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Abstract-

 

This research explores an Intelligent Traffic System 
(ITS) designed for real-time optimal routing using traffic 
forecasting and an A* search algorithm. Leveraging a pre-
trained Long Short-Term Memory

 

(LSTM) neural network, I 
predict traffic flow based on historical data to inform heuristic 
functions, ensuring optimal route calculations. The heuristic is 
constructed to be permissible and consistent by incorporating 
predicted traffic flow and average speed measurements. The 
experimental setup involves a messaging virtual machine (VM) 
and a real-time VM within a Xen hypervisor environment, 
utilizing Apache Kafka and Apache Flink for data flow and 
processing. I empirically

 

evaluate the latency performance of 
the ITS under three different Xen schedulers: RTDS, Credit, 
and Credit2. My findings indicate that the RTDS scheduler 
provides superior latency guarantees, making it suitable for 
applications requiring ultra-low latency, whereas the Credit 
and Credit2 schedulers offer better median performance. 
These insights highlight the impact of hypervisor scheduler 
choice on the efficiency and responsiveness of real-time ITS 
applications.

 I.

 

Introduction

 ntelligent Transportation Systems (ITSs) are one of 
the most anticipated smart city services and have 
already seen widespread adoption. The Sydney 

Coordinated Adaptive Traffic System (SCATS) is a fully 
adaptive urban traffic control system that optimizes 
traffic flow and currently operates in more than 37,000 
intersections worldwide. Optimizing traffic flow 
conditions not only shortens travel times but can also 
reduce the carbon emissions generated from road 
vehicle activity [5]. Unfortunately, city-wide traffic control 
models are difficult to study using realworld data. While 
it is possible to develop a model of an ITS using 
historical data, it is difficult to determine its effectiveness 
because traffic conditions would morph under the use of 
the ITS. Therefore, instead of considering city-wide 
coordination, this research focuses on intelligent routing 
based on real-time prevailing traffic conditions, similar to 
the service provided by Google Maps.

 
Traditional traffic flow models rely on shallow 

learning algorithms and only a few conditions to predict 
traffic flow. While these models have been moderately 
successful, they fail to capture the deeper relationship 
between their features and also fail to adapt to changing 

conditions quickly [17]. Deep learning methods, on the 
other hand, have drastically improved the state-of-the-
art in a variety of fields, such as speech recognition and 
object detection. Deep learning’s success is largely 
based on its ability to discover intricate structures and 
relationships between features in large datasets [9]. The 
evolution of traffic flow over time is dynamic and non-
linear, which makes it a perfect candidate for deep 
learning methods. With the advent of the Internet of 
Things (IoT), wireless sensors are able to capture a 
variety of real-world conditions such as traffic accidents, 
weather, and external events like sports games. ITSs are 
then able to aggregate these features to build hybrid 
multimodal methods for traffic flow forecasting using 
deep learning [7,10]. 

However, this data transmission and analysis 
must be performed at ultra-low latency and in real time 
in order to have the intended effect of optimizing the 
operations of a smart city. The combination of compute-
intensive workloads and latency-sensitive applications 
motivates the use of real-time cloud computing. [8] have 
recently introduced a framework for efficient edge and 
cloud computing specifically designed for ITSs but do 
not provide empirical results to substantiate their claims. 
Moreover, current clouds lack service level agreements 
on latency; these clouds provision resources and not 
latency. Such a service level agreement is critical for 
applications like ITSs. 

In this paper, I empirically study the latency 
performance of a simplified ITS on a real-time cloud. 
The rest of this paper is organized as follows. Section II 
presents related work. In Section III, I provide relevant 
background information for the technologies used. 
Section IV covers design and implementation strategies. 
Section V presents my empirical study using a real traffic 
dataset and evaluates the latency of the application on a 
real-time cloud. Finally, Section VI offers conclusions 
and directions for future research. 

II. Related Work 

Traffic flow forecasting has a long history in 
transportation literature, and many techniques have 
been proposed to address this problem. [17] introduce 
an autoregressive integrated moving average (ARIMA) 
process for estimating traffic flows. While the ARIMA 
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model has the benefit that it is easy to interpret, it is not 
able to accurately capture the non-linear, stochastic 
nature of traffic flow evolution. [13] have utilized an 
efficient Bayesian particle filter for tracking traffic flows 
and demonstrated its effectiveness on a dataset from 
the I-55 highway system in Illinois. The authors then 
used the same dataset to evaluate a deep neural 
network with ℓ1 regularization and applied this model to 
predict traffic flows during a baseball game accurately 
[14]. [11] develop a novel model, called LC-RNN, that 
combines both convolutional and recurrent neural 
networks in order to learn the time-series and 
spatiotemporal nature of traffic patterns more 
meaningfully. 

