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Prediction of Hard Drive Failure using Machine
Learning

Elizabeth Atekoja

Abstract-The reliability of hard drives is paramount for
maintaining data integrity and availability in cloud services and
enterprise-level data centers where unexpected failures
significantly impact operational efficiency and general
performance. This work aims to develop a predictive model
using regression analysis to accurately forecast imminent hard
drive failures based on historical operational data, specifically
SMART (Self-Monitoring Analysis and Reporting Technology)
attributes. The study evaluated various regression models
which comprises Decision Tree, Random Forest, Support
Vector Machine (SVM), Gradient Boosting, and Neural
Network. The outcomes indicated that the Random Forest
model, with an MSE of 24.7427 and an R? of 0.9876 and the
Neural Network model, with an MSE of 22.6011 and an R2 of
0.7442, as the best performing models as they demonstrated
high predictive accuracy and robustness. In contrast, the SVM
model showed poor performance with an MSE of 2888.8623
and a negative R? of -0.4465. Based on these outcomes, the
Random Forest and Neural Network models are
recommended for predicting hard drive failures as they
delivered a balance of accuracy and interpretability.

I. BACKGROUND

across various sectors with particular significance

in cloud services and enterprise-level data
management where the integrity and availability of data
are paramount. As businesses increasingly rely on data-
driven decision-making, the cost of data loss or system
downtime due to hard drive failures is substantial and
impact operational efficiency, customer satisfaction, and
financial performance. At enterprise-Level data centers,
hard drives often operate under high-demand
conditions, which can accelerate wear and tear. The
data stored in these centers is crucial for operations and
often includes transaction histories, client data, and
business analytics. The failure of hard drives in such
setups not only leads to data loss but also affects the
redundancy and resilience of the entire data system.
Regular monitoring and predictive  maintenance
facilitated by machine learning can significantly reduce
the risk of such occurrences (Wang et al., 2018). Cloud
services rely on data centers spread across multiple
locations, where data is stored redundantly on
numerous hard drives. Cloud providers must ensure

The reliability of hard drives remains a vital concern
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high reliability to maintain service level agreements and
customer trust. Predicting hard drive failure within these
systems is not just a maintenance task but a critical
operation that directly influences service quality and
business continuity (Barroso et al., 2016). The
implementation of predictive maintenance strategies for
hard drives using machine learning algorithms has been
shown to reduce unexpected downtime significantly. By
analyzing SMART (Self-Monitoring, Analysis, and
Reporting Technology) data, models can predict failures
before they happen, allowing for timely replacements
and repairs, thus minimizing downtime and reducing
maintenance costs (Vishwanath and Nagappan, 2016).

The study by Pinheiro, Weber and Barroso
(2007) analyse a large population of disk drives and
identifies common failure trends and indicators using
statistical analysis to explore various SMART attributes.
Critical indicators of failures were identified, but the
study primarily focused on descriptive statistics rather
than predictive modeling. Botezatu et al. (2016)
developed prediction system for disk replacements in
data centers to improve reliability. Machine learning
models are employed to forecast when disks will need
to be replaced, using a combination of real-time and
historical SMART data. Achieved high accuracy in
predictions; however, the study focused majorly on
replacement timing rather than immediate failure
detection. Hamerly and Elkan (2021) applied Bayesian
methods to predict disk drive failures. The study uses
Bayesian networks to model the probability of drive
failures based on SMART attributes. In comparison, their
method provides a probabilistic approach to prediction
which is insightful for uncertainty estimation but did not
align with the needs for precise regression predictions.
With existing works mostly with statistical analysis and
machine learning classification, there is a potential gap
in exploring more comprehensive array of regression
techniques, including advanced polynomial and non-
linear regression models that might capture more
complex relationships in the data.

