differs from the quantum-based
approach used by the Credit and Credit2 schedulers. As
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a result, this avoids invoking the scheduler

unnecessarily, which should reduce overhead.

b) Apache Flink

Apache Flink is a distributed stream-processing
engine that provides data distribution, communication,
and fault tolerance for distributed computations over
data streams. Flink’s programming model is a
generalization of the MapReduce paradigm. The Flink
APl offers a set of useful transformation operations,
such as join and filter, in addition to the traditional map
and reduce functions. Applications specify a series of
lazy transformations to an unbounded data stream,
which are connected to sources and sinks. The Flink
engine then uses a cost optimizer to determine an
efficient execution plan called a dataflow. This dataflow
is internally represented as a directed acyclic graph
from sources to sinks with transformation operators in
between. Sinks trigger the execution of the necessary
lazy transformations [1].

c) Apache Kafka

Apache Kafka is a distributed streaming
platform that provides data pipelines and fault tolerance
for streams of records across topics. Kafka makes use
of two core APIs: the producer API allows an application
to publish a stream of records to one or more topics,
and the consumer APl allows an application to
subscribe to one or more topics and process the stream
of records produced to them. Multiple producers may
send streams of records on the same topic, and
numerous consumers can also subscribe to the same
topic. Each topic is spread over a cluster of Kafka
brokers, with each broker holding at least one partition

of the topic. Kafka uses Apache Zookeeper to help
coordinate these services. Kafka is designed to meet
high throughput and low latency requirements, making it
an extremely suitable choice for real-time streaming
applications.

IV. DESIGN AND [MPLEMENTATION

The previous section provided an overview of
background information relevant to this paper’s
methodology. This section explores specific design and
implementation choices.

a) Dataset

In order to create a model of an ITS, | needed
historical traffic data to train and test a predictive model
as well as data to use to study the latency of the
application empirically. The California Transportation
Performance Measurement System (PMS) collects real-
time data from nearly 40,000 individual detectors across
the freeway system in the state of California. PeMS
provides data at a granularity of 5-minute intervals and
includes features such as flow and average speed.
These features are available across each lane and as
aggregates for a given detector station. The raw data
that comes from the single lanes is recorded every 30
seconds and then aggregated after every 5 minutes.
While the real-time 30second granularity data is not
made publicly available, the 5-minute granularity data is.
For this research, | have downloaded data for March
2018 at 5-minute granularity. The data includes the
timestamp, flow, and average speed (across individual
lanes as well as aggregates); the data were taken from
six different detector locations in southern California.

Table 1 describes the detector locations and provides their latitude and longitude.

Table 1: Detector Locations

Detector ~ Canonical Name Primary Intersection Latitude Longitude

Number Freeway

1 El Segundo 4058 105E 33.928621 -118.368522
2 Wilmington 4058 Wilmington 33.825757 -118.24005

3 Long Beach 405S 710S 33.824173 -118.207084
4 Athens 105E 110N 33.928478 -118.284031

5 Lynwood Gardens 105E 710S 33.914156 -118.184451
6 East Rancho Dominguez 710S East Rancho Dominguez ~ 33.877433 -118.192776

b) Model of ITS

| seek to create a model of an ITS that will
predict future traffic flows and use this prediction to
provide optimal routing using the A+ algorithm. First, |
must create a model that can forecast future traffic flows
based on historical data.

Evaluation Metric Given that this is a regression
problem, | choose to train my models to minimize the
mean squared error loss (MSE). MSE is defined as-

LN
L=+ ; (hi —i)?, )

where h; is the predicted flow for the jth test data point
and y;is the true flow. Recall that the MSE loss metric is
very sensitive to outliers and noise. To reduce this
sensitivity, | preprocess my data by scaling non-time
features between the range of 0 and 1. Once the
network has been trained and | use it to predict traffic
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flows, | will transform the prediction back to its original
scale. Algorithms 1 and 2 describe how | scale the data
down before feeding input into the network and then

transform the data back to its original scale to evaluate
the network’s performance.