While deep-learning, specifically time-series-
based approaches, have seen the greatest empirical 
success, it is apparent that no single method works best 
for every situation. In general, the most successful 
methods are hybrid methods that can combine 
techniques to improve the accuracy of prediction under 
the prevailing traffic conditions [4]. 

a) Traffic Flow 
Traffic flow forecasting is a challenging problem 

in the space of intelligent traffic management. In this 
paper, I consider traffic flow in a macroscopic context. 
That is, instead of considering each vehicle in a traffic 
stream individually, I rather think of the traffic flow as a 
measurement at a single fixed location in space. The 
traffic flow forecasting problem is thus formally defined 
as follows. At time T, I seek to predict the future traffic 
flow qT+1 at time T + 1 or qT+n at time T + n based on the 
history of traffic data. 

Flow may be considered a temporal 
measurement and is usually expressed in terms of units 
over a period of time. For a single lane of traffic, I can 
define the flow q in region R as 

(1) 

where N is the number of vehicles observed crossing 
region R during timespan T [12]. For multiple-lane traffic, 
I can sum the partial flows across each of the L lanes 

(2)
 

where Nl is the number of vehicles that passed a 
detector’s site in lane l. I also define the mean speed of 
the traffic stream, expressed in terms of miles (or 
kilometers) per hour. In this paper, I consider the time-
mean speed, which is calculated as the arithmetic 
average of the vehicles’ instantaneous speeds in the 
region Rt. The time-mean speed is denoted by v¯t 

 

where vi is the instantaneous speed of the ith vehcile 
[12].

 
b)

 

Vanishing Gradient

 

The vanishing gradient problem as described in 
[3] is particularly prevalent in training recursive neural 
networks. Most neural networks learn weight parameters 
through some gradient-based optimization method, 
such as backpropagation through time. For deep

 

or 
recursive neural networks, backpropagation yields 
lengthy update equations in which gradients may 
become vanishingly small, effectively preventing the 
weight from ever updating its value. There are many 
methods to combat the vanishing gradient problem in 
recurrent neural networks, namely the introduction of 
long short-term memory networks.

 
c)

 

Long Short-Term Memory Networks

 
Given their capacity to memorize long-term 

dependencies, long short-term memory (LSTM) neural 
networks have special advantages for traffic flow 
prediction. LSTMs are a specific type of recurrent neural 
network. Recurrent neural networks are comprised of 
memory cells; memory cells add a loop to the traditional 
perceptron model of a neural network. These loops 
make the network recursive, thereby allowing 
information to persist. Recurrent neural networks have 
been notable in language modeling, speech-to-text 
transcript, and other applications with time-series 
patterns. Whereas traditional recurrent neural networks 
suffer from the vanishing gradient problem during 
training, LSTM networks are specifically designed to 
address the vanishing gradient problem [15]. Just like 
recurrent neural networks, LSTMs are comprised of 
many memory cells. LSTM networks combat the 
vanishing gradient problem through the use of forgetting 
gates, which are special structures added to the 
memory cell designed to allow the cell to forget certain 
information. The typical structure of an LSTM memory 
cell is shown in Figure 1.
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q =
N

T
,

q =
L∑

l=1

ql =
1

T

L∑
l=1

Nl,

v̄t =
1

N

N∑
i=1

vi, (3)
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[15] describes the information flow for a typical LSTM 
memory cell– an LSTM memory cell has three gates: an 
input gate, a forget gate, and an output gate. Each of 
these gates is a way to let information flow optionally 
and is comprised of a sigmoid activation function. The 
sigmoid function squashes values between the range of 
[0,1], representing how much information to let through 
a given gate. At the tth timestep, the output from the 
previous LSTM memory cell, ht−1, is fed into the forget 
gate, which determines how much information from the 
previous gate to keep, ft. The output of the forget gate is 
then multiplied by the previous cell state. The input gate 
determines how much information from the most recent 
observation, xt, to include in the cell state. The current 
cell state, Ct is first passed through the tanh activation 
function and then multiplied with the output from the 
input gate, it, yielding C˜

t. Finally, the current cell state, Ct 

is updated: 

