Global Journals INTEX JournalKaleidoscope™

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

: A New View on Classification of Software Vulnerability
2 Mitigation Methods

3 Babak Sadeghiyan! and Maryam Mouzarani?

4 ! Amirkabir University of Technology

5 Received: 6 December 2016 Accepted: 3 January 2017 Published: 15 January 2017
6

7 Abstract

s Software vulnerability mitigation is a well-known research area, and many methods have been
o proposed for it. Some papers try to classify these methods from different specific points of

10 views. In this paper, we aggregate all proposed classifications and present a comprehensive

1 classification of vulnerability mitigation methods. We define software vulnerability as a kind
12 of software fault, and correspond the classes of software vulnerability mitigation methods

13 accordingly. In this paper, the software vulnerability mitigation methods are classified into

12 vulnerability prevention, vulnerability tolerance, vulnerability removal and vulnerability

15 forecasting. We define each vulnerability mitigation method in our new point of view and

16 indicate some methods for each class. Our general point of view helps to consider all of the

17 proposed methods in this review. We also identify the fault mitigation methods that might be
18 effective in mitigating the software vulnerabilities but are not yet applied in this area. Based
19 on that, new directions are suggested for the future research.

20

21 Index terms—

» 1 Introduction

23 oftware is an important part of a computer system. Being complex or created by incompetent developers,
24 faults might be introduced to the software. There are faults that cause violating the system security. These
25 faults are called vulnerability. There has been much research on preventing, detecting and analyzing software
26 vulnerabilities.

27 By the time of writing this paper there is a number of surveys on the methods of mitigating vulnerabilities,
28 ie. [1], [2], [3] and [4]. Among them, [4] surveys the static analysis vulnerability detection methods that are
20 applied in three areas that are associated with sources of vulnerabilities, i.e., accesscontrol, information-flow and
30 application-programmingconformance. It reviews around 88 papers. The studied methods, however, do not cover
31 all the software vulnerability classes. Static analysis methods are also surveyed in [3]. It reviews 23 papers and
32 classifies their methods with a different point of view. In [1] static and dynamic analysis methods are classified
33 and 18 papers are briefly reviewed. The classification for static analysis methods presented in that paper is
34 similar to the on in [3]. The most comprehensive survey is presented in [2] by Shahriar et al. in 2012. They
35 review 173 papers and classify their methods in four classes, i.e., static analysis, dynamic analysis, monitoring
36 and hybrid analysis.

37 In this paper, we present a new definition for software vulnerability. Based on this definition, vulnerability
38 mitigation methods are classified and reviewed with a new point of view. We use the general classification of
39 fault mitigation methods as a base and extend it to a detailed classification of software vulnerability mitigation
40 methods.

41 Our comprehensive classification aggregates many of the classification presented in the previous surveys, i.e.,
a2 [1], [3], [2] and [5]. Also, the general perspective applied in our survey helps to identify the fault mitigation
43 methods that are not yet used in mitigating software vulnerabilities. Since we consider the software vulnerability

44
45
46
47
48

49

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
01
92
03

94

95
96
97
98
99
100
101
102
103

4 III. VULNERABILITY MITIGATION METHODS

as a type of fault, these methods may be helpful in mitigating software vulnerabilities. We suggest new directions
for the future researches based on our analysis during the review of the proposed vulnerability mitigation methods.
In this paper, our definition of software vulnerability is presented in section II. Based on this definition,
software vulnerability mitigation methods are classified in section III. In this section, each class is described in
details and some examples are reviewed. Section IV concludes the paper and presents some future directions.

2 1L
3 Defining Software Vulnerability

To review vulnerability mitigation methods, a precise definition of software vulnerability is required. Different
researchers have suggested definitions for this term which are nearly analogous but have differences. Matt Bishop
et al. define software vulnerability by modeling the software as a state machine in [6], [7], [8] and [9]. In this
model, a vulnerable state is the state that let unauthorized reads, changes or accessibility modifications to a
source. They define vulnerability as a property in the system that let it enter into a vulnerable state. In [8]
Bishop defines vulnerability as a weakness that makes it possible for a threat to occur, where a threat is a potential
violation of security policy. Amoroso defines vulnerability as an unfortunate characteristic that allows a threat
to potentially occur [10]. There are other definitions of software vulnerability in relation with S security policy,
e.g. [11] and [1]. Most of them define it as a property, characteristic or weakness that may cause compromising
the security policy.

In order to clarify the terms property and security policy compromise, we redefine ”software vulnerability”.
We use the precise definitions for the concepts in software security and reliability that are presented in [12] and
construct our definition of software vulnerability. The taxonomy in [12] is presented in 2004 for the concepts of
software security and reliability, such as fault, error, failure, vulnerability and attack. The authors define fault as
the cause of error, while error is a state of the system that is probable to failure. Failure -or service failure is an
event in which the delivered service is deviated from the correct service. In fact, a fault may become active and
produce an error. Also the error may propagate inside the system and produce more errors. If the propagated
error reaches system boundaries and affects the services, it becomes a failure.

A service is defined in [12] as the behavior perceived by users in system boundaries. Correct services are
determined by the system specification. Some parts of the system behavior are specified by the security policy,
which is a partial system specification. Thus when a system deviates from the security policy, a security failure
occurs. This means that compromising security policy causes a security failure.

Faults are classified in [12] based on eight criteria, such as the phase of creation or occurrence, the objective, the
phenomenological cause, the system boundary and the dimension. All combinations of the eight elementary fault
classes would result in 256 different combined classes. The authors, however, believe that not all combinations
are possible. For example, there is no malicious non-deliberate faults, or all the natural faults are non-malicious.

An attack is defined in [12] as a malicious external fault. An attack may be either an external hardware
malicious fault, such as heating the RAM with a hairdryer to cause memory errors, or an external software
malicious fault, such as a Trojan horse [12]. The term vulnerability is also defined in [12] as an internal fault that
enables an external fault to harm the computer system, although harming the computer system is not clearly
defined.

According to the previous definitions, we consider software vulnerabilities as:

We have concluded this definition, out of the definitions in [12], [8], [10], [11] and [1], since looking a
vulnerability as a fault, instead of a property, better clarifies the concept of vulnerability by considering its
relation to error, security failure and thus security policy. Like faults, a vulnerability may be dormant and never
be activated. It also may be activated and propagated in the system. The activated vulnerability might never
reach the boundaries. As an example, suppose that a buffer overflow occurs and the value of a return address in
the stack changes as a result. But using a monitoring procedure, the unauthorized change is detected and the
program halts. Thus, the security policy is not violated. Monitoring the program, as a vulnerability detection
method, is explained in section III-B. When an active vulnerability reaches the system boundaries, it causes a
security failure. For example, an attacker may activate the format string vulnerability in a program and make
it print some confidential data from the memory [13]. Since the active vulnerability has reached the system
boundaries, it has made a security failure.

4 1II. Vulnerability Mitigation Methods

Since vulnerability mitigation is a well-known research area, a structured approach is required to review the
previous related works. In this paper, we review vulnerability mitigation methods using a new point of view.
We classify and review these methods based on how we define software vulnerability. In the previous section,
software vulnerability is defined as an internal software fault. Since we considered vulnerability as a type of
fault, the classifications of fault mitigation methods can be used as a base for classifying vulnerability mitigation
methods. Avizienis et al. present a classification for the means of mitigating the faults to achieve a secure and
dependable system in [12]. We use this general classification as a base and extend it into a detailed classification
of vulnerability mitigation methods. Our classification is illustrated in figure ??. The vulnerability mitigation
classes that are shown in figure 7?7 are described in more details in the following sections. This figure presents a

104
105
106
107

108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129

130
131
132
133
134
135
136

138
139

140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159
160
161
162

comprehensive view of the previous efforts in mitigating software vulnerabilities. Our classification also aggregates
the classifications presented in the previous surveys, such as the ones presented in [1], [3], [2]. Moreover, this
classification helps to identify the fault mitigation methods that can be applied to improve current software
vulnerability mitigation methods. This helps to suggest new directions for the future research.

5 a) Vulnerability prevention

Generally, fault prevention means avoiding the fault introduction and occurrence in the application during the
development. A fault may be introduced during any of the development phases: requirement analysis, design
and implementation. To prevent the occurrence of software vulnerabilities during these phases, software security
is emerged. Software security is the process of designing, building and testing software for security [14]. It
aims at designing and implementing a secure software and educating developers, architects and users to build
security in the software [14]. There are various secure software development methods presented by now, such as
Microsoft Security Development Lifecycle (SDL) [15], Security Quality Requirement Engineering (SQUARE) [16]
and McGraw’s secure development method [14]. Also, there are secure coding best practices that are suggested
for different programming languages. These best practices educate the programmers to prevent introduction of
well-known vulnerabilities during the coding phase, such as [17] for .NET framework, [18] for C/C++ and [19]
for Java.

The programmers’ lack of security knowledge is an important reason for the introduction of vulnerabilities.
Transferring the related information to the developers is an issue in vulnerability prevention. The SHIELDS
project was an example of the attempts in this area [20]. The goal in this project was to create a database
of security related information for programmers that can be used automatically. A unified modeling language
was proposed in SHIELDS for representing this information [21]. Using this language, it is possible to specify a
vulnerability class and its relations to the well-known attacks. It also helps to define the methods of preventing
a vulnerability class. Thus, it helps the developers to learn how to prevent vulnerabilities in order to achieve the
security goals of the application. Some tools were also developed based on this language in that project, such as
GOAT [20] and TestInv-Code [22].

6 b) Vulnerability Tolerance

In spite of vulnerability prevention efforts, vulnerabilities are created. Thus, vulnerability tolerance is required.
Generally, fault tolerance methods accept the existence of faults and focus on preventing the activated faults
from reaching the system boundaries and causing a failure. Fault tolerance is usually performed in two steps:
error detection and recovery [12]. Therefore, we study monitoring methods based on three aspects: the applied
error detection, error handling and fault handling techniques. Please note that since we look a vulnerability
as a fault, we consider error as an active vulnerability. Thus, the mentioned three aspects are also named as
active vulnerability detection, active vulnerability handling and vulnerability handling techniques respectively.
Fig. ??7: Our classification of vulnerability mitigation methods according to the classification of fault mitigation
methods in [12]. The boxes with dashed borders show the methods that have not been used in mitigating software
vulnerabilities yet.

7 C Error detection (active vulnerability detection)

There are vulnerability mitigation methods that control the execution of a program and detects active
vulnerabilities at run-time. These methods are also called monitoring methods [2]. Various active vulnerability
detection techniques have been used in the proposed monitoring methods. Some examples are monitoring the
memory and validating its integrity [23], [24], [25], controlling the flow of user provided data (taint analysis) [26],
[27], [28], [29] and validating the arguments of specific functions [30], [31], [32].

For example, the return addresses of functions in the stack memory of the program are monitored in [23], [24]
and [25] to detect stack overflows at run-time. If any unauthorized changes of the return addresses is detected, it is
concluded that a buffer overflow vulnerability has become active in the program. Some monitoring methods track
the flow of user provided un-trusted data at run-time and react appropriately if the untrusted data reach sensitive
statements in the program, such as [26], [27], [28], [29]. This method is used to tolerate various vulnerabilities,
such as DOM-based XSS [29], SQL injection [26], [27], [28], buffer overflow [26], [27], [28] and format string [26],
[27], [28]. Some monitoring methods locate specific functions in the program and control their arguments during
the program execution, such as [30], [31] and [32].

For example, in [31] the program code is analyzed statically and the query strings, that are used as the
arguments of SQL functions, are parsed to extract the ASTs of legitimate queries. In this method, the code
is instrumented to control the values of SQL queries before executing the relevant functions. Before executing
a query with un-trusted data, the monitoring procedure extracts the AST of the query. It then compares the
extracted AST with the AST of the legitimate queries. Any inconsistency between the two ASTs might reveal a
malicious query. Thus, an appropriate reaction is taken by the monitoring procedure to prevent security failures.

Detecting the errors may be performed during the normal service delivery (concurrent detection). Also, it may
be performed in specific times in which the application does not deliver services (preemptive detection). The
latter is usually applied to eliminate the negative effects of software aging. All the studied monitoring methods

163
164
165

166

167
168
169
170
171
172
173
174
175

176

177

179
180
181
182
183
184
185
186

188
189
190
191
192
193
194
195

197
198
199

201
202
203
204

206
207
208

210
211
212

213

214
215
216
217
218
219
220
221

10 C) VULNERABILITY REMOVAL

detect active vulnerabilities during the normal service delivery. However, preemptive error detection can be used
to detect the activation of vulnerabilities that makes the program overuse the system resources, like the memory
leakage vulnerability.