Algorithm 1: Preprocess Data

min — X.min;
max — X.max;

Xscated — (X —min)/(max — min);

return Xgcaled;

Algorithm 2: Transform Data to Original Scale

Xori inal
g9
return Xoriginal;

“~Xscated * (Max — min) + min;

Comparison of Methods | chose to evaluate five
different regression methods and select the model that
gave the lowest MSE. | aggregate data across all six
detector locations into one cumulative dataset and use
this dataset to create a predictor. This cumulative
dataset is used to develop a predicted model and
empirically study the latency of my application on a real-
time cloud. | split this dataset into training and testing
sets; | used 80% of the data for training and 20% of the
data for testing. Once the models had been trained, |
measured their performance on the unseen test data

again using MSE as a metric. Table 2 presents the MSE
(on the original scale) as well as the mean absolute
percentage error and R? value for each regressor.
Although all models appear to perform extremely well on
the dataset, | chose the LSTM neural network for two
reasons. First, it is the model that has the lowest score.
Second, as | have mentioned in Section Il, LSTM neural
networks are the state-of-the-art prediction method for
forecasting traffic flows. In order to create the most
realistic workload, | should select the model that is most
likely to be used in a real-world context.

Table 2: Model Scores

Model

MSE MAPE R?

LSTM Neural Network
Linear Regression
Random Forest

985.455275 23.091062 0.962043
1013.644990 23.702992 0.960957
1083.919621 24.140704 0.958250

Gradient Boosting Decision Tree 1151.047555 25.586357 0.955664

Decision Tree

1988.652076 32.951715 0.923402

LSTM | have implemented the LSTM neural
network in Python using TensorFlow. Existing studies,
such as [9], have shown that stacked LSTM layers in a
neural network can lead to higher levels of
representation of time-series data, which increases the
effectiveness of the model. | adopted this architectural
choice when | was working on the architecture. In order
to prevent overfitting, | utilize dropout— a technique that
randomly drops units and their connections during
training [16]. The stacked LSTM layers are then
connected to two fully connected layers. Recall that |
preprocess the data and scale it to a range of 0 and 1,
which is why the last layer only has one unit. | use the
default activation function for the stacked LSTM layers,
tanh, but select the rectified linear unit (RelLU) function in
fully connected layers. ReLU is defined as

RelLU(x) = max(0,x) ©)

RelLU provides two primary benefits. First, it is
very easy to compute relative to other activation
functions like the sigmoid function or fanh, which

© 2024 Global Journals

speeds up training time. Furthermore, ReLU helps
prevent the vanishing gradient problem during training.
Table 3 summarizes neural network architecture.

The network receives a 12x1 vector of scaled
traffic flows as input, corresponding to the previous 12
observations of traffic flows, scaled between a range of
0 and 1, at 5-minute intervals. This vector represents the
past hour’s worth of traffic data. The network predicts
the next value of flow, corresponding to traffic flow five
minutes in the future.

| can see from Table 2 that the trained LSTM
neural network performs extremely well on test data.
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Since the network has been trained, | have used it as a
predictor in my experiments.

Table 3: LSTM Neural Network Architecture

Layer Shape Dropout Activation

LSTM 256  N/A tanh
LSTM 128 0.2 tanh
Dense64 0.4 RelLU
Dense 1 N/A RelLU

Heuristic Recall that | use traffic prediction as a
means of creating a heuristic for search algorithms. In
order for the A+ search algorithm to be optimal, the
choice of heuristic must be admissible and consistent.