  (4) 

The updated cell state, Ct, is then fed into the 
output gate, which determines the output from the 

current cell state using the sigmoid function, producing 
ot. The memory cell applies the tanh activation function 
to the current cell state to squash the values between 
[−1,1] and multiplies the result with ot, producing: 

 (5) 

While training LSTM networks takes a very long 
time, stacking many of these LSTM memory cells 
produces an extremely powerful model capable of 
learning long-term dependencies, which is particularly 
useful for predicting traffic flow [10]. 

d) A Star Search 
The A Star Search Algorithm (A∗) is an algorithm 

used in graph traversal to find the optimal path between 
any pair of nodes. In my case, I can express a city’s 
roads and freeways as a directed graph in which 
intersections are nodes, and the roads are edges. I can 
use A∗ to find the optimal path between any two points in 
the city. A∗ is an informed search algorithm that makes 
use of heuristics to decide which path to consider next. 
A∗ determines which path to consider next by minimizing 
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Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

Fig.1: Structure of LSTM Memory Cell
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the cost of the current path to the next node and the 
estimated cost from the next node to the end. 
Mathematically, this is expressed as- 

(6) 

where g(n) is the cost from the start node to node n, and 
h(n) is a heuristic that estimates the cost from node n to 
the end. In order for A∗ to be optimal, this heuristic must 
satisfy two properties: admissibility and consistency. An 
admissible heuristic is any such heuristic that does not 
overestimate the true cost of traveling to the next node. 
A consistent heuristic is any such heuristic that supports 
the following inequality for any two adjacent nodes, x 
and y 

(7) 

III. Background 

This section provides background on the Xen 
hypervisor and the scheduling framework in Xen. It also 
describes a stream-processing engine, Flink, and real-
time messaging middleware, Kafka. 

  

conventional hardware in a safe and resource-managed 
fashion. Xen serves as a virtual machine monitor (VMM) 
that lies between the hardware and guest operating 
systems. Xen controls a special domain called domain 
0, which is responsible for managing all other guest 
domains. Each guest domain acts as a virtual machine 
(VM) and can specify its resource requirement in terms 
of the number of virtual CPUs (VCPUs). The typical Xen 
architecture is shown in Figure 2. Each VM has a guest 
operating system, which is responsible for scheduling 
tasks on to VCPUs. Xen is not only responsible for 
providing virtual resource interfaces to the VMs but is 
also responsible for scheduling the VMs onto physical 
CPUs (PCPUs). There are currently three different 
schedulers in Xen: Credit, Credit2, and RTDS. Credit is 
the default scheduler; it is a generalpurpose weighted 
fair share scheduler. Credit2 is the evolution of the 
default credit scheduler; it is still based on a general 
purpose, a weighted fair share scheme, but it is more 
scalable and efficient with latency-sensitive workloads. 
RTDS is the real-time deferrable server scheduler that is 
specifically designed to handle real-time and latency-
sensitive workloads [18]. 

 

 

Fig. 2: Architecture of a Xen System 

Credit Under the Credit scheduler, each VM 
specifies a weight and optional cap. The weight 
corresponds to the share of CPU a VM will have relative 
to other VMs, and the cap encodes the maximum CPU 
resource a VM can receive. The scheduling algorithm 
itself is implemented with a partitioned queue: each 
PCPU maintains a local run queue of VCPUs, sorted by 
VCPU priority. While a VCPU is scheduled onto a PCPU, 
it burns credits; once the VM is preempted, VCPU 
priorities are recalculated based on the weight, cap, and 
amount of credits consumed. By default, Credit 
uCreditwork stealing load-balancing scheme: if a PCPU 
has no VCPUs in its run queue, it will steal VCPUs from 
other cores. 

Credit2 The Credit2 scheduler is similar to the 
default Credit scheduler in that it focuses on fairness, 

but Credit2 also aims to address issues of latency and 
scalability. Credit2 uses a similar weighting scheme as 
Credit Credit, assigning a weight to each VM. Credit2, 
however, does not have support for caps like Credit 
credit and is also not CPU mask-aware. As a result, a 
VM cannot pin its workload to specific CPUs. 