Research Question

Which regression model provides the best
performance in predicting hard drive failures based on
the identified predictors?
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II. LITERATURE REVIEW

Predicting failures is vital aspect of maintenance
strategies which target is to prevent unplanned
downtimes (Leukel, Gonzalez and Riekert, 2021).
Concerning hard drive, while it is a resource that has
been commonly adopted as a major storage device due
to its cheap price and stability, rapid expansion of data
storage systems expose it to failure (Gers, Schmidhuber
and Cummins, 2000; Manousakis et al. 2016).
According to Bairavasundaram et al. (2008), as disk
capacity increases, chances of errors and data loss
becomes high. By all standard, failure is costly and it is
necessary they are detected or predicted (Murray,
Hughes and Kreutz-Delgallo, 2005). Historical dataset
based on SMART convention has aided utilization of

machine learning in detection and prediction framework.
Self-Monitoring and Reporting Technology (SMART)
system uses attributes retrieved when hard drive
perform and also during off-line tests to fix a failure
prediction flag (Murray, Hughes and Kreutz-Delgallo,
2005). In most case, the SMART attributes in hard drive
historical data is enormous while possessing target
variable that enable classification (failure detection: yes
or no) and regression (temporal prediction). Even when
the data is primarily available and embedded with
continuous and temporal attributes, most research in
this domain focuses more on classification. Perhaps as
it is good to detect the occurrence of failure, it is
essential to predict when it is likely going to happen. A
quick and random search on Google Scholar produced
predictions based on classification (Table 1)

Table 1: Existing works on Hard Drive Prediction

Problem

Author ;
Formation

Machine Learning Techniques

Aussel et al. 2017 Classification

SVM, Random Forest and Gradient Boosting

Shen et al. 2018 Classification

Random Forest

Garcia et al. 2018 Classification

Naive Baye, SVM and Neural Network

Amran et al. 2021 Classification

Optimal Survival Trees and Optimal Classification Trees

Chhetri et al. 2022 Classification

Relational Graph Convolutional Neural Network

Ahmed and Green 2022 Classification

Random Forest, GBM and Logistic Regression

Wang et al. 2023 Classification

Naive Baye,
Decision Tree, CNN and LSTM

Random Forest, SVM, Gradient Boosted

Zhang et al. 2023 Classification

SVM, Random Forest, Gradient Boosted Decision Tree and
LSTM

Gour and Waoo 2023 Classification

LightGBM, Random Forest, Decision Tree, Deep Neural
Network, Convolutional Neural Network and Recurrent Neural
Network

Unlike many other investigations adoption
classification problem, Anantharaman, Qiao and Jadav
(2018) uses regression techniques to estimate the
remaining useful life of hard disk drives directly. This
contrasts with typical predictive models that classify
whether a hard disk will fail within a specific timeframe.
Random Forest and LSTM were used to analyse SMART
attributes with focus of capturing historical temporal
patterns that signify deterioration over time. The study
evaluates the models based on their Mean Absolute
Error (MAE), standard metric for regression tasks. While
confidence level of models (R?) were not reported in the
work, Random Forest model achieved an MAE of 22.66
without a sliding window and 24.08 with a sliding
window of size 10. For the LSTM models, the Many-to-
One configuration recorded MAEs of 27.62 without a
sliding window and 24.81 with it, at the same time the
Many-to-Many setup had MAEs of 23.26 and 29.04 for
the respective window configurations. Notably, the
Piece-wise RUL approach in the Many-to-Many model
significantly improved performance, yielding MAEs of

© 2024 Global Journals

8.15 without a sliding window and 9.31 with a sliding
window of size 10. Research by Zufle et al. (2020)
applied both classification and regression to the
prediction of hard drive failure using random forest
machine learning techniques. Just like Anantharaman,
Qiao and Jadav (2018), the confidence level metrics
were not explicitly presented; the unfiltered data
achieved a Mean Absolute Error (MAE) of 10 hours and
a Root Mean Square Error (RMSE) of 44.6 hours and the
pre-filtered data significantly improved these metrics,
with an MAE of 4.5 hours and an RMSE of 12.8 hours. To
explore more insights based on temporal and
continuous-based predictions, this research will apply
four machine learning regression including random
forest, decision tree, SVM, Gradient Boosting and
Neural Network.