8 Error handling (active vulnerability handling)

After an error is detected, it is handled in one of three ways: rollback, roll-forward and compensation.

Many of the presented monitoring methods focus on detecting active vulnerabilities, but less attention is paid
to handling the active vulnerabilities. It seems that more effort is required on designing appropriate handling
methods for active vulnerabilities. Although halting the program and throwing an exception prevents a successful
attack, they violate the availability of the software to the legitimate users. Thus, it may result in deniable of
service. Therefore, more intelligent active vulnerability handling techniques should be designed for the monitoring
methods. Since the rollback technique is usually used for the transient faults and software vulnerability is
a permanent fault, this technique cannot be applied in the monitoring methods. Thus, the roll-forward and
compensation techniques can be used to design more intelligent active vulnerability handling methods.

9 Fault handling (vulnerability handling)

After handling the error, sometimes fault handling is performed to remove the fault and prevent the similar
errors in the future. Of course, sometimes the fault is handled immediately after error detection. Fault
handling is performed by first recognizing causes of the Using the rollback method, the system is restored to
a previously stored error-free state. Then, the program continues normal execution from the restored state. In
some applications, such as real-time applications, there is no time to rollback. Thus, roll forwarding is performed
to change the system state into a degraded new state that contains no errors. Then, the program executes
normally from the degraded state. Roll-forwarding is applicable for predictable errors. Another error handling
method is compensation. In this method, the redundancy in the current state is used to mask the error and
let the program continues the execution. Many of the monitoring methods halt the program and generate an
error message when they detect an active vulnerability, e.g. [32], [27], [33], [24]. In other words, many of the
monitoring methods do not perform error handling. Some monitoring methods call an exception handler and
take the program to a pre-defined state [34], [26], [28]. Most of the monitoring methods that are used for web
applications ignore the requests that result in errors and continue normal execution [30], [31], [35], [29]. Calling
exception handlers and ignoring the malicious requests can be considered as simple rollforwarding actions, since
the erroneous state is changed into an error-free state and the program continues normal execution. However,
more intelligent reactions can be performed after detecting active vulnerabilities. For example, in ?7736] the stack
content and return addresses are stored to compensate for buffer overflow errors. When a buffer overflow error
is detected, the monitoring procedure uses the stored data to help the program continue execution securely.

error. Usually, the faulty component is isolated to prevent the future activation of the fault. A spare faultfree
component is then replaced by the faulty one. The system is reconfigured based on the new structure. We are not
aware of any monitoring method that consists of a vulnerability handling procedure. However, there are some
specific methods for automatically patching the software vulnerabilities, such as [37], [38], [39], [40] and [41].
These methods might be usable in the proposed vulnerability tolerance methods to handle the vulnerabilities.
The automatic patching methods analyze the malicious data that is used in an attack and modify the program to
filter similar data in the future. These methods can be combined with preemptive active vulnerability detection
techniques to generate a complete vulnerability tolerance solution.

Table 7?7 summarizes the presented vulnerability tolerance methods so that the reader can review them easier.
To sum up, there are various monitoring methods with enhanced error detection mechanisms presented by now.
These methods pay more attention to detecting the errors. This might be due to the difference between software
vulnerability and the other faults. Usually, software vulnerability is activated by malicious external faults.
Therefore, detecting an active vulnerability reveals an ongoing attack. The software should resist the attack
as soon as possible to prevent further damages. Thus, the quick detection of the active vulnerability is very
important. Halting the program is the fastest low-risk response to the attack. However, it makes the program
unavailable to the legitimate users as well. Thus, more intelligent error handling and vulnerability handling
techniques should be added to the monitoring methods. To do so, a good starting point is inspiring by the
current fault handling and error handling techniques and designing software vulnerability handling techniques.

10 c¢) Vulnerability removal

Vulnerability removal is performed to detect and remove the vulnerabilities that are created in software despite the
vulnerability prevention efforts. Based on figure 77, the fault removal process consists of four steps: verification,
diagnosis, correction and nonregression verification. During the verification step, it is verified if the system
adheres to the specification. If not, the reason (fault) is diagnosed and corrected. After removing the fault, the
verification is repeated to check if the removal was effective. The verification at this step is called non-regression
verification.

Most of the vulnerability removal methods focus on the verification step and don’t suggest any diagnosis or
correction methods for the detected vulnerabilities. There are, however, special vulnerability diagnosis methods

222
223
224
225
226
227
228
229

231
232
233
234
235
236
237
238

240
241
242
243
244

245

246

247

248
249
250
251
252
253
254
255

256

257
258

260
261
262

263

264
265

267
268
269
270

271

272
273
274

that diagnose the vulnerabilities that are exploited by malicious users. For example, in [42] exploitation of
memory corruption vulnerabilities is detected and then the exploited vulnerability is automatically diagnosed.
The result of diagnosis consists of the instruction that are exploited by an attacker to corrupt critical program
data, the stack trace at the time of memory corruption and the history that the corrupted data are propagated
after the initial corruption. This information helps the developers to remove the diagnosed vulnerabilities. We
could not find any vulnerability diagnosis or correction procedure that is used after the verification step of a
vulnerability removal method. We need vulnerability diagnosis and correction procedures that can be used after
the verification step, not after detecting an attack. In other words, these procedures should not be based on the
attack information, but based on the information achieved during the verification step.

Some vulnerability detection methods perform the verification step by checking if the software adheres to
the security specification, while some of them verify if specific vulnerabilities exist in the software. Figure 77
illustrated our classification of vulnerability verification methods. We divide the verification methods into three
main classes: static, dynamic and hybrid methods.

i. Static analysis Static analysis methods do not execute the program. Instead, they examine the program
code and study its possible behaviors. Therefore, the result of static analysis is true regardless of the input data
and static methods are usually sound and conservative [43]. A sound method is able to detect any specified
vulnerability in the program. In other words, if a vulnerability is defined for the static analyzer and exists in a
program, the analyzer will surely find it. In order to be sound, the analyzer produces conservative results that
are weaker than the actual ones and may not be very useful [43]. In fact, static analysis is appropriate in proving
the absence of a specific vulnerability. Usually static analyzers create many false alarms, hence they cannot be
very useful in proving the existence of a specific vulnerability. Static analysis may be performed on the program
or on the behavior model of the program [12]. Thus, static analysis methods are divided into two main classes:
program-based and modelbased methods.

11 ii. Program-based methods

As figure 7?7 shows, these methods are classified into seven subclasses. Each class is explained as follows.

12 Pattern Matching

The most basic static analysis method is pattern matching. A pattern matcher considers the program as a
text file. It may not even distinguish between the code and the comments. The pattern matcher searches for
vulnerable functions or patterns in the text of the program code. Thus, this method can be implemented using
any pattern matching utility, such as grep. Such a tool needs a database of the vulnerability patterns. As an
example, Flawfinder [44] scans C/C++ programs to detect buffer overflow or format string in them. This tool
ignores the text inside the comments and strings. However, it does not recognize the type of function parameters
and control flow or data flow of the program. This lack of knowledge results in many false decisions. Thus, it
makes many false positive and false negative alarms.

13 Lexical analysis

In this method, source code of the program is tokenized in order to recognize the variables and function arguments.
Thus, the results of a lexical analyzer can be more accurate than the results of a pattern matcher. As an example,
the tool I'TS4 applies lexical analysis to detect buffer overflow, format string and race condition vulnerabilities
in C or C++ programs [45]. ITS4 scans the source code statically and breaks it into series of lexical tokens.
These tokens are compared with the token streams that are defined in a vulnerability database. The vulnerability
database contains several handlers for well-known vulnerable functions in C/C++.

14 Parsing

In this method, source code of the program is parsed and represented in Abstract Syntax Trees (AST). The
ASTs are then used to analyze the program syntactically and semantically. For example, Lint uses this method
to detect vulnerabilities in programs written in C [46]. As another example, in [47] the ASTS of the source code
are extracted and compared to the ASTs of different vulnerable codes. The main idea in [47] is that different
vulnerabilities in software may be related to the same flawed programming pattern. Thus, the suggested method
uses the ASTs of known vulnerable codes and searches for similar patterns in the target program. When a similar
pattern is found in the program, it may reveal an unknown vulnerability.

15 Data flow and taint analysis

In this method, the flow of data among the instructions is analyzed to determine possible values that a variable
holds during the run time. Two wellknown program representations are used in this method: control flow and
data flow graphs. In a control flow graph, each node represents an instruction and a

275

276
277
278
279
280
281
282

284
285
286
287
288
289
290
201
292
293
294
295

296

297

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

316

317
318
319
320
321
322
323
324
325
326
327
328
329

330
331
332
333

19 THEOREM PROVING

16 Global Journal of Computer Science and Technology

Volume XVII Issue I Version I [48] extracts the control flow and data flow graphs from the source code. It then
compares extracted graphs with some patterns of known vulnerabilities. In this method, known vulnerabilities
are specified as simple patterns of vulnerable functions or more complex flow-based rules.

A subclass of data flow analysis is called taint analysis. A taint analyzer only tracks the flow of data that come
from un-trusted resources. The un-trusted resources include the network protocols, keyboard, touchpad, webcam,
files, etc. Since most of the vulnerabilities are exploited by un-trusted input data, this method pays attention
to the flow of un-trusted input data in the program. If such data reach sensitive statements in the program, a
vulnerability may be reported by the taint analyzer. The sensitive statements, called sinks, are defined according
to the specified vulnerabilities. For example, the functions that execute SQL queries are usually defined as the
sinks for SQL injection vulnerability. The propagation of tainted data among the instructions is determined based
on some predefined rules. For example, if the data in a tainted variable is assigned to an un-tainted variable, the
untainted variable will get tainted too.

Taint analysis is used in many of the proposed vulnerability detection solutions, e.g. [49], [50], [51], [52] and [53],
to detect various vulnerability classes. Since this method focuses on the flow of tainted data, it does not consider
the execution paths in the program that are not affected by malicious data. This feature reduces the time of
analysis and number of produced false positives. However, there are vulnerability classes that cannot be specified
in such a source-sink structure, e.g. logic vulnerabilities. Although an attacker exploits logic vulnerabilities with
malicious data, the sinks cannot be easily specified for this class of vulnerability. For example, the sinks for
SQL injection vulnerability are the query execution statements. But a sink for logic vulnerabilities may be any
statement that manipulates the input data.

17 Annotation-based methods

Annotation is a comment that the programmer makes in the code about the desired behavior of a function or
an instruction. It may be defined as a set of pre-and post-conditions or as simple pre-execution conditions.
An annotation-based analysis algorithm reads the annotations, analyzes the code statically and verifies if the
conditions are met in the program. There are plenty of annotation languages presented so far, such as SPLINT
[54], MECA [55], Sparse [56], SAL [57] and a Comment [58].

Since there is a huge number of statements and functions in the programs, manual annotation is usually very
time consuming and fault prone [58]. There are annotation languages that provide some facilities to annotate
the program more easily, such as MECA [55] and aComment [58]. Among them, aComment is designed to help
in detecting concurrency faults in the operating systems and allows the programmers to define the pre-and post-
conditions that are related to the interrupts in each function. It also infers the annotation of some functions
automatically to reduce the programmers’ workload. In this way, the programmers are not supposed to annotate
all the functions manually.

Although some of these languages help in reducing the required time and effort for annotating the programs,
they usually have a different syntax and directed edge between two nodes represents their semantics than the
applied programming languages. Therefore, the programmers and verifiers have to make extra efforts to learn
another language in order to use this method. Also, the programmers should be familiar with the security
requirements of the programs and the vulnerability classes to annotate the program appropriately. Therefore,
the success of this method depends on the programmers’ knowledge of software security. Moreover, this method is
not helpful in analyzing the COTS 1 software and third party components since their source code is not available.