RTDS Under the RTDS scheduler, each VM 
specifis a budget and period. While a VCPU is 
scheduled onto a PCPU, it consumes its budget until 
the budget is exhausted. The end of the period marks 
the deadline for a VCPU; at this time, any remaining 
budget is discarded, and then the budget is 
replenished. The scheduling algorithm is implemented 
using a global run queue sorted by VCPU deadline. This 
event-driven approach differs from the quantum-based 
approach used by the Credit and Credit2 schedulers. As 
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f(n) = g(n) + h(n),

h(x) ≤ distx,y + h(y)

a) Xen
Xen [2] is a popular open-source virtualization 

platform that allows multiple virtual machines to share 



  

 

a result, this avoids invoking the scheduler 
unnecessarily, which should reduce overhead. 

b) Apache Flink 
Apache Flink is a distributed stream-processing 

engine that provides data distribution, communication, 
and fault tolerance for distributed computations over 
data streams. Flink’s programming model is a 
generalization of the MapReduce paradigm. The Flink 
API offers a set of useful transformation operations, 
such as join and filter, in addition to the traditional map 
and reduce functions. Applications specify a series of 
lazy transformations to an unbounded data stream, 
which are connected to sources and sinks. The Flink 
engine then uses a cost optimizer to determine an 
efficient execution plan called a dataflow. This dataflow 
is internally represented as a directed acyclic graph 
from sources to sinks with transformation operators in 
between. Sinks trigger the execution of the necessary 
lazy transformations [1]. 

c) Apache Kafka 
Apache Kafka is a distributed streaming 

platform that provides data pipelines and fault tolerance 
for streams of records across topics. Kafka makes use 
of two core APIs: the producer API allows an application 
to publish a stream of records to one or more topics, 
and the consumer API allows an application to 
subscribe to one or more topics and process the stream 
of records produced to them. Multiple producers may 
send streams of records on the same topic, and 
numerous consumers can also subscribe to the same 
topic. Each topic is spread over a cluster of Kafka 
brokers, with each broker holding at least one partition 

of the topic. Kafka uses Apache Zookeeper to help 
coordinate these services. Kafka is designed to meet 
high throughput and low latency requirements, making it 
an extremely suitable choice for real-time streaming 
applications. 

IV. Design and Implementation 

The previous section provided an overview of 
background information relevant to this paper’s 
methodology. This section explores specific design and 
implementation choices. 

a) Dataset 
In order to create a model of an ITS, I needed 

historical traffic data to train and test a predictive model 
as well as data to use to study the latency of the 
application empirically. The California Transportation 
Performance Measurement System (PMS) collects real-
time data from nearly 40,000 individual detectors across 
the freeway system in the state of California. PeMS 
provides data at a granularity of 5-minute intervals and 
includes features such as flow and average speed. 
These features are available across each lane and as 
aggregates for a given detector station. The raw data 
that comes from the single lanes is recorded every 30 
seconds and then aggregated after every 5 minutes. 
While the real-time 30second granularity data is not 
made publicly available, the 5-minute granularity data is. 
For this research, I have downloaded data for March 
2018 at 5-minute granularity. The data includes the 
timestamp, flow, and average speed (across individual 
lanes as well as aggregates); the data were taken from 
six different detector locations in southern California. 

Table 1 describes the detector locations and provides their latitude and longitude. 

Table 1: Detector Locations 

Detector 
Number 

Canonical Name Primary 
Freeway 

Intersection Latitude  Longitude 

1 El Segundo 405S 105E 33.928621 -118.368522 
2 Wilmington 405S Wilmington 33.825757 -118.24005 
3 Long Beach 405S 710S 33.824173 -118.207084 
4 Athens 105E 110N 33.928478 -118.284031 
5 Lynwood Gardens 105E 710S 33.914156 -118.184451 
6 East Rancho Dominguez 710S East Rancho Dominguez 33.877433 -118.192776 

 

b) Model of ITS 
I seek to create a model of an ITS that will 

predict future traffic flows and use this prediction to 
provide optimal routing using the A∗ algorithm. First, I 
must create a model that can forecast future traffic flows 
based on historical data. 

Evaluation Metric Given that this is a regression 
problem, I choose to train my models to minimize the 
mean squared error loss (MSE). MSE is defined as- 

(8)
 

where hi is the predicted flow for the ith test data point 
and yi is the true flow. Recall that the MSE loss metric is 
very sensitive to outliers and noise. To reduce this 
sensitivity, I preprocess my data by scaling non-time 
features between the range of 0 and 1. Once the 
network has been trained and I use it to predict traffic 
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L =
1

N

N∑
i=1

(hi − yi)
2,



  

 

flows, I will transform the prediction back to its original 
scale. Algorithms 1 and 2 describe how I scale the data 
down before feeding input into the network and then 

transform the data back to its original scale to evaluate 
the network’s performance. 