I11. DATASET COLLECTION

Based on the view of Ruggiano and Perry (2019),
secondary data can be collected and used to address
new questions. A suitable and relevant dataset to
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achieve the study aim and obijectives is sourced from

Kaggle Hard Drive Test Data (kaggle.com). The dataset

originated from BackBlaze and it is based on SMART
df = pd.read_csv('../input/hard-drive-test-data/harddrive.csv')

print{df. shape]|
df.head()

(2179295, 55)

statistics which  makes it
computational handling.

readily available for

date serial_number model capacity bytes failure smart_1_normalized smart_1_raw smart_2_normalized smart_2_raw smart_3_normalized ...
0 20 Muo3sIYNGIZOXA oo o TN g 450900311 0 100 0 1350 108.0 143
1 e 7305820N ST4000DMO0D  1.976651311 0 13 54551400 NaN NaN 9%
2 53_1051' MJO351YNGIZTLA Hnsmsosmmcs'g 1.482490e-311 0 100 0 136.0 104.0 124
3 20 muossTNGABYAA oo PR 14824900311 o 100 0 1360 1040 137
o Eils WD \WDCWD3OEFRX  1.482490e311 0 200 0 NaN NaN 175

01-0 WMC4NZE99475

5 rows x 95 columns

-]

Figure 1: Extract of Hard Drive Performance Dataset

The dataset (Figure 1) contain data related to
hard drive diagnostics with various attributes and
readings from S.M.A.R.T (Self-Monitoring, Analysis, and
Reporting Technology) data. The observation date is
measure with attribute named “date”. The “serial
number” is the unique identifier for each hard drive,
while the “model” denotes the model number of the
hard drive. The drive’'s capacity is represented by
“capacity_bytes”, which is the size of the storage. The
attribute “failure” is a binary indicator (0 or 1) where '1'
indicates that the hard drive failed on this date. This

df = df.loc[:, ~df.lsnull().aldl(}]
print (df . shape )

(3179295, 1)

# nember of hdd
print(“rmmber of had:®, df] serial_nusber'].value_counts

# number of differsnt types of harddrives
print({“mumber of different harddrives®, df]

(4]

rumber of hdd: (65953,)
nusber of different harddrives (83,)

falled_hdds = df.loc[df.failuress1]["serial_mmber=]
Len{ failed_hdds)

H

15

df = df.loc[df[~serial_number®].isin(failed_hdds)]
of . shape

[

(5490, 21}

‘mode]” ].value_counts(

attribute is used in prediction based on classification as
the target variable. The remaining ninety attributes
(columns) represent normalized and raw values of
different SMART attributes which measure the health
and performance of the hard drive. The preprocessing
script (Figure 2) cleans the data by removing empty
columns, identifies unique drives and models, isolates
the subset of data concerning failed hard drives and
provides basic counts that help understand the
composition of the dataset.

«Shape )

«Shape |

Figure 2: Extract of Data Pre-Processing

IV. MODEL DEVELOPMENT AND
[MPLEMENTATION
a) Decision Tree

Decision Tree is executed using the
DecisionTreeRegression function (Figure 3). The function

builds a regression tree by recursively splitting the
dataset based on feature values to minimize variance
within the target variable which ensure each split results
in subsets with reduced variance compared to the
parent node. The implementation starts by confirming
that the dataset can be split further based on the
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minimum sample size or maximum tree depth; if not, it
returns the mean target value of the dataset as a leaf
node. The function iterates over all possible splits for
each feature, computes the variance reduction for each

and selects the split that maximizes this reduction.
When the best split is achieved, the dataset is divided
and the function is called recursively for each subset
until leaf nodes are formed.