18 Constraint analysis

In this method, the program is analyzed statically and some constraints are calculated for specific objects in it.
The constraints are defined according to specific vulnerabilities and are solved to verify if the program suffers
from those vulnerabilities. Constraint analysis was first proposed by Wagner et al. in [50]. The resulted tool,
called BOON, considers the strings in a C program as an abstract data type. There are also predefined functions
that manipulate this data type, such as strcpy(), strcat(), etc. BOON summarizes the state of each string by two
integer values: the allocated size for the string and its current length. For each string in the buffer, it analyzes
the string manipulating statements in the program to verify if the length of the string exceeds its allocated size.
If such condition is inferred, the program might contains buffer overflow vulnerabilities.

It is important to note that the constraints are determined by the analyzer in this method, not by the
programmer. This makes the constraint analysis method different from the annotation-based analysis method.

Moreover, constraint analysis does not increase the programmer’s workload since generation of the constraints
is performed automatically and does not involve the programmer. Of course, it cannot profit the programmers’
knowledge of the code to do a more efficient analysis.

19 Theorem proving

In this method, the software and its specification are expressed as some formulas of logics or algebraic systems.
Also, the security requirements of software are expressed as some theorems. Proving these theorems demonstrates
the satisfaction of the security requirements. Otherwise, there is a fault (vulnerability) in the program. As an

334
335
336
337
338
339
340
341
342

343
344
345
346
347

348
349
350
351
352
353
354

355

356
357
358
359
360
361
362

363

364
365

366

367

368
369
370
371
372
373
374
375
376

377

378
379
380
381
382
383

384

385

example, in [59] the source code of target program is statically analyzed and some firstorder formulas are generated
that assert the absence of certain faults and vulnerabilities, such as out-of-bounds array access. If the generated
asserts are proved, the program does not contain such faults and vulnerabilities.

Although the results of analysis are accurate in the theorem proving methods, they demand expertise and
enough experience. In fact, theorem proving is difficult to be achieved automatically and requires highquality
staff to apply this method, which is very timeconsuming. So it is generally used to verify correct design rather
than the actual code [60]. Simple, fast.A

Does not have any idea about the types of function parameters and control or data flow of the program and
so generates many false alarms. [44].

20 Lexical Analysis
Tokenizes the code to recognize variables and function arguments.

Variables and function arguments are recognized. More accurate than the pattern matching method.

Lack of knowledge about the syntax and semantics of the code causes false alarms. Requires the high level
source code. [45].

21 Parsing
Parses the code and represents it in Abstract Syntax Trees (AST) to be analyzed syntactically and semantically.
Understands the code syntactically and semantically, less false alarms in comparison with the above two
methods.
Requires the high level source code.
(47],
[46], [30], [31], [66].

22 Annotation-based methods

Comments that the programmer makes about the desired behavior of the code. The code is then analyzed
statically to verify if the conditions are met.

Profits the programmers’ knowledge to do a focused analysis.

The programmer must learn an additional language to do the annotation.

[54],
[55], [56],
[57], [58].

23 Theorem proving

The security requirements of software are expressed as some theorems. Proving these theorems, demonstrates
the satisfaction of the security requirements or existence of vulnerabilities.

24 Accuracy.

Difficult to be achieved automatically and requires high-quality staff to apply this method [59].

25 Data flow analysis (Taint analysis)

Tracks the flow of the data that comes from un-trusted resources and warns if the data reaches sensitive program
points.

Reduces the analysis time and number of false positives by not considering the execution paths in the program
that are not affected by un-trusted data.

Cannot detect vulnerabilities that are not defined specifically in a source-sink structure.

[51], [52], [53],

[67], [50],

[68], [69], [70].

26 Constraint analysis

Analyzes the program, associates constraints with some objects in the code and solves them to verify if the
program is vulnerable.

Constraints are generated automatically and do not increase the programmer’s workload.

Does not profit the programmer’s knowledge of the code (in comparison with the annotation method).

[50],

[51], [52], [53].

27 Model checking

Models the program and then checks the model to verify if it satisfies specified requirements.

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

419

420
421
422
423
424
425
426
427
428
429

431
432

433

434
435
436
437
438

440
441
442
443
444
445

29 A) CONCRETE EXECUTION

Only the modeling and requirement specification is performed manually by the human analyzer, rest of the
analysis is done automatically.

Modeling the program and specifying its security requirements-if done manuallyis time consuming and fault
prone. State-explosion problem when the number of program states is large.

[61],

[62], [63],

[71], [64]. In this method, the program is modeled and then analyzed to verify if it complies with its
specifications, e.g. [61], [62], [63] and [64]. If a specific requirement is not satisfied in the software, this method
provides some counter examples. Model checking helps the human analyzers by automating a noticeable part of
the analysis. Although modeling and specifying the requirements may be done manually, analyzing all possible
states of the program and verifying the requirements are done automatically. This is a great help in analyzing
large programs. A well-known example of using this method for detecting vulnerabilities is MOPS [63]. Using
MOPS, the program is modeled as a push-down automaton 2 . Also, the requirements are defined through safety
properties. A safety property is represented as a finite state automaton. It defines the ordering constraints on
security related operations. After modeling the program and defining its constraints, MOPS searches exhaustively
through possible program states to check if a reachable state violates the safety properties.

Abstracting the program in a model is a challenging task in this method. The model should be expressive
enough to have a precise analysis. Thus, some model checking methods 2A push down automaton is a type of
computational model. It is similar to NFAs except that it uses an additional component called a stack. In this
model, state transitions are chosen based on three components; input signal, current state and what is at the
top of the stack. Thus, the stack plays the role of an additional memory for it. also help the analyzer to model
the target program. For example, MOPS uses the control flow of the program to build its automata. Also, in
[64] the GCC compiler is used to automatically model and verify the programs that are written in any language
supported by this compiler, i.e. C, C++, Java, etc. This is done by employing an intermediate language of GCC,
called GIMPIL, that is common to all the supported languages. The model is extracted from the intermediate
representation of the program and is checked against the defined specification by the use of Moped. Moped is a
model checking tool for push down systems 3 65].

There are, however, some shortcomings in the model checking method. Although the modeling phase is
performed automatically in some model checking methods, the analyzer should manually specify the security
requirements in this method. This is again time consuming and may cause errors in the results. Also, the
method suffers from state-explosion problem for large programs.

Table 7?1 summarizes the reviewed static analysis methods. Note that all these methods inherit the general
advantages and shortcomings of static analysis. iv.

28 Dynamic Analysis

By executing the program with actual data, dynamic analysis studies the exact run-time behavior of the program.
Dynamic analysis can be as fast as the execution of the program, whereas static analysis generally requires more
computation time to obtain accurate results [43]. The main challenge in dynamic analysis methods is executing
all the possible execution paths in the program and activating all vulnerabilities in those paths. In fact, acquiring
an appropriate test data set, that make the program behave more diversely, is an issue in these methods. The
most important shortcoming of dynamic analysis methods is that they components; input signal, current state
and what is at the top of the stack. Thus, the stack plays the role of an additional memory for it. are unable to
guarantee the analysis of all feasible execution paths. Therefore, the dynamic analysis is not sound and is mostly
used to prove the existence of specific vulnerabilities in the programs. The dynamic methods are classified into
two main classes in [12]: methods that use symbolic input values and methods that use actual (concrete) input
values to test the program. Based on the recent advances in dynamic analysis methods, we classify these methods
in three classes based on the type of applied input values: concrete execution, symbolic execution and concolic
(concrete + symbolic) execution methods. The following subsections describe each class in more details.

29 a) Concrete execution

In this method, the program is executed with actual data and its behavior is analyzed to detect vulnerabilities.
There are four dynamic analysis methods that use actual data to execute the program during the analysis: fault
injection, mutation-based analysis, dynamic taint analysis and dynamic model checking.

i. Fault injection In this method, the external faults are injected to the program to examine its behavior.
According to our definition in section II, the external faults abuse the internal faults and cause unauthorized
behaviors in the program. In other words, internal faults are activated by the external fault and are propagated
to reach the program boundaries. Therefore, inability to handle external faults may reveal a vulnerability in the
program.

The external faults may be injected by corrupting input data to verify if the program is able to handle them.
Most of the blackbox vulnerability scanners corrupt input data and analyze the reaction of the program, such as
[72] and [73]. The black-box scanners have access to the inputs and outputs of the program. They might also have
very little knowledge about the program internal structure [74]. They usually create the corrupted data based on

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

464
465
466
467
468
469
470
a7
472
473
474
475

476

477
478
479
480
481
482

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

known attack patterns to study if the program can resist these attacks or suffers from the relevant vulnerabilities.
Another group of dynamic vulnerability detectors that inject corrupted input data to the programs are fuzzers.
Takanen et al. introduced fuzzing for detecting vulnerabilities for the first time. They suggested injecting
unexpected random input data to the program and studying its behavior [74]. The difference between fuzzers
and black-box vulnerability scanners is that fuzzers don’t corrupt input data exactly based on a list of attack
patterns. In fact, they generate numerous random faulty data hoping that some data make the program crash.
The main advantages of this method were simplicity and independence from the analyzed program. Thus, the
method could be used easily to detect vulnerabilities in different programs. However, fuzzers were not intelligent
enough to corrupt input data effectively and cover most of the execution paths. In order to have better program
coverage, new fuzzers focus on producing well-formed corrupted data [75], satisfying data validation checks in
the program like checksums [76], being aware of the state of the program during the fuzzing [77] and producing
consistent input data with the path conditions to make the program execute all the branches [78], [79], [80], [81].
All these enhancements made fuzzers play an effective role in detecting vulnerabilities during the recent years
[82]. Injecting faults into the program can be done randomly or intelligently. By the word random, we mean
that faulty data are generated semi-randomly based on predefined patterns. For example, in order to detect
buffer overflow, random input data with different lengths are generated. Here the predefined pattern determines
the length of input data and the other properties are set randomly. Takanen et al. consider random fuzzers as
the ones that make small random changes into the valid data. For example, a FTP fuzzer may randomly add
valid/invalid commands to the test data or chose the arguments of the commands randomly [74]. Random fuzzers
sometimes use evolutionary algorithms to guide random choices and extend the program coverage, e.g. [83], [84].
Random corruption of data is simple and independent from the logic and structure of the programs. Moreover,
randomness helps to reveal a wide range of behaviors of the programs while the designed testcases by the human
analyzer may not. This is because the designed test-cases are prepared by a human analyzer who may not think
of all possible behaviors of the program.

Corrupting the data intelligently is performed based on a previous analysis of the program. Although it
requires more analysis efforts, it helps in extending the program coverage. For example, imagine a program that
compares one of the input values with an integer value and exits if they are not equal. Using the random method,
the possibility of passing this constraint is one out of 232. By analyzing the code before injecting faulty data,
the analyzer is able to extract the constraint and generate the data in a way that complies with the constraint.
This helps the intelligent corruption method have more reliable program coverage [74].

30 ii. Mutation-based analysis

As mentioned before, acquiring appropriate test data is an issue in dynamic analysis. When the program behaves
normally during the test process, it means that either there is no vulnerability in the program or the test data
don’t reveal the vulnerabilities in the program. In the latter case, the data set is not diverse enough to activate
the vulnerabilities. Mutation is a method that is concerned with enhancing the data set during the dynamic
analysis. In this method, specific vulnerabilities are injected into the program code intentionally. If the current
data set does not detect the injected vulnerability, it will not detect similar vulnerabilities in the original version
of the program. Thus, the analyzer augments the data set so that it can detect the vulnerability. A version of a
program in which a specific vulnerability is created, is called a mutant. For example, in a mutant the function
strncpy() is replaced with strepy() to make it buffer overflow vulnerable. A good test data set distinguishes the
mutants from the original version of the program and kills them. If no test-case kills the mutants, the data set
must be augmented [85].

This method is effective in detecting software vulnerabilities [85], though it requires considerable amount of
time and effort. If the changed statements in a mutant are executed by the test data, the mutant would be
effective. Otherwise, the result of analysis does not reveal the difference between the mutant and the original
version of the program. Therefore, some computations are required to generate appropriate testcases that make
the program execute the intended path which contains the vulnerability.