 
     

 

 
   
     
  

 

 
 

       
 

       
  

 
 

 

 
 Table

 

2:

 

Model Scores

 

    

      
     

     
     
     

 

LSTM I have implemented the LSTM neural 
network in Python using TensorFlow. Existing studies, 
such as [9], have shown that stacked LSTM layers in a 
neural network can lead to higher levels of 
representation of time-series data, which increases the 
effectiveness of the model. I adopted this architectural 
choice when I was working

 

on the architecture. In order 
to prevent overfitting, I utilize dropout– a technique that 
randomly drops units and their connections during 
training [16]. The stacked LSTM layers are then 
connected to two fully connected layers. Recall that I 
preprocess the data and scale it to a range of 0 and 1, 
which is why the last layer only has one unit. I use the 
default activation function for the stacked LSTM layers, 
tanh, but select the rectified linear unit (ReLU) function in 
fully connected layers. ReLU is defined as

 

ReLU(x) = max(0,x) (9)

 

ReLU provides two primary benefits. First, it is 
very easy to compute relative to other activation 
functions like the sigmoid function or tanh, which 

speeds up training time. Furthermore, ReLU helps 
prevent the vanishing gradient problem during training. 
Table 3 summarizes neural network architecture.

 

The network receives a 12x1 vector of scaled 
traffic flows as input, corresponding to the previous 12 
observations of traffic flows, scaled between a range of 
0 and 1, at 5-minute

 

intervals. This vector represents the 
past hour’s worth of traffic data. The network predicts 
the next value of flow, corresponding to traffic flow five 
minutes in the future.

 

I can see from Table 2 that the trained LSTM 
neural network performs extremely well on test data. 
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Algorithm 1: Preprocess Data
min X.min;
max X.max;
Xscaled (X −min)/(max−min);
return Xscaled;

Algorithm 2: Transform Data to Original Scale
Xoriginal Xscaled ∗ (max−min) +min;
return Xoriginal;

←
←
←

←

Comparison of Methods I chose to evaluate five 
different regression methods and select the model that 
gave the lowest MSE. I aggregate data across all six 
detector locations into one cumulative dataset and use 
this dataset to create a predictor. This cumulative 
dataset is used to develop a predicted model and 
empirically study the latency of my application on a real-
time cloud. I split this dataset into training and testing 
sets; I used 80% of the data for training and 20% of the 
data for testing. Once the models had been trained, I 
measured their performance on the unseen test data 

(on the original scale) as well as the mean absolute 
percentage error and R2 value for each regressor. 
Although all models appear to perform extremely well on 
the dataset, I chose the LSTM neural network for two 
reasons. First, it is the model that has the lowest score. 
Second, as I have mentioned in Section II, LSTM neural 
networks are the state-of-the-art prediction method for 
forecasting traffic flows. In order to create the most 
realistic workload, I should select the model that is most 
likely to be used in a real-world context.

again using MSE as a metric. Table 2 presents the MSE 

Model MSE MAPE R2

LSTM Neural Network 985.455275 23.091062 0.962043
Linear Regression 1013.644990 23.702992 0.960957
Random Forest 1083.919621 24.140704 0.958250
Gradient Boosting Decision Tree 1151.047555 25.586357 0.955664
Decision Tree 1988.652076 32.951715 0.923402



  

 

Since the network has been trained, I have used it as a 
predictor in my experiments. 

Table 3: LSTM Neural Network Architecture 

Layer Shape Dropout Activation 

LSTM 256  N/A  tanh  

LSTM 128  0.2  tanh  

Dense 64  0.4  ReLU  

Dense 1  N/A  ReLU  
 

Heuristic Recall that I use traffic prediction as a 
means of creating a heuristic for search algorithms. In 
order for the A∗ search algorithm to be optimal, the 
choice of heuristic must be admissible and consistent. 