I make use of the average speed measurement
as well as the predicted flow in order to create a
heuristic function. Consider the case in which | only use
predicted flow in heuristic. A very low prediction for flow
might indicative that | expect a lot of heavy, slow-moving
traffic, in which case only a few vehicles actually cross
the inductor loop. On the other hand, the low value of
precited flow might indicate that it is not a busy time on
the highway, such as early in the morning. Therefore, |
hypothesize that the heuristic would be most informed
using information about the predicted flow and average
speed. To enforce admissibility, | bound heuristic so that
it is no greater than the true distance. Because | have
the latitude and longitude coordinates, | am able to
calculate the true distance along the freeway between
any pair of detectors. We, therefore, define heuristic as

[ ] Kafka Topic
Messaging VM

Producer: Input

Consumer; Qutput

h(n) = min(0, min(dist,, (70 —v) * q)), (10)

where dist, is the true distance to node n in the graph, v~
is the average speed across the previous 12
observations, and q is the forecasted flow. Notice that |
subtract the average speed from 70, the speed limit on
the freeways. This associates a higher cost with very
slow-moving traffic and a lower cost for conditions
without traffic congestion. Observe that the heuristic is
both permissible and consistent by construction, so the
A+search algorithm is optimal.

c) Experimental Setup

| create two VMs on a server running Xen to
handle the dataflow and workload of the experiment.
One VM is responsible for producing messages to a
Kafka input topic and consuming messages from
another Kafka output topic. The other VM is responsible
for running a Flink application that will consume
messages from the Kafka input topic, pass these
records through the pre-trained LSTM neural network to
create a prediction, run A* search with this prediction,
and then publish results to the Kafka output topic. |
denote the former VM as the messaging VM, whereas
the latter VM is the real-time VM. The messaging VM is
responsible for measuring latency, which will be
discussed shortly. Figure 3 describes the experimental
setup.

Hardware and Resource Provisioning This
configuration resides on a server with an 8-core Intel
Xeon ES-2620 CPU and 64 GB of memory. The server is

. Real-Time Task

Real-Time VM

Flink Application

Xen

H Il ENENENE o

Fig. 3: Experimental Setup

configured with Xen 4.10 as the hypervisor and Ubuntu
16.04 as the domain0 operating system. Each of the
guest domains also run Ubuntu 16.04.

Within the messaging VM, | created Kafka
producers for each detector location for a total of six
producers. | made one consumer for the output topic.

Recall that Kafka also requires Apache Zookeeper to
help coordinate services. Since | want to be able to pin
each of these processes to a specific VCPU, the
messaging VM requires eight cores. | allocated 16GB of
memory to this machine since it will be responsible for
running many services. Within the real-time VM, | will
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only run the Flink application. | allocate this VM only two
cores and 8GB of memory.

Flink Application The Flink application provides
the workload whose latency | will empirically study. At
initialization, the application loads the pre-trained LSTM
neural network from memory and initializes a directed
graph. The directed graph consists of nodes
representing the detector locations and edges
representing the freeways. As a source, the Flink
application consumes from the Kafka input topic. Each
record contains four fields: a detector location, average
speed, traffic flow, and a timestamp. The average speed
and traffic flows are both 12x1 vectors of the raw data at
5-minute intervals as captured by the detector. As soon
as the application receives a new record, it parses this
information and scales the measured flows into the
range [0,1]. The application then feeds these scaled
flows into the LSTM neural network and creates a
prediction, which is immediately transformed back to its
original scale. The application then uses this heuristic to
run the A* search algorithm to find the optimal path
between the El Segundo and Long Beach detectors.
Finally, the application creates a new record of the
following information: detector location, average speed,
traffic flows, timestamp, predicted flow, and path
returned by A*. As a sink, the Flink application publishes
these new records to the Kafka output topic.

Latency Calculation It is well known that
traditional timestamping methods, such as the C routine
dogettimeofday(), are unreliable in virtual environments
[6]. To remedy this issue, | created a custom Python
module that utilizes timestampcounter scaling in order
to measure time precisely. This module provides an API
to read the current value of the timestamp counter into
the ex: tax registers and return this value. Once | have
this value, | can convert it into nanoseconds by dividing
it by the clock frequency of the CPU, assuming the clock
frequency is constant. To enforce a continual clock
frequency, | change the power settings in the system’s
BIOS. Although the CPU can optimize its power
consumption through different p-states (performance
states) and minimize power consumption through c-
states, these create variability in the clock frequency of
the CPU. By disabling these features, | fix the clock
frequency. In this case, | fixed the clock frequency to
2.1GHz. | implement highly precise latency calculations
in the messaging VM using this method.