Function Decision_Tree Regression(Data, Depth, Max_Depth, Min_Split_Size)
// Input: Data - the dataset for building the regression tree
// Depth - the current depth of the tree
// Max_Depth - the maximum allowable depth for the tree
// Min_Split_Size - the minimum size of the dataset to allow further splits

1. If Data has fewer rows than Min_Split_Size or Depth equals Max_Depth:
2. Compute and return the mean of the target variable in Data (create a leaf node)

3. Initialize best_score to infinity // Used to track the best variance reduction found
4. Initialize best_split to null // Stores the best feature and split point

5. For each feature in Data:
6. For each possible split point within this feature:
7. Split Data into two subsets (Data_Left and Data_Right) based on this split point
8. Calculate the sum of squared residuals from the mean in both subsets
9. Compute the variance reduction as the difference between the variance before and after the split
10. If the variance reduction is greater than best_score:
11. Update best_score with this variance reduction
12. Update best_split with this feature and split point

13. If best_split is null: // No valid split was found
14. Compute and return the mean of the target variable in Data (create a leaf node)

15. Use best_split to partition Data into Data_Left and Data_Right
16. Create a node that stores the feature and split point from best_split

17. Recursively apply Decision Tree Regression to Data_Left:
18. Left_Child = Decision_Tree_Regression(Data_Left, Depth + 1, Max_Depth, Min_Split_Size)

19. Recursively apply Decision_Tree Regression to Data_Right:
20. Right_Child = Decision_Tree Regression(Data_Right, Depth + 1, Max_Depth, Min_Split_Size)

21. Attach Left_Child and Right_Child to the current node as its branches

22. Return the current node // This node now represents the decision at this level of the tree
End Function

Figure 3: Pseudocode for Implementing Decision Tree

The model by the decision tree technique
provides a strong alignment between actual and
predicted values along the central line but it exhibits
noticeable variance and outliers (Figure 4). This
indicates that while the Decision Tree will predict hard
drive failures using the SMART dataset while its
predictions are less stable and accurate with more
frequent errors.
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Actual vs Predicted Values (Decision Tree)
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Figure 4. Decision Tree Prediction Outcome
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b) Random Forest

The algorithm is implemented by creating an
empty list, forests, to store the decision trees (Figure 5).
For each tree in the list forest, it generates a
bootstrapped sample of the training data. It fits a
decision tree regression model using specified
parameters like the number of features to consider for

each split, the minimum number of samples required to
split a node and the maximum depth of each tree. These
trees are appended to the forests list. To make
predictions, the predict function aggregates predictions
from all trees for the test data, averaging their outputs to
produce the final prediction.

Inputs:
data: training dataset
n_trees: number of trees in the forest

max_depth: maximum depth of each tree
Begin

forests = []

forifrom 1 ton_trees do
bootstrapped data = bootstrap _sample(data)

forests.append(tree)
end for
function predict(test_data)
predictions = []
for tree in forests do

n_features: number of features to consider for each split
min_samples_split: minimum number of samples required to split a node

tree = DecisionTreeRegression(bootstrapped_data, n_features, min_samples_split, max_depth)
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predictions.append(tree.predict(test_data))
end for
final_prediction = average(predictions)
return final_prediction
end function
End

Figure 5: Pseudocode for Implementing Random Forest

The outcome of random forest showed model
that is highly effective at predicting hard drive failures
using the SMART dataset (Figure 6). However, there are

some deviations particularly at higher value ranges and
this indicate instances where the model's predictions are
less accurate.

Actual vs Predicted Values (Random Forest)
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@ Actual
100 -
80 A
(P
a
= @
5 o
T 60 1
S
h =)
p
(=W
i e
40 J; .
®
20 1
0 -
0 20 40 60 80 100 120

Actual Values

Figure 6: Random Forest Prediction Outcome

c) Support Vector Machine (SVM)

From Figure (7.), the implementation begins by
initializing the dataset by specifying parameters like
epsilon (for error tolerance), the regularization parameter
(C), and the kernel type (linear, polynomial, or radial
basis function). The kernel function is defined based on
the selected kernel type which transforms the input data
into a higher-dimensional space to enable separation.
For each data point in the training set, the loss function
is computed considering the hinge loss for points
outside the epsilon margin and at the same time the
model parameters are optimized using an algorithm like