I make use of the average speed measurement 
as well as the predicted flow in order to create a 
heuristic function. Consider the case in which I only use 
predicted flow in heuristic. A very low prediction for flow 
might indicative that I expect a lot of heavy, slow-moving 
traffic, in which case only a few vehicles actually cross 
the inductor loop. On the other hand, the low value of 
precited flow might indicate that it is not a busy time on 
the highway, such as early in the morning. Therefore, I 
hypothesize that the heuristic would be most informed 
using information about the predicted flow and average 
speed. To enforce admissibility, I bound heuristic so that 
it is no greater than the true distance. Because I have 
the latitude and longitude coordinates, I am able to 
calculate the true distance along the freeway between 
any  pair of detectors. We, therefore, define heuristic  as 

  

where distn is the true distance to node n in the graph, v¯ 
is the average speed across the previous 12 
observations, and q is the forecasted flow. Notice that I 
subtract the average speed from 70, the speed limit on 
the freeways. This associates a higher cost with very 
slow-moving traffic and a lower cost for conditions 
without traffic congestion. Observe that the heuristic is 
both permissible and consistent by construction, so the 
A∗ search algorithm is optimal. 

c) Experimental Setup 
I create two VMs on a server running Xen to 

handle the dataflow and workload of the experiment. 
One VM is responsible for producing messages to a 
Kafka input topic and consuming messages from 
another Kafka output topic. The other VM is responsible 
for running a Flink application that will consume 
messages from the Kafka input topic, pass these 
records through the pre-trained LSTM neural network to 
create a prediction, run A∗ search with this prediction, 
and then publish results to the Kafka output topic. I 
denote the former VM as the messaging VM, whereas 
the latter VM is the real-time VM. The messaging VM is 
responsible for measuring latency, which will be 
discussed shortly. Figure 3 describes the experimental 
setup. 

Hardware and Resource Provisioning This 
configuration resides on a server with an 8-core Intel 
Xeon ES-2620 CPU and 64 GB of memory. The server is 

 

 

 

Fig. 3: Experimental Setup 

configured with Xen 4.10 as the hypervisor and Ubuntu 
16.04 as the domain0 operating system. Each of the 
guest domains also run Ubuntu 16.04. 

Within the messaging VM, I created Kafka 
producers for each detector location for a total of six 
producers. I made one consumer for the output topic. 

Recall that Kafka also requires Apache Zookeeper to 
help coordinate services. Since I want to be able to pin 
each of these processes to a specific VCPU, the 
messaging VM requires eight cores. I allocated 16GB of 
memory to this machine since it will be responsible for 
running many services. Within the real-time VM, I will 
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h(n) = min(0,min(distn, (70− v̄) ∗ q)), (10)



  

 

only run the Flink application. I allocate this VM only two 
cores and 8GB of memory. 

Flink Application The Flink application provides 
the workload whose latency I will empirically study. At 
initialization, the application loads the pre-trained LSTM 
neural network from memory and initializes a directed 
graph. The directed graph consists of nodes 
representing the detector locations and edges 
representing the freeways. As a source, the Flink 
application consumes from the Kafka input topic. Each 
record contains four fields: a detector location, average 
speed, traffic flow, and a timestamp. The average speed 
and traffic flows are both 12x1 vectors of the raw data at 
5-minute intervals as captured by the detector. As soon 
as the application receives a new record, it parses this 
information and scales the measured flows into the 
range [0,1]. The application then feeds these scaled 
flows into the LSTM neural network and creates a 
prediction, which is immediately transformed back to its 
original scale. The application then uses this heuristic to 
run the A∗ search algorithm to find the optimal path 
between the El Segundo and Long Beach detectors. 
Finally, the application creates a new record of the 
following information: detector location, average speed, 
traffic flows, timestamp, predicted flow, and path 
returned by A∗. As a sink, the Flink application publishes 
these new records to the Kafka output topic. 

Latency Calculation It is well known that 
traditional timestamping methods, such as the C routine 
dogettimeofday(), are unreliable in virtual environments 
[6]. To remedy this issue, I created a custom Python 
module that utilizes timestampcounter scaling in order 
to measure time precisely. This module provides an API 
to read the current value of the timestamp counter into 
the ex: tax registers and return this value. Once I have 
this value, I can convert it into nanoseconds by dividing 
it by the clock frequency of the CPU, assuming the clock 
frequency is constant. To enforce a continual clock 
frequency, I change the power settings in the system’s 
BIOS. Although the CPU can optimize its power 
consumption through different p-states (performance 
states) and minimize power consumption through c-
states, these create variability in the clock frequency of 
the CPU. By disabling these features, I fix the clock 
frequency. In this case, I fixed the clock frequency to 
2.1GHz. I implement highly precise latency calculations 
in the messaging VM using this method. 