Each producer calls the custom module just
before sending the message and appends the
nanosecond timestamp to the record. When the
consumer receives a record, it has access to this
original timestamp. Therefore, the consumer can call the
custom module and timestamp as soon as it receives a

new record; the difference between these two
timestamps represents the application’s latency in
nanoseconds.

© 2024 Global Journals

V. EVALUATION

| empirically evaluate the latency of the Flink
application on each of the three schedulers within Xen.
One experiment corresponds to sending 20,000 records
through the Flink application and recording the latencies
for a given configuration. Each of the six producers
sends a message from their detector location once
every 100ms. Although real-world data comes only every
5 minutes, | accelerate the rate in order to achieve a
suitable workload.

a) RITDS

Recall that within the RTDS scheduler, each VM
must specify a budget and a period. Given that
producers are sending messages once every 100ms, |
set the period of the real-time VM to 100ms. Initially, |
provide the real-time VM with access to the entire PCPU-
that is, | set the budget to be equal to the period of
100ms. An ECDF curve of this configuration is shown in
Figure 4. | can also specify a budget less than the value
of the period, effectively giving the real-time VM partial
access to the CPU or a "partial CPU." The benefit of not
consuming the entire period is that the system may
reclaim idle clock cycles and improve overall efficiency.
If | keep the period the same, then | can discover a
budget that gives the same latency performance as if
the real-time VM had exclusive access to the CPU. | do
so by first allocating a very small budget and then
incrementally increasing the budget until the ECDF
curves overlap. In nearly all cases, the budget was
smaller than the period, and the maximum latency of the
partial-CPU experiments was greater than those of the
full-CPU counterpart. Table 4 summarizes these results.
When | set the budget to 777500,
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Fig. 4. ECDF of Latency Distribution RTDS Scheduler
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Scheduler Budget (us) Period (us) Maximum Latency (ms)

RTDS 100000 100000
RTDS 80000 100000
RTDS 77500 100000
RTDS 76750 100000
RTDS 76000 100000
RTDS 75000 100000

48.52186857142857
55.77778047619047
38.0649180952381

49.31550476190476
61.50309523809524
55.69025428571428

Table 4: Maximum Latencies for RTDS Experiments Scheduler Budget (us) Period (us) Maximum Latency (ms)

| actually observed an improvement in the
maximum latency observed. On the other hand, almost
all of the partial-CPU experiments yielded ECDF curves
that indicated a critical majority of the latencies were
smaller than those of the full-CPU counterparts.
Consider Figure 5, which shows the ECDF curves of the
full-CPU and budget=77500 experiments.

Not only does this experiment have a smaller
maximum latency and, therefore, can provide a better

service-level agreement, but the ECDF curve also lies
above that of the full CPU experiment. This behavior is
also exhibited in the other experiments with budgets
greater than 76750. The experiment with the budget set
to 76750 showed near equivalent performance both in
terms of maximum latency, as seen in Table 4, but also
with respect to their ECDF curves, as seen in Figure 6.

ECDF

10 -

= (=]
= =
——
Y

=
=
~

Cumulative Probability

=
ra

-

== Bandwith : 0.775
= u Fyll CPU

0.0

0 40

Latency {ms)

Fig. 5: ECDF Latency Distribution Partial CPU (0.775) vs. Full CPU RTDS Scheduler
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Fig. 6. ECDF Latency Distribution Partial CPU (0.7675) vs. Full CPU RTDS Scheduler

b) Credit

Under the default Credit scheduler, each VM
can specify a weight and optional cap. The cap is
expressed in terms of the number of VCPUs. While it is
not a direct equivalence, | can vary the cap parameter
for the real-time VM to achieve a similar effect as the
partial CPU cases that were discussed with RTDS
above. We, therefore, conduct two experiments: one
without any caps and one with a cap. Recall that the
partial-CPU experiment that was most similar to the full-
CPU experiment using the RTDS scheduler had a
budget of 76750 and a period of 100000. Therefore,
since the real-time VM had two cores, it effectively made
up of % *2 = 153% of a single PCPU. Because the
cap parameter in Credit iCreditessed in terms of the
percentage of CPUs, | set the cap of the real-time VM to

be 153 for the partial-CPU Credit experiment. Table 5
Creditizes the experimental results.