Also, automatic creation of mutants for complex vulnerabilities is a challenge. As an example, the strncpy (
) functions are automatically changed to strcpy () for creating mutants to detect buffer overflow in [85]. There
are, however, more complicated buffer overflow scenarios like copying an array in a loop that causes overflow.
Moreover, creating mutants for logic vulnerabilities requires a deep understanding of the logic of the program.
Thus, automatic generation of mutants may not be feasible.

iii. Dynamic model checking This method, which is also called executionbased model checking [86], [87], is a
model checking method that executes the program exhaustively and checks if it satisfies the specifications. For
example, the tools VeriSoft [88], JavaPathFinder [89], CMC [90], Bogor [91] and DART [92] apply this method in
their analysis. Random execution in dynamic model checking is mostly the result of two factors: program inputs
and scheduling choices of a scheduler [87]. For each random input and schedule choice, the resulted behavior
of the program is analyzed by monitoring the process and its environment, e.g. registers and the stack. Here,
each state consists of the entire machine state. When the execution reaches a state, in which the specification is
compromised, the related input value and schedule choice are presented as a counterexample.

An advantage of dynamic model checking is that by executing the program, the machine handles the semantics
of the instructions. In other words, there is no need to formally represent the semantics of the programming

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

534

535
536
537
538
539
540
541
542
543
544
545
546
547
548

549

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

32 C) CONCOLIC EXECUTION

language and the machine instructions [87]. However, there is a time-state-soundness tradeoff in this method.
Since the states represent the entire machine state, they contain many details and require more storage space.
Thus, storing all the states might be infeasible for large programs. At the same time, exploring the states without
a history of visited ones may cause visiting similar states again and again. When no state is recorded, the model
checker spends too much time to make sure it has traversed all possible states. Storing the states reduces the
verification time by making sure that no state is revisited. Yet, it requires too much space [87].

iv. Dynamic taint analysis This method is similar to static taint analysis as it tracks the flow of information
from un-trusted sources to the sinks. However, it tracks the flow of tainted data during the execution of the
program, some examples are [93], [94], [95] and [96]. Schwartz et al. describe this method precisely in [93]. They
introduce a language, named SIMPIL, that formally defines the algorithms of dynamic taint analysis. Before the
execution, all the variables are considered untainted. While executing the program, variables may get tainted
according to a predefined policy. This policy defines how the taint data propagate from a variable to other
variables. For example, when tainted data are used in an argument of an arithmetic operation, the policy defines
that the result of this operation should be considered tainted. If a tainted value reaches a sink, the analyzer
reports a vulnerability.

The basic taint analysis methods limit taint propagation to the direct assignments. This might make the results
of the analysis inaccurate [97]. Sarwar et al. present some scenarios in [97] to show how basic taint analysis can
be ineffective. An example scenario is that the tainted data are used in a conditional statement (without any
direct assignment to other variables) and affect on the control flow of the program. Also, tainted data might
be used to define the number of an iterative action or as the index of an un-tainted array. The taint analysis
method should pay attention to these indirect effects of the tainted data in calculating the taint propagation.
Considering such effects is not always easy. For example, the tainted variable might cause information leakage
through a side channel. To detect such vulnerability, the analyzer should taint a large amount of variables that
results in many false alarms [97].

Table ??II summarizes and compares the advantages and disadvantages of the concrete execution methods.
Each method inherits the advantages and shortcomings of dynamic analysis.

31 b) Symbolic execution

Using the symbolic execution method, the program is executed with symbolic input values instead of concrete
data values [98], [99]. Thus, the values of program variables are represented as symbolic expressions over the
symbolic input. During the symbolic execution, the state of the program and the conditions of the current path
are calculated symbolically. The path conditions are updated any time a branch instruction is executed. At the
end of an executed path, the path conditions are solved using a constraint solver. There are various constraint
solvers presented by now, such as STP [100] and Z3 [101] that solve the constraints on binary vectors and Hampi
[102] and S3 [103] that solve the constraints on string variables. If the constraint solver solves the path conditions,
it generates some concrete input data that are used to execute the intended path in the program.

There are several challenges with the symbolic execution method. For example path explosion, the overhead
of constraint solving for complicated paths, non-determinism of concurrent programs and the tradeoff between
precision and scalability of modeling the memory are some of the challenges in applying symbolic execution [104].
Cadar and Sen present the challenges of this method and mention some solutions for them [104].

To overcome these challenges, a solution is combining symbolic execution with concrete execution. The result
is a new method that is called concolic execution. This method is described in the next section.

32 c¢) Concolic execution

A problem with pure symbolic execution is that the constraints of complex loops and recursive functions may
get very complicated and cannot be resolved in an acceptable time [105]. Concrete execution applies real data
to execute the program. There is a little chance to traverse all the feasible paths in this method. Using the
combined method, concolic + symbolic execution, the concrete data is used to simplify the complex constraints
that are generated by the symbolic execution. This method was first presented by Godefroid et al. in [92].
Concolic execution is performed by changing some symbols in the complex constraints into the concrete values.
This helps to achieve better program coverage with much less computation overhead.

A New View on Classification of Software Vulnerability Mitigation Methods Concolic execution is used in
many of the recent fuzzers to extend their knowledge about the program, such as KLEE [78], EXE [80], Simfuzz
[75], CUTE [106], SAGE [79], Taintscope [105] and [107]. For example, CUTE combines symbolic execution with
concrete execution to create input data traverse deeper paths in the program. It first executes the program with
concrete input data. During the execution, it calculates symbolically the constraints of the executed path. The
calculated constraints are then negated one by one, from the last to the first. After each negation, the resulted
constraints are queried from a constraint solver. If the constraint solver solves the new constraints, the result is
used to generate new test data that traverse other execution paths in the program.

10

565

566

567
568
569
570

571

572
573
574
575
576
577

578

579
580
581
582

583

584
585
586
587
588

589

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

33 Global
34 Table 3: Concrete execution methods: a comparison

Concolic execution is also used in other dynamic vulnerability detection methods. For example in [108] a
dynamic model checking method is applied that uses concolic execution for state-space exploration of the analyzed
application. In [108], concolic execution helps to model the application as a finitestate automata and to guide
further state-space exploration.

35 d) Hybrid analysis

The previous sections described static and dynamic analysis methods and their advantages and shortcomings.
The idea of combining static and dynamic analysis was first proposed by Ernst in [43]. He suggested that hybrid
analysis can combine the static and dynamic analysis methods to generate a new analysis method that profits a
great amount of soundness and accuracy advantages of each method with little sacrifices.

Monitoring and static analysis methods are also combined in [110] to detect SQL injection errors and [83],
(84], [75], [76], [78], [79], [80].

36 Mutation-based Analysis

Injects vulnerability into the program code. If the current data set does not reflect the injected vulnerability, it
would not detect similar vulnerabilities in the original version of the program.

Reduces false negatives by enriching test data.

Expensive in time and computation. Automatic mutation of complicated vulnerabilities is a challenge. [85].

37 Dynamic taint analysis and sanitization

Tracks the flow of information from input sources to the sinks during the run-time.

Reduces the analysis time and number of false positives by not considering the paths in the program that are
not affected by malicious data.

Cannot detect vulnerabilities that are not defined in specific source-sink structure.

[93], [96].

38 Dynamic Model checking

A model checking method in which the program is executed with concrete input values exhaustively.

No need to formally represent the semantics of the programming languages and machine instructions. Time-
state-soundness tradeoff.

[88], [89], [90], [91], [92].

From then, many researchers have combined these methods, in different manners, to make up for each other’s
shortcomings. For example, Monga et al. combine static and dynamic analysis to detect XSS and SQL injection
vulnerabilities in PHP applications in [109]. The suggested method first analyzes the code statically and extracts
the control flow graph of the functions in it. These graphs are then connected together to obtain an inter-
procedural control flow graph (iCFG). The iCFG is analyzed to extract the possible paths from the tainted
sources to the sinks in it. For each sink, backward slicing is used to detect the statements that affect the tainted
argument. These statements are monitored at run time. When a tainted value is used in a sink, the monitoring
procedure passes it to an oracle to verify if it can exploit a vulnerability. The oracle have a database of well-known
attack patterns that are used to exploit different vulnerabilities. For example, the implemented oracle for mysql
query() performs a limited syntactically analysis on the SQL queries and searches for the tainted characters in
unsafe positions. In this method, the sanitizing procedures are assumed to be perfect. prevent the successful
attacks. In the static analysis phase the hotspots, that are statements in the program that execute a SQL query,
are identified. Also the control flow of the program is extracted. Then, the query strings in the hotspots are
parsed. Considering the control flow of the program, a FSA for each hotspot is created to model the legitimate
queries. During the monitoring phase, the queries are checked against the relative FSA to prevent execution of
malicious queries.

As the last example, hybrid analysis is used in [111] to detect logic vulnerabilities in web applications. The
logic vulnerabilities are usually related to the intended functionality of an application. Thus, there is no general
specification for them that can be used in different applications. For example, consider an online store that allows
the users to use coupons for having discount on specific items. It has a policy which determines that each coupon
should be used only once. A logic vulnerability, however, allows the users to reuse a coupon and reduce the cost
to zero. Since logic vulnerabilities are created based on the functionality of the application, the vulnerability
detection method requires the specification of the program. The proposed method in [111] consists of two steps.
First, the web application is executed with normal input data. The executed traces are then analyzed to infer
the specification of the application. This is based on the intuition that normal behavior of the program reflects
the properties that are intended by the programmer. In fact, because the specification of the program is not
always available, this method uses dynamic analysis to obtain it. The inferred specification is presented in the

11

621
622

623

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

39 E) VULNERABILITY FORECASTING

form of likely invariants. In the second step, model checking is used to analyze the web application based on the
inferred specification.

39 e) Vulnerability forecasting

Generally, fault forecasting is used to predict the quality or quantity of the faults that are left in the system and
will be activated in the future. It is mainly concerned with estimating the current reliability of the system and
predicting its future reliability. This prediction may be qualitative or quantitative (usually probabilistic). The
qualitative forecasting identifies and ranks the future failure modes. Also, the event combinations that lead to
the failures are identified.

The quantitative forecasting is performed by modeling or operational testing. These methods are comple-
mentary, since the results of operational tests are usually used to model the system more accurately. Software
Reliability Growth Models (SRGM) are used generally for fault forecasting. In fact, SRGMs model the testing
process [112]. In most of these models, the rate of fault detection gradually reduces and the cumulative number of
faults eventually approaches a fixed value. These models help to predict the number of left faults in the software
and determine when the software is ready to be released. They are also used to estimate the required efforts for
future maintenance.

There are probabilistic models for predicting the rate of vulnerability detection, named Vulnerability Detection
Models (VDM). Alhazmi and Malaiya proposed a specific model, named AM 4 for vulnerability detection in [113].
In this model the rate of vulnerability detection depends on two factors: one of these factors reduces as the number
of remaining undetected vulnerabilities declines. The second factor increases with the time. In this way, the rate
of vulnerability detection is modeled in a S-shaped form. In fact, AML is created based on the observation that
the detectors 5 pay little attention to the newly published software. Gradually people become familiar with the
software and the detectors pay more attention to it. Thus, the rate of vulnerability detection increases by time
and peaks at some period. By the introduction of newer versions of the program, the detectors’ interest becomes
lower and the rate of vulnerability detection decreases. Alhazmi and Malaiya examined the applicability of this
model to various operating systems in [113] and [114]. The results demonstrated that AML fits the data of several
operating systems.