© 2024 Global Journals

Sequential Minimal Optimization. The training continues
iteratively until convergence criteria are met, after which
the final model parameters are saved to enable the SVM
to predict hard drive failures on new instances by
computing their positions relative to the support vectors
and summing the weighted contributions.
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1. Input:

- Data: Dataset containing features and target values

- Epsilon: Specifies the epsilon-tube within which no penalty is associated in the training loss
function with points predicted within a distance epsilon from the actual value

- C: Regularization parameter, which defines the trade-off between achieving a low error on the
training data and minimizing model complexity for better generalization

- Kernel Type: Type of kernel function to use ( linear, polynomial, radial basis function)

2. Initialize the model parameters (weights and bias) to zero or small random values

3. Define the kermnel function based on Kernel Type:
- If linear: Use the linear dot product
- If polynomial: Use (gamma * dot_product + coef0) ™~ degree
- If radial basis function (RBF): Use exp(-gamma * |a-b| ~2)

4. For each instance in the training Data:
- Calculate the loss function considering:
- Hinge loss for points outside the epsilon margin
- Regularization term using C

5. Use an optimization algorithm (e.g., Sequential Minimal Optimization) to:
- Select a subset of training instances as support vectors
- Optimize the model parameters to minimize the objective function (loss + regularization)

6. Continue iterating over the training set until convergence criteria are met, such as:
- No substantial change in the loss function
- Reaching a maximum number of iterations
7. Save the model parameters (support vectors, weights, bias) after training is complete
Testing:
1. Input:
- Model: The trained SVM regression model (containing support vectors, weights, bias)
- New_Data: New instances for which to predict the target values
2. For each instance in New_Data:
- Compute the prediction by applying the kernel function between the new instance and each

support vector, scaled by the corresponding weight, and summed with the bias

3. Return the predictions for all instances in New Data

Figure 7: Pseudocode for Implementing SVM

The outcome (Figure 8) indicates that the
Support Vector Machine (SVM) model struggles with
accurately predicting hard drive failures as evidenced by
the clustering of predicted values around specific
ranges and significant deviations from the actual values.
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Actual vs Predicted Values [SVR)
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Figure 8: SVM Prediction Outcome

d) Gradient Boosting

The implementation of Gradient Boosting starts
with initializing the model, which initially predicts the
mean of the target values (Figure 9). For each of the
specified number of trees, the model computes the
residuals (differences between actual target values and
current predictions), which serve as the target for fitting
the next tree. Each new tree is trained on these

residuals, adhering to constraints like maximum depth
and minimum samples required to split. The model is
updated by adding the scaled predictions of the new
tree to the current model's predictions, iteratively
improving accuracy. This process continues until all
trees are built, making an ensemble model that makes
final predictions on new data by aggregating the
contributions of all trees.

1. Input:

- N_Trees: Number of trees to build (iterations)
- Max_Depth: Maximum depth of each tree

2. Initialize:

3. Fori=1toN Trees:

Min_Samples Split

- Data: Dataset containing features and target values
- Learning_Rate: Shrinks the contribution of each tree by this factor to improve model robustness

- Min_Samples_Split: Minimum number of samples required to split an internal node

- Model = an initial model which could just predict the mean of the target values of Data

4. Compute the residuals (negative gradient of the loss function) for each training instance:
- Residuals = actual target values - predictions from the current Model

5. Fit a new tree to the residuals using the feature values with the constraints of Max_Depth and

6. Predict the residuals for the training dataset using this new tree

7. Update the Model by adding the scaled predictions of the new tree:

© 2024 Global Journals
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8. Return the final Model
Testing:

1. Input:

initialization)

3. For each tree in the Model:

- Model = Model + Learning_Rate * new tree predictions

- Model: The trained Gradient Boosting model (ensemble of trees)
- New_Data: New instances for which to predict the target values

2. Start with the initial prediction (often the mean of the training target values if that was the

4. Update the prediction for each instance in New Data:
- Prediction += Learning_Rate * tree's prediction on New_Data

5. Return the final predictions for all instances in New Data

Figure 9: Pseudocode for Implementing Gradient Boosting

The results (Figure 10) indicate that the
Gradient Boosting model produces predictions that
align closely with the actual values, as seen by the
clustering of prediction dots around the line of equality.