Figure 7 shows the ECDF curves for the full
CPU experiments using Credit and RTDS schedulers.
The full-CPU Credit scheduler distribution exhibits
characteristics similar to those of the partial-CPU RTDS
experiments. The majority of the Credit ECDF curve lies
above that of the RTDS, and it has a higher maximum
latency. Figure 8 shows the ECDF curves for the partial
CPU experiments using Credit and RTDS schedulers.
Observe that the green line corresponding to the Credit
Partial CPU ECDF curve trails off of the plot. This is
because the partial-CPU credit experiment’'s maximum
latency was abysmally large—over a second. If the plot
were to show the entire graph, the two curves would be
indistinguishable, so | limit the X-axis for readability.

Table 5: Maximum Latencies for Credit Experiments

Scheduler Cap

Maximum Latency (ms)

0 (None) 116.94941476190476

1040.939347142857
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Fig. 7: ECDF Latency Distribution Full CPU Credit vs. Full CPU RTDS
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c) Credit2

Although Credit2 is the evolution of the Credit
scheduler, it does not yet support a cap feature. As a
result, | cannot run experiments that limit the CPU of a

VM. We, therefore, only run one experiment, which is

equivalent to the full-CPU scenarios described above.

Table 6 summarizes the experimental results.

Table 6: Maximum Latencies for Credi2t Experiments

Scheduler Maximum Latency (ms)

Credit2

951.1479685714286

Credit2 suffered from the same behavior that
was observed under the default credit scheduler— the
maximum latency was tremendously large even though
a significant portion of the records were processed
faster than in RTDS. Figure 9 shows the ECDF curves for

all three full-CPU experiments. Observe that | limited the
X-axis of this plot for readability due to the same
reasons discussed above: the large maximum latency
would otherwise make the graphs indistinguishable.
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Fig. 9: ECDF Latency Distribution Full CPU Credit2 vs. Full CPU Credit vs. Full CPU RTDS

It is readily apparent that the choice of
hypervisor is largely dependent on the use case. For
applications that require ultra-low-latency service level
agreements, the RTDS scheduler is the clear choice. For
other applications that are more concerned with median
performance, the Credit and Credit2 schedulers seem to
provide better performance. Although | artificially
accelerated the input rate of the producers to achieve a
more critical workload, this workload demonstrates the
performance benefits and drawbacks of each scheduler.

VI.

| have developed a model of an ITS that
provides real-time optimal routing through the use of

CONCLUSION

traffic forecasting. | have used this model as a workload
to empirically study the effect that the choice of
scheduler has on the latency of the application. It is
evident from these experiments that the choice of
scheduler largely depends on the application’s use
case. The RTDS scheduler provides excellent latency
guarantees, whereas the Credit and Credit2 schedulers
are more general-purpose. It is important to note that |
have sacrificed a few real-world conditions in order to
create a viable workload. First, | have statically defined
the start and end locations for the A+ search algorithm. In
contrast, in the real world, they would certainly be more
dynamic, and the network graph would be significantly
larger in order to represent the roads and freeways of
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the surrounding area accurately. Additionally, | have
artificially increased the rate of input in order to achieve
a critical workload and demonstrate the effectiveness of
the three schedulers. Although most cities do not
currently have real-time traffic data, the advent of self-
driving cars and other loT devices has significant
implications for the amount of data being transmitted
and computed. This work creates several future
research opportunities in a variety of different areas. It
may be useful to examine the source code to
understand better why the RTDS scheduler lacks some
aspects of efficiency relative to Credit and Credit2. This
work may also be extended to compare the effects of
different architecture choices, such as the choice of a
different messaging middleware. Lastly, although this
work provides a basic model of an ITS with routing
capabilities, there are many possible features to
integrate into this model to make it more applicable to
the real world.
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