All the mentioned models are time-based. It means that they determine the detection rate based on the
calendar time. An effort-based model, named AME 2, is proposed by Alhazmi and Malaiya in [113]. They
believe that time-based models do not consider the changes that occur in the environment during the lifetime of
the system. Thus, they consider the number of installations as an important environmental factor that affects
the rate of vulnerability detection. It is based on the observation that the detectors are more interested in the
software that is installed in many computers. Therefore, the rate of vulnerability detection is modeled in AME
based on the number of installations. Sungwhan Woo et al. explore the applicability of AML and AME to
some HTTP servers, i.e., IIS and Apache. The results indicate that these models are applicable to the HTTP
servers in addition to the operating systems [112]. Of course, this method does not consider many of the effective
factors on the detection trend. For example, it only calculates the cyclomatic complexity to estimate the code
complexity. There are other complexity metrics that can be considered in addition to A problem with the studied
VDMs is that they are parametric models that should be fitted to real vulnerability data [115]. To model the
vulnerability detection rate in a specific application, a large amount of historical vulnerability data is required.
Therefore, it is necessary that many of the vulnerabilities be discovered already. Hence, these models cannot be
applied to predict the detection rate for newly released software. Also, it is shown in [116] that the precision of
VDMs depend on the number of known vulnerabilities. The precision of the VDMs are usually very low at the
early stages in the lifecycle of the program. It seems that the problem is because the models don’t consider the
features of each application in their predictions. Thus, they need a history of detected vulnerabilities to estimate
the security level of the program. There are many features in each application and its environment that affect
the rate of vulnerability detection. Rahimi and Zargham present a VDM in [115] based on two effective factors:
code complexity and code quality. The code complexity is defined based on the cyclomatic complexity. Also,
the code quality determines its compliance with secure coding practices. They believe that more vulnerabilities
are detected in the applications with lower code quality. Also, the possibility of detecting vulnerabilities is less
in the applications with complicated codes. Thus, the source code of the application is statically analyzed to
compute the two factors. The computed data are then used to model the vulnerability detection rate. Since this
model does not need a database of detected vulnerabilities, it can be used for newly released applications. The
authors analyze four applications to study the impact of these factors on the vulnerability detection trend. The
analysis results show that the proposed method can predict vulnerabilities even in early stages of the application’s
lifecycle.

this one. The environmental parameters can also be considered for a good prediction. As an example, even
the seasonal changes affect the rate of vulnerability discovery. It is shown in [117] that more vulnerabilities are
reported during the mid-end and year-end months. Also, the presented method in [115] is based on analyzing
the source code of the application. So it cannot be helpful when the source code is not available. There are some
qualitative methods for estimating the current security level of the application. For example OWASP ASVS
consists of several check lists that helps to determine the security level of a web application [118]. It classifies
the check lists in thirteen classes, such as authentication, access control, session management, etc. In each class

12

683
684
685
686
687

688

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

the check lists are grouped into three security levels. If an application passes all the check lists of a group, it
is achieves the respective security level. These methods only estimate the current security level. Based on the
current level, it is possible to predict the future failure modes. However, we could not find any qualitative method
that predicts and ranks the future security failures based on the current state.

V.

40 Conclusions

During the past decades various methods have been presented for mitigating software vulnerabilities. A
comprehensive classification of the proposed methods helps to achieve a general understanding of this research
area. In this paper, we defined software vulnerability as an internal fault. By considering software vulnerability
as a type of fault, we classified the vulnerability mitigation methods based on the general classification of the fault
mitigation methods. We extended the general classification of fault mitigation methods, represented it in the
context of software vulnerability and added more detailed subclasses into it. We divided vulnerability mitigation
methods into four main classes: vulnerability prevention, vulnerability tolerance, vulnerability removal and
vulnerability forecasting. The vulnerability prevention methods attempt to prevent the occurrence of software
vulnerability. Software security and the secure coding best practices are examples of these efforts. The question
is why, despite the vulnerability prevention efforts, vulnerabilities are still created. Oliveira et al. believe that
educating the developers is not enough for preventing the vulnerabilities [119], because security is not an issue for
the developers. They believe that the human’s memory is limited and can only keep a limited number of mental
elements available at a time. The programmers are also supposed to create applications with correct functionality
and acceptable performance. Under the time pressure, an ordinary situation in software programming, the
programmers usually chose the simplest solutions for developing the software and pay little attention to the
security concerns. Oliveira et al. suggest developing assistant tools that remind the educated programmers the
security concerns during the development.

Besides educating the programmers, intelligent assistant tools are required to notify the security concerns
at specific statements or functions. Thus, in the future we should work on designing and implementing
intelligent assistant tools that help the programmers to avoid generating vulnerabilities during the design and
implementation of the applications. These tools should be intelligent enough not to bother the developers with
many false alarms. They may use the enhanced static analysis methods to analyze the code during the coding
phase and warn the programmers at sensitive situations. This will help the programmers to use their security
knowledge more effectively in preventing the vulnerabilities.

Vulnerability tolerance methods accept the existence of vulnerabilities in the programs and prevent the active
vulnerabilities from making security failures. In this paper, the vulnerability tolerance methods were studied
based on three aspects: the applied active vulnerability detection technique, active vulnerability A New View
on Classification of Software Vulnerability Mitigation Methods handling technique and vulnerability handling
technique. All the reviewed vulnerability mitigation methods detect active vulnerabilities during the normal
execution of the program (concurrently). However, there are active vulnerabilities that overuse system resources
and make the resources unavailable to legitimate users after a period of time, such as the memory leakage
vulnerability. The security failure as a result of these vulnerabilities can be prevented by checking the system
resources periodically. Thus, preemptive error detection can be applied to detect if such vulnerabilities are active.

Most of the vulnerability tolerance methods focus on detecting the active vulnerabilities. However, less
attention is paid to handling the (active) vulnerability. In the proposed methods, active vulnerabilities are
handled by halting the program, restarting the program or invoking an exception handler. Although these
mechanisms limit the negative effects of the active vulnerability, they violate the availability of the application
to the legitimate users. Thus, more intelligent vulnerability handling techniques are required for the current
vulnerability tolerance methods. A good starting point is inspiring by the current fault tolerance methods. As an
example, software diversity is a fault tolerance method that is used to make the programs reliable. In this method,
various versions of software with the same specification but different design or implementationprocess the same
request and the correct result is achieved by voting the results of the different versions. The result of such system
is more reliable, since it is less possible that all the versions of software suffer from the same fault and so a request
does not cause errors in all versions. This method can be used in software security to tolerate malicious requests.
For example, recently software diversity has been used in [120] to tolerate active vulnerabilities in web browsers.
In the proposed method, different browsers are used to process the user’s requests. Since the browsers are designed
and implemented differently, it is less probable that all the applied browsers contain similar vulnerabilities. Thus,
malicious data cannot compromise all the browsers. The correct response to the client’s request is achieved by
voting the responses of the browsers. Also, some protection mechanisms, such as ASLR that protects system
against memory corruption vulnerabilities [121], are inspired by the idea of using diversity to make the program
unpredictable for the attackers. A new direction for the future research could be adopting the current fault
tolerance methods to handle different software vulnerabilities. As there is no vulnerability handling mechanism
in the current proposed methods, we should work on designing complete vulnerability tolerance methods that
contain appropriate active vulnerability handling and vulnerability handling mechanisms.

Vulnerability removal is performed to detect and remove the vulnerabilities in the software. The focus of most
of the current vulnerability removal methods is on verifying the vulnerabilities. In fact, less attention is paid

13

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779

781
782
783
784
785
786
787
788

790
791
792
793
794
795
796
797

799
800
801
802
803
804
805
806
807

40 CONCLUSIONS

on designing appropriate methods for diagnosis, correction and regression verification of software vulnerabilities.
There are some vulnerability diagnosis and correction methods that are used after detecting the exploitation of
a vulnerability. But specific methods are required for diagnosis and correction of the vulnerabilities that are
detected during the verification of the program. Currently, automatic patching methods analyze an attack and
generate software patches based on the pattern of malicious data that are used in the attack. These methods
can be modified to automatically generate patches based on the results of analyzing the program and according
to the mechanism of detected vulnerabilities.

There are numerous vulnerability detection methods presented by now. Most of the recent vulnerability
detection methods tend to combine the previous methods in order to profit their advantages at the same time.
For example, the concolic execution method combines the concrete and symbolic execution methods to reduce
the complexity of pure symbolic execution and increase the program coverage. As another example, static taint
analysis is used with the constraint analysis method to limit the overhead of program analysis and compute
the constraints only on the tainted data [51]. Also, the control and data flow of the program are extracted in
[122], ??762] and [63] to model the program automatically and detect vulnerabilities by performing the model
checking. There are more possible combinations that are not applied yet and might be effective in detecting
the vulnerabilities more accurately. For example, the annotation can be used in model checking to profit the
programmers’ knowledge for modeling the program.

Also, most of the vulnerability removal and vulnerability tolerance methods consider a specific vulnerability
class based on their own definition of the relevant software vulnerability. Therefore, an imprecise definition of the
intended vulnerability would cause inaccurate results in the proposed method. In addition, some methods only
consider a limited number of vulnerability classes. To handle new vulnerability classes, the algorithm of these
methods has to be changed. Many of the presented methods or tools are not able to detect all of the vulnerability
classes [123], [124]. By now, the researchers’ focus was mainly on designing more accurate methods.

A new research trend is making the vulnerability detection methods extendable. In this way, an accurate
method for detecting a specific vulnerability can also be used to detect other vulnerabilities. To make a
vulnerability detection method extendable, we suggest designing vulnerability detection algorithms that are
A New View on Classification of Software Vulnerability Mitigation Methods independent from the sought
vulnerability classes. Such algorithms are able to detect any specified vulnerabilities in the program. Designing
such methods requires a general model for specifying the vulnerabilities that encompasses any vulnerability
classes, even the future ones. Based on this model, various vulnerabilities are specified for the detection algorithms
to be detected automatically in the programs.

There are a few extendable vulnerability removal methods, such as [125], [126] and [124]. However, these
methods are limited to specific programming languages. Also, some of them are not expressive enough to specify
any vulnerability classes. For example, in [127] an extendable vulnerability method is presented for detecting the
vulnerabilities in web applications that are written in Java. The specification method of [127] does not support
some data types, e.g. integer, float and character. Therefore, it is not possible to define certain operations, such
as mathematical operations or comparing the characters, in specifying a vulnerability. This is not a limitation for
specifying vulnerabilities in object-oriented programs, such as Java. Because they encapsulate these operations in
certain methods for each data type. It is, however, a limitation for specifying vulnerabilities in other languages,
such as C. For example, it is not possible to specify integer overflow vulnerabilities in C programs with this
method.

The vulnerability forecasting methods predict the number of left vulnerabilities in the software and determine
when the software is ready to be released. They are also used to estimate the required efforts for the future
maintenance. Some vulnerability forecasting methods use the vulnerability detection models to predict the rate
of vulnerability detection during the lifecycle of the software. The first vulnerability detection models were in
fact software reliability growth models that were applied for predicting the vulnerability detection rate. The next
models were designed especially for the vulnerability detection rate. These models consider effective parameters
on the detection of vulnerabilities, such as time and the number of installations. Since these models do not
consider characteristics of the software in their predictions, they need a history of the detected vulnerabilities to
predict the vulnerability detection rate in the future. These models are not accurate especially at the early stages
in the lifecycle of programs. New vulnerability detection models consider the characteristics of the software to
achieve more accurate predictions. In this paper, we reviewed a vulnerability detection model that is based on two
characteristics of the program: cyclomatic complexity of the source code and the level of compliance with secure
coding practices. There are, however, other characteristics that affect on the rate of vulnerability detection, such
as software support, version of the program, availability of the source code or usage of third-party components.
For example, the rate of vulnerability detection decreases in time for a program with effective support that
periodically presents patches and resolves problems in the program. Also, it might be more difficult to detect
vulnerabilities in the higher versions of a program than in its lower versions. The future models can use other
characteristics of software to model the vulnerability prediction rate more accurately. Also, they can combine
software characteristics with the effective environmental factors, such as time and number of installations, to
generate more accurate models.

The possibility of analyzing the program and the program analysis method become important when the
vulnerability detection models consider the characteristics of software. For example, a model may be based on

14

812

808 some characteristics in the source code of the program. Thus, it is not possible to use such model when the source
809 code of the program is not available. Also, vulnerability forecasts based on inaccurate software analysis are not
810 reliable. In the future, static and dynamic analysis methods that are proposed for detecting the vulnerabilities
811 can be used to better analyze the current characteristics of a program and predict the future rate of vulnerability
detection accurately. U B
Vulnezatility
preventsen
| Fatern mukching
| + Conturfes detectda
| Actmw valnezabalicy i e | L amieal paiynds
| deteciien { Prasmptiv i {
a : e NRAAY RS EamAE el . o
vinerakaliny Tolerance [T — e
| Y ’ hasdling
| | Racovary 5y siem-bured methods ||rI Anpiacien
* Vainarabudity handiing
II Y | Data Bow aed tame analysia
{
i Hdasic 1 Consirizl waalysis
| Theorem proTiag
Valnerahdity] S
shiliputied: m:lhudnli Mlcde]-based sethods Blcadel checiang
1 A Vi ratish III Fault injesisea
1
| Tt n = |
{ v TR ; DHagnosia i MEwtatins-based asalysis
11 "'I!:::I::"-‘ fo e .': 4 Concerst execotion |
| -. Comectica : ; Diymamic taint ssalyves and
| . Dyamic - Svmbali sesilizanios
Y Noem-regression A
| Tenafzzation '
e | Dynamis model checking
| Hyraid Coacelic exsculioa
§ Cualicatie -
l Lo tralusion !
[v d
forecasting Cuamitaive
1 [probakdlistic)
evaluation

Figure 1: A

'© 2017 Global Journals Inc. (US)
2Commercial off-the-shelf

15

40 CONCLUSIONS

Revieedive vulnerability detection

Pa-

per
23]

[24]

[25]

[26]

[27]

Detect unauthorized changes of re-
turn addresses. (preemp-tive)
Detect unauthorized changes of re-
turn addresses. (preemp-

tive)

Detect unauthorized changes of re-
turn addresses. (preemp-

tive)

Monitor the flow of un-trusted data.
(preemptive)

Monitor the flow of un-trusted data.
(preemptive)

Monitor the argument of SQL-related
functions. (preemptive)

Monitor the argument of SQL-related
functions. (preemptive)

Monitor the format argument

of printing functions. (pre-

emptive)

Monitor the flow of un-trusted data.
(preemptive)

Detect unauthorized changes of re-
turn addresses. (preemp-tive)
Monitor the flow of un-trusted data.
(preemptive)

Active vulnerability handling Vulnerability handling Vulneral

Halts or restarts the
program. (rollback)
Halts the program.