However, there is a noticeable dispersion in the
predicted values, particularly at the lower and middle
ranges.

Actual vs Predicted Values (Gradient Boosting)
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Figure 10: SVM Prediction Outcome

e) Neural Network

The implementation (Figure 11) starts with
defining the network's structure and this includes the
number of input neurons (corresponding to the dataset
features), hidden layers and output neurons. The

network is initialized with random weights and biases for
each layer. During training, the network processes each
training instance by propagating inputs through the
layers with the application of activation functions at each
hidden layer and computation of the output. The loss
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function which stands for mean squared error measures  neural network is tested by passing new data through
the difference between the predicted and actual values the trained model to predict hard drive failures, with
while backpropagation is used to update the weights  aggregating predictions for final output.

and biases by minimizing this loss. After training, the

1. Input:

- Num_Input_Neurons: Number of neurons in the input layer, corresponding to the number of
features in the dataset

- Hidden_Layers: Number of hidden layers in the network

- Neurons_Per_Layer: Array containing the number of neurons in each hidden layer

- Output_Neurons: Number of neurons in the output layer

2. Structure:
- Create a network structure with the specified number of layers and neurons
- Initialize weights and biases for each layer randomly

3. Return the initialized network with weights and biases

1. Input:
- Network: Initialized neural network structure with weights and biases
- Data: Training dataset features
- Labels: Training dataset target values (continuous)
- Learning_Rate: Step size for updating the weights
- Epochs: Number of times to iterate over the entire training dataset

2. Training Process:
- For each epoch:
3. For each instance (Input, Target) in (Data, Labels):
4. Forward_Propagation:
- Compute the output of each layer starting from input to output layer
- Use activation functions like RelLU for hidden layers and linear for the output layer

5. Compute Loss:
- Calculate the mean squared error or another suitable loss function between the predicted
and actual values

6. Backward_Propagation:
- Calculate gradients of the loss function with respect to each weight and bias
- Update weights and biases using these gradients and the learning

Testing:

1. Input:
- Network: Trained neural network
- New_Data: New instances for which to predict the target values

2. Prediction Process:
- For each instance in New_Data:
3. Forward Propagation:
- Compute the output using the trained network starting from the input layer to the output layer

4. Collect and return all predictions for New Data

Figure 11: Pseudocode for Implementing Neural Network

© 2024 Global Journals
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The outcome (Figure 12) shows a significant
reduction in both training and validation loss over the
epochs, indicating that the neural network is learning
and improving its predictions for hard drive failures

using the SMART dataset. The close alignment between
the training and validation loss curves suggests that the
model generalizes well to unseen data, minimizing
overfitting and ensuring robust predictive performance.

Model Loss Over Epochs

3000

2500

2000

Loss

1500

1000

500 ~

—— Training loss
Validation loss

0 20 40

T
100
Epoch

Figure 12: Neural Network Prediction Outcome

V. RESULTS AND DISCUSSION

For the Decision Tree model (Table 2), the MSE
is 71.4943, with an R? of 0.9642, indicating a high
degree of accuracy. The Random Forest model has an
MSE of 24.7427 and an R? of 0.9876, suggesting even
better performance. The SVM model shows an MSE of

2888.8623 and an R2 of -0.4465, indicating poor
predictive capability. The Gradient Boosting model has
an MSE of 823.1132 and an R? of 0.5879, reflecting
moderate accuracy. Lastly, the Neural Network model
reports an MSE of 22.6011 and an R? of 0.7442, which
indicates good performance.