Each producer calls the custom module just 
before sending the message and appends the 
nanosecond timestamp to the record. When the 
consumer receives a record, it has access to this 
original timestamp. Therefore, the consumer can call the 
custom module and timestamp as soon as it receives a 
new record; the difference between these two 
timestamps represents the application’s latency in 
nanoseconds. 

V. Evaluation 

I empirically evaluate the latency of the Flink 
application on each of the three schedulers within Xen. 
One experiment corresponds to sending 20,000 records 
through the Flink application and recording the latencies 
for a given configuration. Each of the six producers 
sends a message from their detector location once 
every 100ms. Although real-world data comes only every 
5 minutes, I accelerate the rate in order to achieve a 
suitable workload. 
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a) RTDS
Recall that within the RTDS scheduler, each VM 

must specify a budget and a period. Given that 
producers are sending messages once every 100ms, I 
set the period of the real-time VM to 100ms. Initially, I 
provide the real-time VM with access to the entire PCPU-
that is, I set the budget to be equal to the period of 
100ms. An ECDF curve of this configuration is shown in 
Figure 4. I can also specify a budget less than the value 
of the period, effectively giving the real-time VM partial 
access to the CPU or a "partial CPU." The benefit of not 
consuming the entire period is that the system may 
reclaim idle clock cycles and improve overall efficiency. 
If I keep the period the same, then I can discover a 
budget that gives the same latency performance as if 
the real-time VM had exclusive access to the CPU. I do 
so by first allocating a very small budget and then 
incrementally increasing the budget until the ECDF 
curves overlap. In nearly all cases, the budget was 
smaller than the period, and the maximum latency of the 
partial-CPU experiments was greater than those of the 
full-CPU counterpart. Table 4 summarizes these results. 
When I set the budget to 777500,



 

 

 

 
Fig. 4: ECDF of Latency Distribution RTDS Scheduler 

Table 4:
 
Maximum Latencies for RTDS Experiments

 
Scheduler Budget (µs) Period (µs) Maximum Latency (ms)

 
 

 
      

  
    
      

    
  

 
 
I actually observed an improvement in the 

maximum latency observed. On the other hand, almost 
all of the partial-CPU experiments yielded ECDF curves 
that indicated a critical majority of the latencies were 
smaller than those of the full-CPU counterparts. 
Consider Figure 5, which shows the ECDF curves of the 
full-CPU and budget=77500 experiments.

 
Not only does this experiment have a smaller 

maximum latency and, therefore, can provide a better 

service-level agreement, but the ECDF curve also lies 
above that of the full CPU experiment. This behavior is 
also exhibited in the other experiments with budgets 
greater than 76750. The experiment with the budget set 
to 76750 showed near equivalent performance both in 
terms of maximum latency, as seen in Table 4, but also 
with respect to their ECDF curves, as seen in Figure 6.

 

 

Fig. 5: ECDF Latency Distribution Partial CPU (0.775) vs. Full CPU RTDS Scheduler 
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Scheduler Budget (µs) Period (µs) Maximum Latency (ms)

RTDS 100000 100000 48.52186857142857
RTDS 80000 100000 55.77778047619047
RTDS 77500 100000 38.0649180952381
RTDS 76750 100000 49.31550476190476
RTDS 76000 100000 61.50309523809524
RTDS 75000 100000 55.69025428571428



  

 

 

Fig.
 
6.

 
ECDF Latency Distribution Partial CPU (0.7675) vs. Full CPU RTDS Scheduler

 

b)
 

Credit
 

Under the default Credit scheduler, each VM 
can specify a weight and optional cap. The cap is 
expressed in terms of the number of VCPUs. While it is 
not a direct equivalence, I can vary the cap parameter 
for the real-time VM to achieve a similar effect as the 
partial CPU cases that were discussed with RTDS 
above. We, therefore, conduct two experiments: one 
without any caps and one with a cap. Recall that the 
partial-CPU experiment that was most similar to the full-
CPU experiment using the RTDS scheduler had

 

a 
budget of 76750 and a period of 100000. Therefore, 
since the real-time VM had two cores, it effectively made 

up of 2 = 153% of a single PCPU. Because the 
cap parameter in Credit iCreditessed in terms of the 
percentage of CPUs, I set the cap of the real-time VM to 

be 153 for the partial-CPU Credit experiment. Table 5 
Creditizes the experimental results.