Halts the program.

Invokes exception
handlers. (roll-
forward)

Halts the program.

Ignores the request.
(roll-forward)
Ignores the request.
(roll-forward)

Halts the program.
Invokes exception
handlers. (roll-
forward)

Recovers the stack.
(compen-sation)
Ignores the request.
(roll-forward)

Figure 2:

Year 2017
46

)
(C

Figure 3: Table 1 :

16

None

None

None

None

None

None

None

None

None

None

None

Buffer o

Buffer o

Buffer o

Any wvul
ity

that
exploital
by m
input
data.
Any wvul
ity

that
exploital
by m
input
data.
SQL inje

SQL inje

Format s

SQL i
Buffer «
Format s
Buffer o

DOM-ba
XSS

Analysis Description
Method

Pattern Match-

ing for vul-

nerability patterns in the text.

Analysidescription

Method

Fault Faults are generated
in- semi-randomly:.

jec- (random corrup-
tion tion) Fault injection is

based on some previous
analysis of the program.
(intelligent corrup-tion

)

Figure 4:

Figure 5: Table 2 :

Advantages

Simplicity and indepen-
dence in random corrup-
tion of in-puts. (random
corruption) More reli-
able code coverage, less
false negatives. (intelli-
gent corruption)

Figure 6:

17

Advantapestcontimgsnples

Considers the program as a text file and searches

shortcomings

Cannot detect logic
vulner-ability. Less
reliable code coverage.
(random corrup-tion)
More effort is required
for testing each single
program. (intelligent
corruption)

Examples

40 CONCLUSIONS

18

813
814

815
816
817

818
819

820
821

822
823

824
825

826
827
828

829
830
831

832
833

834
835

836
837

838
839

840
841

842
843

844
845

846
847

848
849
850

851
852
853

854
855

856
857
858
859

860
861
862

863
864
865

866
867

[Wheeler ()] , D A Wheeler , Flawfinder . http://www.dwheeler.com/flawfinder 2001. (Ounline; accessed
2016-10-23)

[Lekies et al. ()] ‘25 million flows later: large-scale detection of dom-based xss’. S Lekies , B Stock , M Johns .
Proceedings of the 2018 ACM SIGSAC conference on Computer & communications security, (the 2013 ACM
SIGSAC conference on Computer & communications security) 2013. ACM. p. .

[Bishop and Bailey ()] A critical analysis of vulnerability tazonomies, M Bishop , D Bailey . CSE-96-11. 1996.
Department of Computer Science, University of California at Davis. (Technical Report)

[V Ganesh and Dill ()] ‘A decision procedure for bitvectors and arrays’. D L V Ganesh , Dill . Computer Aided
Verification, 2007. Springer. p. .

[Wagner et al. ()] A first step towards automated detection of buffer overrun vulnerabilities, D Wagner , J S
Foster , E A Brewer , A Aiken . 2000. NDSS. p. .

[Shahriari et al.] A general framework for categorizing vulnerabilities regarding their impact on security policy,
H R Shahriari , R Jalili , M Bishop . Computers and Security.

[Monga et al. ()] ‘A hybrid analysis framework for detecting web application vulnerabilities’. M Monga , R Paleari
, E Passerini . Proceedings of the 2009 ICSE Workshop on Software Engineering for Secure Systems, (the
2009 ICSE Workshop on Software Engineering for Secure Systems) 2009. IEEE Computer Society. p. .

[Musa and Okumoto ()] ‘A logarithmic poisson execution time model for software reliability measurement’. J D
Musa , K Okumoto . Proceedings of the 7 th i nternational conference on Software engineering, (the 7 th i
nternational conference on Software engineering) 1984. IEEE Press. p. .

[Burrows et al. ()] ‘A logic of authentication’. M Burrows , M Abadi , R M Needham . Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 1989. The Royal Society. 426 p. .

[Ren et al. ()] ‘A method for detecting software vulnerabilities based on clustering and model analyzing’. J Ren
, B Cai, HHe, C Hu. Journal of Computational Information Systems 2011. 7 (4) p. .

[Manmadhan and Manesh ()] ‘A method of detecting sql injection attack to secure web applications’ S Man-
madhan , T Manesh . International Journal of Distributed and Parallel Systems 2012. 3 (6) p. 1.

[Clarke ()] ‘A program testing system’ L. A Clarke . Proceedings of the 1976 annual conference, (the 1976 annual
conference) 1976. ACM. p. .

[Seacord and Householder] A structured approach to classifying security vulnerabilities, R C Seacord , A D
Householder . CMU/SEI-2005-TN-003. (Technical report)

[Pistoia et al. ()] ‘A survey of static analysis methods for identifying security vulnerabilities in software systems’.
M Pistoia , S Chandra , S J Fink , E Yahav . IBM Systems Journal 2007. 46 (2) p. .

[A Takanen et al. ()] J D A Takanen , C Demott , Miller . Fuzzing for software security testing and quality
assurance, 2008. Artech House.

[Tsuruoka et al. ()] ‘Accelerating the annotation of sparse named entities by dynamic sentence selection’. Y
Tsuruoka , J Tsujii , S Ananiadou . BMC bioinformatics 2008. 9 (11) p. S8. (Suppl)

[Tan et al. ()] ‘acomment: mining annotations from comments and code to detect interrupt related concurrency
bugs’. L Tan , Y Zhou , Y Padioleau . Proceedings of the 33rd international conference on software engineering,
(the 33rd international conference on software engineering) 2011. ACM. p. .

[Alhazmi and Malaiya ()] O H Alhazmi , Y K Malaiya . Proceedings of annual reliability and maintainability
symposium, (annual reliability and maintainability symposium) 2005. p. . (Quantitative vulnerability
assessment of systems software)

[Alhazmi et al. ()] O Alhazmi , Y Malaiya , I Ray . Security vulnerabilities in software systems: A quantitative
perspective, 2005. Springer. p. . (Data and Applications Security XIX)

[Schwartz et al. ()] ‘All you ever wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask’ E J Schwartz , T Avgerinos , D Brumley . Proceeding of the 2010 IEEE
Symposium on Security and Privacy (SP), (eeding of the 2010 IEEE Symposium on Security and Privacy
(SP)) 2010. IEEE. p. .

[Shahmehri et al. ()] ‘An advanced approach for modeling and detecting software vulnerabilities’. N Shahmehri
, A Mammar , E Montes De Oca , D Byers , A Cavalli , S Ardi , W Jimenez . Information and Software
Technology 2012. 54 (9) p. .

[Tha and Doi ()] ‘An implementation of the binding mechanism in the web browser for preventing xss attacks:
introducing the bind-value headers’. G Tha , H Doi . Availability, Reliability and Security, 2009. ARES’09.
International Conference on, 2009. IEEE. p. .

[Anderson ()] P Anderson . Codesurfer/path inspector, Proceeding of the 20th IEEFE International Conference on
Software Maintenance, 2004. 2004.

19

http://www.dwheeler.com/flawfinder

868
869
870

371
872

873
874
875
876

877
878
879
880

881
882
883
884

885
886

887
888
889

890
891
892
893

894
895

896
897

898
899

900

901
902

903
904

905
906
907
908

909
910

911
912

913
914

915

916
917
918

919
920

921
922

40 CONCLUSIONS

[Alhazmi and Malaiya ()] ‘Application of vulnerability discovery models to major operating A New View on
Classification of Software Vulnerability Mitigation Methods systems, Reliability’. O H Alhazmi , Y K Malaiya
. IEEE Transactions on 2008. 57 (1) p. .

[Application Security Verification Standard (ASVS)] https://www.owasp.org/images/5/58/0WASP |
ASVS Version 2.pdf Application Security Verification Standard (ASVS), (Online; accessed 2016-10-8)

[Kim et al. ()] ‘Applying dataflow analysis to detecting software vulnerability’. H Kim , T.-H Choi , S.-C Jung ,
H.-C Kim , O Lee , K.-G Doh . Proceeding of the 10th International Conference on Advanced Communication
Technology. ICACT, (eeding of the 10th International Conference on Advanced Communication Technology.
ICACT) 2008. 2008. IEEE. 1 p. .

[Wang et al. ()] ‘Automated detection of code vulnerabilities based on program analysis and model checking’. L
Wang , Q Zhang , P Zhao . Proceeding of the Fighth IEEE International Working Conference on Source Code
Analysis and Manipulation, (eeding of the Eighth IEEE International Working Conference on Source Code
Analysis and Manipulation) 2008. IEEE. p. .

[Sparks et al. ()] ‘Automated vulnerability analysis: Leveraging control flow for evolutionary input crafting’
S Sparks , S Embleton , R Cunningham , C Zou . Proceeding of Twenty-Third Annual Computer
Security Applications Conference. ACSAC, (eeding of Twenty-Third Annual Computer Security Applications
Conference. ACSAC) 2007. 2007. IEEE. p. .

[Godefroid et al. ()] ‘Automated whitebox fuzz testing’. P Godefroid , MY Levin , D A Molnar . NDSS 2008. 8
p. .
[Xu et al. ()] ‘Automatic diagnosis and response to memory corruption vulnerabilities’ J Xu , P Ning , C Kil ,

Y Zhai , C Bookholt . Proceedings of the 12th ACM conference on Computer and communications security,
(the 12th ACM conference on Computer and communications security) 2005. ACM. p. .

[Zhang and Yin ()] ‘Automatic generation of vulnerability specific patches for preventing component hijacking
attacks in android applications’. M Zhang , H Yin , Appsealer . Proceedings of the 21th Annual Network and
Distributed System Security Symposium (NDSS 2014), (the 21th Annual Network and Distributed System
Security Symposium (NDSS 2014)) 2014.

[Smirnov and Chiueh ()] ‘Automatic patch generation for buffer overflow attacks, in: Information Assurance and
Security’. A Smirnov , T Chiueh . TAS 2007. Third International Symposium on, 2007. 2007. IEEE. p. .

[Liang et al.] Automatic synthesis of filters to discard buffer overflow attacks: A step towards realizing self-healing
systems, Z Liang , R Sekar , D C Duvarney .

[Avizienis et al. ()] ‘Basic concepts and taxonomy of dependable and secure computing, Dependable and Secure
Computing’. J.-C Avizienis , B Laprie , C Randell , Landwehr . IEEE Transactions on 2004. 1 (1) p. .

[Bisbey and Hollingworth ()] R Bisbey , D Hollingworth . Protection analysis: Final report, 1978.

[Bishop ()] M Bishop . CSE-95- 10. A tazonomy of uniz system and network vulnerabilities, 1995. Department
of Computer Science, University of California at Davis (Technical Report)

[Dwyer and Hatcliff ()] ‘Bogor: an extensible and highly-modular software model checking framework’. M B
Dwyer , J Hatcliff . ACM SIGSOFT Software Engineering Notes 2003. ACM. 28 p. .

[V Ganapathy et al. ()] ‘Buffer overrun detection using linear programming and static analysis’. , S V Ganapathy
, D Jha , D Chandler , D Melski , Vitek . Proceedings of the 10th ACM conference on Computer and
communications security, (the 10th ACM conference on Computer and communications security) 2003. ACM.

p- -
[Carnegie-mellon univ pittsburgh pa software engineering inst ()] Carnegie-mellon univ pittsburgh pa software
engineering inst, 2005.