Table 2: Models Results

Models MSE R?
Decision Tree 71.4943 0.9642
Random Forest 24.7427 0.9876
SVM 2888.8623 -0.4465
Gradient Boosting 823.1132 0.5879
Neural Network 22.6011 0.74424

The Decision Tree model (Figures 13 and 14)
exhibits a relatively low MSE of 71.4943, indicating
minimal errors in predictions, and a high R? value of
0.9642, suggesting it explains a large portion of the
variance in the target variable effectively. The Random
Forest model performs even better, with a significantly

lower MSE of 24.7427 and an R? of 0.9876, indicating
excellent explanatory power. This shows that the
ensemble approach of combining multiple decision
trees improves prediction accuracy and robustness,
reducing the impact of overfitting associated with
individual trees.

© 2024 Global Journals

Global Journal of Computer Science and Technology ( D ) XXIV Issuc I Version I E Year 2024



Global Journal of Computer Science and Technology ( D ) XXIV Issue I Version I E Year 2024

PREDICTION OF HARD DRIVE FAILURE USING MACHINE LEARNING

Comparison of MSE for Different Models
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Figure 13: MSE for Selected Models

In contrast, the Support Vector Machine (SVM)
model performs poorly with a very high MSE of
2888.8623 and a negative R? value of -0.4465,
suggesting it fails to capture the relationship between
the features and the target variable and is worse than a
simple mean predictor. Gradient Boosting shows

moderate performance with an MSE of 823.1132 and an
R? of 0.5879, indicating more prediction errors and less
variance explained compared to the Decision Tree and
Random Forest models. While powerful, Gradient
Boosting may require more fine-tuning or may not be as
effective on the study’s dataset.
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The Neural Network model has the lowest MSE
of 22.6011, indicating very accurate predictions with
minimal errors, but its R? value of 0.7442, though high, is
not as close to 1 as that of the Random Forest,
suggesting some unexplained variance in the data.
Neural networks can be very powerful but require
substantial data and computational resources, and their
performance is highly dependent on the architecture
and training process. Overall, the Random Forest
perform best with the lowest errors and highest
explanatory power. The Neural Network also performs
well with very low errors but slightly less explanatory
power. The Decision Tree model demonstrates strong
performance with good accuracy and explanatory
power, while Gradient Boosting has moderate
performance. The SVM is not suitable for this task based
on the given metrics.

V1. CONCLUSION, RECOMMENDATION AND
LIMITATIONS

The research into predictive modeling for hard
drive failures using various regression techniques has
shown remarkable insights into the efficiency of different
models in this domain. The Random Forest and Neural
Network models emerged as the best predictors as they
demonstrated the highest accuracy and predictive
power. The Random Forest model, with an MSE of
24.7427 (minimal predicting error ), and an R? of 0.9876
proved highly effective in capturing the complex
relationships within the SMART dataset. Similarly, the
Neural Network model exhibited strong predictive
capabilities, with an MSE of 22.6011 and an R? of
0.7442, which indicates robust performance and
generalizability. Based on the performance metrics, both
random forest and neural network is recommended for
predicting hard drive failures. Despite the promising
results, a few limitations exist:

1. Model Interpretability: While Random Forest and
Decision Tree models offer relatively high
interpretability through feature importance, Neural
Networks and Gradient Boosting model can be
perceived as black-box models. Techniques like
SHAP and LIME will help in the interpretability
process and overall models explainability.

2. Generalizability: The models were trained and
tested on a specific dataset. Their generalizability to
other datasets or different types of hard drives may
vary. Cross-validation and testing on diverse
datasets are important to ensure robustness.

3. Model Maintenance: Predictive models need
continuous monitoring and updating to maintain
accuracy over time. Changes in hard drive

10.

technology and operational conditions necessitate
periodic retraining of the models.

In conclusion, while the study demonstrates the
effectiveness of advanced regression techniques in
predicting hard drive failures, addressing these
limitations ~ through ~ ongoing research  and
development is essential for improving model
reliability and applicability in real-world scenarios.
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