 

 

  

 
 

Table 5:

 

Maximum Latencies for Credit Experiments

 

   
   
 

 

Fig.

 

7:

 

ECDF Latency Distribution Full CPU Credit vs. Full CPU RTDS
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Scheduler Cap Maximum Latency (ms)

Credit 0 (None) 116.94941476190476
Credit 153 1040.939347142857

Figure 7 shows the ECDF curves for the full 
CPU experiments using Credit and RTDS schedulers. 
The full-CPU Credit scheduler distribution exhibits
characteristics similar to those of the partial-CPU RTDS 
experiments. The majority of the Credit ECDF curve lies 
above that of the RTDS, and it has a higher maximum 
latency. Figure 8 shows the ECDF curves for the partial 
CPU experiments using Credit and RTDS schedulers. 
Observe that the green line corresponding to the Credit 
Partial CPU ECDF curve trails off of the plot. This is 
because the partial-CPU credit experiment’s maximum 
latency was abysmally large—over a second. If the plot 
were to show the entire graph, the two curves would be 
indistinguishable, so I limit the X-axis for readability.



 

 

 

Fig. 8: ECDF Latency Distribution Partial CPU Credit vs. Partial CPU RTDS 

c) Credit2 
Although Credit2 is the evolution of the Credit 

scheduler, it does not yet support a cap feature. As a 
result, I cannot run experiments that limit the CPU of a 

VM. We, therefore, only run one experiment, which is 
equivalent to the full-CPU scenarios described above. 
Table 6 summarizes the experimental results. 

Table 6: Maximum Latencies for Credi2t Experiments 

 
   

 

 

 
  

 

 

Fig.
 
9:

 
ECDF Latency Distribution Full CPU Credit2 vs. Full CPU Credit vs. Full CPU RTDS

 

It is readily apparent that the choice of 
hypervisor is largely dependent on the use case. For 
applications that require ultra-low-latency service level 
agreements, the RTDS scheduler is the clear choice. For 
other applications that are more concerned with median 
performance, the Credit and Credit2 schedulers seem to 
provide better performance. Although I artificially 
accelerated the input rate of the producers to achieve a 
more critical workload, this workload demonstrates the 
performance benefits and drawbacks of each scheduler.

 

VI.
 

Conclusion
 

I have developed a model of an ITS
 

that 
provides real-time optimal routing through the use of 

traffic forecasting. I have used this model as a workload 
to empirically study the effect that the choice of 
scheduler has on the latency of the application. It is 
evident from these experiments that the choice of 
scheduler largely depends on the application’s use 
case. The RTDS scheduler provides excellent latency 
guarantees, whereas the Credit and Credit2 schedulers 
are more general-purpose. It is important to note that I 
have sacrificed a few real-world conditions in order to 
create a viable workload. First, I have statically defined 
the start and end locations for the A∗

 

search algorithm. In 
contrast, in the real world, they would certainly be more 
dynamic, and the network graph would be significantly 
larger in order to represent the roads and freeways of 
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Scheduler Maximum Latency (ms)

Credit2 951.1479685714286

Credit2 suffered from the same behavior that 
was observed under the default credit scheduler– the 
maximum latency was tremendously large even though 
a significant portion of the records were processed 
faster than in RTDS. Figure 9 shows the ECDF curves for 

all three full-CPU experiments. Observe that I limited the 
X-axis of this plot for readability due to the same 
reasons discussed above: the large maximum latency 
would otherwise make the graphs indistinguishable.



  

 

the surrounding area accurately. Additionally, I have 
artificially increased the rate of input in order to achieve 
a critical workload and demonstrate the effectiveness of 
the three schedulers. Although most cities do not 
currently have real-time traffic data, the advent of self-
driving cars and other IoT devices has significant 
implications for the amount of data being transmitted 
and computed. This work creates several future 
research opportunities in a variety of different areas. It 
may be useful to examine the source code to 
understand better why the RTDS scheduler lacks some 
aspects of efficiency relative to Credit and Credit2. This 
work may also be extended to compare the effects of 
different architecture choices, such as the choice of a 
different messaging middleware. Lastly, although this 
work provides a basic model of an ITS with routing 
capabilities, there are many possible features to 
integrate into this model to make it more applicable to 
the real world. 
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