[Musuvathi et al. ()] ‘Cmc: A pragmatic approach to model checking real code’. M Musuvathi , D Y Park , A
Chou , D R Engler , D L Dill . ACM SIGOPS Operating Systems Review 2002. 36 (SI) p. .

[Halfond and Orso ()] ‘Combining static analysis and runtime monitoring to counter sql-injection attacks’ W G
Halfond , A Orso . ACM SIGSOFT Software Engineering Notes 2005. ACM. 30 p. .

[Bishop ()] Computer security: art and science, M Bishop . 2002. Addison-Wesley.

[Kc et al. ()] ‘Countering code-injection attacks with instruction-set randomization’. G S K¢, A D Keromytis ,
V Prevelakis . Proceedings of the 10 th ACM conference on Computer and communications security, (the 10
th ACM conference on Computer and communications security) 2003. ACM. p. .

[Dalton et al. ()] M Dalton , H Kannan , C Kozyrakis . Raksha: a flezible information flow architecture for
software security, 2007. ACM. 35 p. .

[Godefroid et al. ()] ‘Dart: directed automated random testing’ P Godefroid , N Klarlund , K Sen . ACM Sigplan
Notices 2005. ACM. 40 p. .

20

https://www.owasp.org/images/5/58/OWASP_ASVS_Version_2.pdf
https://www.owasp.org/images/5/58/OWASP_ASVS_Version_2.pdf
https://www.owasp.org/images/5/58/OWASP_ASVS_Version_2.pdf

923
924

925
926

927
928

929
930

931
932

933
934
935

936
937
938
939

940
941
942
943

044
945
946

947
948

949
950

951
952

953
954

955
956

957
958
959

960
961

962
963
964

965
966
967

968
969
970

971
972
973

974
975

976
977

[Shankar et al. ()] ‘Detecting format string vulnerabilities with type qualifiers’. U Shankar , K Talwar , J S Foster
, D Wagner . USENIX Security Symposium, 2001. p. .

[Xia et al. ()] ‘Detecting memory access errors with flow-sensitive conditional range analysis’. Y Xia , J Luo , M
Zhang . Embedded Software and Systems, 2005. Springer. p. .

[Wang et al. ()] ‘Diagnosis and emergency patch generation for integer overflow exploits’. T Wang , C Song , W
Lee . Detection of Intrusions and Malware, and Vulnerability Assessment, 2014. Springer. p. .

[Haller et al. ()] ‘Dowsing for overflows: A guided fuzzer to find buffer boundary violations’ A Haller , M
Slowinska , H Neugschwandtner , Bos . Useniz Security, 2013. p. .

[Kang et al. ()] Dta++: Dynamictaint analysis with targeted controlflow propagation, M G Kang , S Mccamant
, P Poosankam , D Song . 2011. NDSS.

[Gupta et al. ()] ‘Dynamic code instrumentation to detect and recover from return address corruption’ S Gupta
, P Pratap , H Saran , S Arun-Kumar . A New View on Classification of Software Vulnerability Mitigation
Methods 36, 2006. ACM. p. . (Proceedings of the 2006 international workshop on Dynamic systems analysis)

[Newsome and Song ()] ‘Dynamic taint analysis for automatic detection, analysis, and signature generation of
exploits on commodity software’. J Newsome , D Song . Proceedings of the 12th Network and Distributed
System Security Symposium (NDSS05), (the 12th Network and Distributed System Security Symposium
(NDSS05)) 2005.

[Sen et al. ()] ‘Dynamic test generation to find integer bugs in x86 binary linux programs’ K Sen , D Marinov
, G Agha , ; D Molnar , X C Li , D A Wagner . Proceedings of the 18 th conference on USENIX security
symposium, (the 18 th conference on USENIX security symposium) 2005. 2009. ACM. 30 p. . (CUTE: a
concolic unit testing engine for C)

[Clause et al. ()] ‘Dytan: a generic dynamic taint analysis framework’ J Clause , W Li , A Orso . Proceedings
of the 2007 international symposium on Software testing and analysis, (the 2007 international symposium on
Software testing and analysis) 2007. ACM. p. .

[Esparza et al. ()] ‘Efficient algorithms for model checking pushdown systems’. J Esparza , D Hansel , P
Rossmanith , S Schwoon . Computer Aided Verification, 2000. Springer. p. .

[Doup’e et al. ()] ‘Enemy of the state: A state-aware black-box web vulnerability scanner’. L Doup e , C Cavedon
, G Kruegel , Vigna . USENIX Security Symposium, 2012. p. .

[Szekeres et al. ()] ‘Eternal war in memory’. L Szekeres , M Payer , T Wei , D Song . IEEE Symposium on
Security and Privacy, 2013.

[Cadar et al. ()] ‘Exe: automatically generating inputs of death’ C Cadar , V Ganesh , P M Pawlowski , D L
Dill , D R Engler . ACM Transactions on Information and System Security 2008. 12 (2) p. 10. (TISSEC))

[Groce and Joshi ()] ‘Extending model checking with dynamic analysis’ R Groce , Joshi . Verification, Model
Checking, and Abstract Interpretation, 2008. Springer. p. .

[Hooimeijer et al. ()] ‘Fast and precise sanitizer analysis with bek’. P Hooimeijer , B Livshits , D Molnar , P
Saxena , M Veanes . Proceedings of the 20 th USENIX conference on Security, USENIX Association, (the 20
th USENIX conference on Security, USENIX Association) 2011. p. .

[Davidson et al. ()] ‘Fie on firmware: Finding vulnerabilities in embedded systems using symbolic execution’ D
Davidson , B Moench , T Ristenpart , S Jha . USENIX Security, 2013. p. .

[Livshits and Lam ()] ‘Finding security vulnerabilities in java applications with static analysis’ B Livshits , M S
Lam . Proceedings of the 14th conference on USENIX Security Symposium, (the 14th conference on USENIX
Security Symposium) 2005. 14.

owan et al. ormatguard: utomatic protection from printf format string vulnerabilities’. owan ,
C 1 ‘F d: A i ion f intf f i 1 bilities. C C
M Barringer , S Beattie , G Kroah-Hartman , M Frantzen , J Lokier . USENIX Security Symposium,
(Washington, DC) 2001. 91.

[Yamaguchi et al. ()] ‘Generalized vulnerability extrapolation using abstract syntax trees’ F Yamaguchi , M
Lottmann , K Rieck . Proceedings of the 28 th Annual Computer Security Applications Conference, (the 28
th Annual Computer Security Applications Conference) 2012. ACM. p. .

[Kiezun et al. ()] ‘Hampi: a solver for string constraints’ V Kiezun , P J Ganesh , P Guo , M D Hooimeijer ,
Ernst . Proceedings of the eighteenth international symposium on Software testing and analysis, (the eighteenth
international symposium on Software testing and analysis) 2009. ACM. p. .

[Howard ()] How do they do it? a look inside the security development lifecycle at microsoft, MSDN Magazine,
M Howard . 2005. p. .

[Howard (2006)] M Howard . 2016-10-22. http://blogs.msdn.com/b/michael howard/archive/ A brief
introduction to the standard annotation language (SAL), 2006/05/19/602077.aspx. 2006.

21

http://blogs.msdn.com/b/michael_howard/archive/

978
979

980
981

982

983
984
985
986

987
988
989

990
991

992
993

994

995
996

997

998
999

1000
1001
1002
1003

1004
1005
1006
1007

1008
1009

1010
1011
1012

1013
1014
1015

1016
1017

1018
1019
1020

1021
1022
1023

1024
1025
1026

1027
1028
1029

1030
1031
1032
1033

40 CONCLUSIONS

[Evans and Larochelle ()] ‘Improving security using extensible lightweight static analysis, software’. D Evans , D
Larochelle . IEEE 2002. 19 (1) p. .

[Livshits ()] Improving software security with precise static and runtime analysis, B Livshits . 2006. Stanford
University (Ph.D. thesis)

[Rescorla ()] ‘Is finding security holes a good idea?’. E Rescorla . Security & Privacy, 2005. 3 p. .

[Oliveira et al. ()] ‘It’s the psychology stupid: how heuristics explain software vulnerabilities and how priming
can illuminate developer’s blind spots’. D Oliveira , M Rosenthal ; N Morin , K.-C Yeh , J Cappos , Y Zhuang
. Proceedings of the 30th Annual Computer Security Applications Conference, (the 30th Annual Computer
Security Applications Conference) 2014. ACM. p. .

[Viega et al. ()] ‘Its4: A static vulnerability scanner for ¢ and c++ code’. J Viega , J.-T Bloch , Y Kohno , G
Mcgraw . Proceedings of the 16th Annual Computer Security Applications Conference, ACSAC’00, (the 16th
Annual Computer Security Applications Conference, ACSAC’00) 2000. IEEE. p. .

[Cadar et al. ()] Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs,
D Cadar , D R Dunbar , Engler . 2008. OSDI. 8 p. .

[Wang et al. ()] ‘Linear obfuscation to combat symbolic execution’. Z Wang , J Ming , C Jia , D Gao . Computer
Security-ESORICS 2011, 2011. Springer. p. .

[Johnson ()] Lint, a C program checker, S C Johnson . 1977. Bell Telephone Laboratories

[Long et al. ()] F Long , D Mohindra , R C Seacord , D F Sutherland , D Svoboda . The CERT Oracle Secure
Coding Standard for Java, 2011. Addison-Wesley Professional.

[Mcgraw ()] G Mcgraw . Software security: building security in, 2006. Addison-Wesley Professional. 1.

[Mead and Stehney ()] N R Mead , T Stehney . Security quality requirements engineering (SQUARE) method-
ology, 2005. ACM. 30.

[Yang et al. ()] ‘Meca: an extensible, expressive system and language for statically checking security properties’
J Yang , T Kremenek , Y Xie , D Engler . Proceedings of the 10th ACM conference on Computer and
communications security, (the 10th ACM conference on Computer and communications security) 2003. ACM.
p- -

[R"odiger ()] ‘Merging static analysis and model checking for improved security vulnerability detection’. A New
View on Classification of Software Vulnerability Mitigation Methods USENIX Annual Technical Conference,
. W.-S R"odiger (ed.) 2005. 2011. p. . Dept. of Com. Sc. Augsburg University (General Track. Ph.D. thesis,
Master thesis)

[Shahriar and Zulkernine ()] ‘Mitigating program security vulnerabilities: Approaches and challenges’. H
Shahriar , M Zulkernine . ACM Computing Surveys (CSUR) 2012. 44 (3) p. 11.

[Godefroid ()] ‘Model checking for programming languages using verisoft’ P Godefroid . Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, (the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages) 1997. ACM. p. .

[Havelund and Pressburger ()] ‘Model checking java programs using java pathfinder’. K Havelund , T Pressburger
. International A New View on Classification of Software Vulnerability Mitigation Methods Journal on Software
Tools for Technology Transfer, 2000. 2 p. .

[Cho et al. ()] ‘Model-inference-assisted concolic exploration for protocol and vulnerability discovery’. C Y Cho
, D Babic , P Poosankam , K Z Chen , E X Wu , D Song , Mace . USENIX Security Symposium, 2011. p. .

[Hadjidj et al. ()] ‘Modelchecking for software vulnerabilities detection with multi-language support’ R Hadjidj
, X Yang , S Tlili , M Debbabi . Proceeding of the sizth Annual Conference on Privacy, Security and Trust,
PST’08, (eeding of the sixth Annual Conference on Privacy, Security and Trust, PST’08) 2008. IEEE. p. .

[Yamaguchi et al. ()] ‘Modeling and discovering vulnerabilities with code property graphs’ F Yamaguchi , N
Golde , D Arp , K Rieck . Proceedings of 2014 IEEE Symposium on Security and Privacy (SP), (2014 IEEE
Symposium on Security and Privacy (SP)) 2014. IEEE. p. .

[Chen and Wagner ()] ‘Mops: an infrastructure for examining security properties of software’. H Chen , D Wagner
. Proceedings of the 9th ACM conference on Computer and communications security, (the 9th ACM conference
on Computer and communications security) 2002. ACM. p. .

[Balzarotti et al. ()] ‘Multi-module vulnerability analysis of web-based applications’ D Balzarotti , M Cova , V
V Felmetsger , G Vigna . Proceedings of the 14th ACM conference on Computer and communications security,
(the 14th ACM conference on Computer and communications security) 2007. ACM. p. .

[Salamat et al. ()] ‘Multi-variant program execution: Using multi-core systems to defuse buffer-overflow vulner-
abilities’ B Salamat ; A Gal , T Jackson , K Manivannan , G Wagner , M Franz . proceedings of International
Conference on Complez, Intelligent and Software Intensive Systems. CISIS 2008, (International Conference
on Complex, Intelligent and Software Intensive Systems. CISIS 2008) 2008. IEEE. p. .

22

1034
1035
1036

1037
1038

1039
1040
1041
1042

1043
1044
1045

1046

1047
1048
1049

1050
1051
1052

1053
1054
1055

1056
1057
1058

1059
1060

1061
1062

1063
1064
1065

1066
1067
1068
1069

1070

1071
1072
1073

1074
1075
1076

1077

1078

1079
1080

1081
1082
1083

1084
1085

1086
1087

1088
1089

[Shahriar and Zulkernine ()] ‘Music: Mutation-based sql injection vulnerability checking’. H Shahriar , M
Zulkernine . Proceeding of the FEighth International Conference on Quality Software. QSIC’08, (eeding of
the Eighth International Conference on Quality Software. QSIC’08) 2008. IEEE. p. .

[Nipkow et al. ()] T Nipkow , L C Paulson , M Wenzel . Isabelle/HOL: a proof assistant for higher-order logic,
2002. Springer Science & Business Media. 2283.

[Sarwar et al. ()] ‘On the effectiveness of dynamic taint analysis for protecting against private information leaks
on android-based devices’. G Sarwar , O Mehani , R Boreli , D Kaafar . Proceeding of the 10th International
Conference on Security and Cryptography (SECRYPT), (eeding of the 10th International Conference on
Security and Cryptography (SECRYPT)) 2013.

[Jovanovic et al. ()] ‘Pixy: A static analysis tool for detecting web application vulnerabilities’. N Jovanovic , C
Kruegel , E Kirda . Proceeding of the 2006 IEEE Symposium on Security and Privacy, (eeding of the 2006
IEEE Symposium on Security and Privacy) 2006. IEEE. p. 6.

[Chaki and Hissam ()] Precise buffer overflow detection via model checking, S Chaki , S Hissam . 2005.

[Stock et al. ()] ‘Precise clientside protection against dom-based cross-site scripting’. B Stock , S Lekies , T
Mueller , P Spiegel , M Johns . Proceedings of the 23rd USENIX security symposium, (the 23rd USENIX
security symposium) 2014. p. .

[Ringenburg and Grossman ()] ‘Preventing formatstring attacks via automatic and efficient dynamic checking’

M F Ringenburg , D Grossman . Proceedings of the 12 th ACM conference on Computer and communications
security, (the 12 th ACM conference on Computer and communications security) 2005. ACM. p. .

[Paulson ()] ‘Proving properties of security protocols by induction’. L C Paulson . Proceedings of the 10th workshop
on Computer Security Foundations, (the 10th workshop on Computer Security Foundations) 1997. IEEE. p.

[Chiueh and Hsu ()] ‘Rad: A compile-time solution to buffer overflow attacks’ T Chiueh , F.-H Hsu . Proceeding
of the 21st International Conference on Distributed Computing Systems, (eeding of the 21st International
Conference on Distributed Computing Systems) 2001. 2001. IEEE. p. .

[Rawat et al.] S Rawat , D Ceara , L Mounier , M.-L Potet . arXiv:1305.3883. Combining static and dynamic
analysis for vulnerability detection, (arXiv preprint)

[Demott et al.] Revolutionizing the field of greyboz attack surface testing with evolutionary fuzzing, J Demott , R
Enbody , W F Punch . (BlackHat and Defcon)

[Trinh et al. ()] ‘S3: A symbolic string solver for vulnerability detection in web applications’ M.-T Trinh , D.-
H Chu , J Jaffar . Proceedings of the 201, ACM SIGSAC Conference on Computer and Communications
Security, (the 2014 ACM SIGSAC Conference on Computer and Communications Security) 2014. ACM. p. .

[Balzarotti et al. ()] ‘Saner: Composing static and dynamic analysis to validate sanitization in web applications’.
D Balzarotti , M Cova , V Felmetsger , N Jovanovic , E Kirda , C Kruegel , G Vigna . Proceeding of IEEE
Symposium on Security and Privacy, (eeding of IEEE Symposium on Security and Privacy) 2008. 2008. IEEE.
p- -

[Seacord ()] R C Seacord . Secure Coding in C and C++, 2005. Pearson Education.

[Joh and Malaiya ()] ‘Seasonal variation in the vulnerability discovery process’ H Joh , Y K Malaiya . Proceedings

of ICST’09 International Conference on Software Testing Verification and Validation, (ICST’09 International
Conference on Software Testing Verification and Validation) 2009. 2009. IEEE. p. .

[Kals et al. ()] ‘Secubat: a web vulnerability scanner’. S Kals , E Kirda , C Kruegel , N Jovanovic . Proceedings
of the 15th international conference on World Wide Web, (the 15th international conference on World Wide
Web) 2006. ACM. p. .

[Secure Coding Guidelines] https://msdn.microsoft.com/en-us/library/d55zzx87%28v=vs.90%
29.aspx Secure Coding Guidelines, (Online; accessed 2016-10-14)

[Suh et al. ()] ‘Secure program execution via dynamic information flow tracking’ G E Suh , J W Lee , D Zhang
, S Devadas . ACM SIGOPS Operating Systems Review 2004. ACM. 38 p. .

[Abbott et al. ()] ‘Security analysis and enhancements of computer operating systems’. R P Abbott , J S Chin
, J E Donnelley , W L Konigsford , S Tokubo , D A Webb . NBSIR-76- 1041. National bureau of standards
Washington inst for computer sciences and technology, 1976. (Technical report)

[Anderson] ‘Security in open versus closed system the dance of boltzmann, coase and moore’. R Anderson . Open
Source Software Economics

[Cui et al. ()] ‘Shieldgen: Automatic data patch generation for unknown vulnerabilities with informed probing
W Cui , M Peinado , H J Wang , M E Locasto . IEEE Symposium on 2007. 2007. IEEE. p. . (SP’07)

[Zhang et al. ()] ‘Simfuzz: Test case similarity directed deep fuzzing’. D Zhang , D Liu, Y Lei , D Kung , C
Csallner , N Nystrom , W Wang . Journal of Systems and Software 2012. 85 (1) p. .

23

https://msdn.microsoft.com/en-us/library/d55zzx87%28v=vs.90%29.aspx
https://msdn.microsoft.com/en-us/library/d55zzx87%28v=vs.90%29.aspx
https://msdn.microsoft.com/en-us/library/d55zzx87%28v=vs.90%29.aspx

1090
1091

1092
1093

1094
1095

1096
1097

1098
1099
1100
1101

1102

1103
1104
1105
1106

1107
1108
1109

1110
1111
1112
1113

1114
1115
1116

1117
1118

1119
1120
1121

1122

1123
1124
1125

1126
1127
1128
1129

1130
1131

1132
1133

1134
1135
1136

1137
1138

1139
1140

1141
1142

1143
1144

40 CONCLUSIONS

[Detlefs et al. ()] ‘Simplify: a theorem prover for program checking’. D Detlefs , G Nelson , J B Saxe . Journal
of the ACM (JACM) 2005. 52 (3) p. .

[Dahse and Holz ()] ‘Simulation of built-in php features for precise static code analysis’ J Dahse , T Holz .
Symposium on Network and Distributed System Security (NDSS), 2014.

[Jhala and Majumdar ()] ‘Software model checking’. R Jhala , R Majumdar . ACM Computing Surveys (CSUR)
2009. 41 (4) p. 21.

[Henzinger et al. ()] ‘Software verification with blast’. T A Henzinger , R Jhala , R Majumdar , G Sutre . Model
Checking Software, 2003. Springer. p. .

[Jimenez et al. ()] ‘Software vulnerabilities, prevention and detection methods: a review. W Jimenez , A
Mammar , A Cavalli , R Fourier . Proceeding of the first International Workshop on Security in Model
Driven Architecture, (eeding of the first International Workshop on Security in Model Driven Architecture)
2009. SEC-MDA.

[Krsul ()] Software vulnerability analysis, I V Krsul . 1998. Purdue University (Ph.D. thesis)

[Liu et al. ()] ‘Software vulnerability discovery techniques: A survey’. B Liu, L Shi, Z Cai , M Li . Proceeding of
the Fourth International Conference on Multimedia Information Networking and Security (MINES), (eeding
of the Fourth International Conference on Multimedia Information Networking and Security (MINES)) 2012.
IEEE. p. .

[Cowan et al. ()] ‘Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks’ C Cowan
, C Pu, D Maier , J Walpole , P Bakke , S Beattie , A Grier , P Wagle , Q Zhang , H Hinton . Useniz
Security 1998. 98 p. .

[Madan et al. ()] ‘Stackoffence: a technique for defending against buffer overflow attacks. B B Madan , S Phoha
, K S Trivedi . Proceeding of International Conference on Information Technology: Coding and Computing.
ITCC 2005, (eeding of International Conference on Information Technology: Coding and Computing. ITCC
2005) 2005. IEEE. 1 p. .

[Bau et al. ()] ‘State of the art: Automated black-box web application vulnerability testing’. J Bau , E Bursztein
, D Gupta , J Mitchell . Proceeding of the 2010 IEEE Symposium on Security and Privacy (SP), (eeding of
the 2010 IEEE Symposium on Security and Privacy (SP)) 2010. IEEE. p. .

[Ernst ()] ‘Static and dynamic analysis: Synergy and duality’ M D Ernst . WODA 2003: ICSE Workshop on
Dynamic Analysis, 2003. p. .

[Wassermann and Su ()] ‘Static detection of cross-site scripting vulnerabilities’. G Wassermann , Z Su . Proceeding
of the ACM/IEEE 30th International Conference on Software Engineering. ICSE’08, (eeding of the
ACM/IEEE 30th International Conference on Software Engineering. ICSE’08) 2008. IEEE. p. .

[Zafar and Ali] Static techniques for vulnerability detection, K Zafar , A Ali . Sweden. Linkoping University

[Larochelle and Evans ()] ‘Statically detecting likely buffer overflow vulnerabilities’ D Larochelle , D Evans .
USENIX Security Symposium, . C E Landwehr, A R Bull, J P Mcdermott, W S Choi (ed.) (Washington DC)
2001. 1994. 32 p. . (A taxonomy of computer program security flaws)

[Almorsy et al. ()] ‘Supporting automated vulnerability analysis using formalized vulnerability signatures’. M
Almorsy , J Grundy , A S Ibrahim . Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, (the 27th IEEE/ACM International Conference on Automated Software
Engineering) 2012. ACM. p. .

[Cadar and Sen ()] ‘Symbolic execution for software testing: three decades later’. C Cadar , K Sen . Communi-
cations of the ACM 2013. 56 (2) p. .

u et al. ymbolic string verification: Combining string analysis and size analysis, in: Tools and Algorithms
Y 1 Symboli j ; j Combini ; lysi. d si lysis, in: Tools and Algorith
for the Construction and Analysis of Systems, F Yu , T Bultan , O H Ibarra . 2009. Springer. p. .

[Wang et al. ()] ‘Taintscope: A checksum-aware directed fuzzing tool for automatic software vulnerability
detection’. T Wang , T Wei , G Gu , W Zou . Proceeding of 2010 IEEE Symposium on Security and Privacy
(SP), (eeding of 2010 IEEE Symposium on Security and Privacy (SP)) 2010. IEEE. p. .

[Su and Wassermann ()] ‘The essence of command injection attacks in web applications’ Z Su , G Wassermann
. ACM SIGPLAN Notices 2006. ACM. 41 p. .

[The Shields Project ()] http://www.shields-project.eu The Shields Project, 2012. (Online; accessed
2016-10-23)

[Tian-Yang et al. ()] G Tian-Yang , S Yin-Sheng , F You-Yuan . Research on software security testing, 2010. 70
p. .

[Felmetsger et al. ()] ‘Toward automated detection of logic vulnerabilities in web applications’. L Felmetsger , C
Cavedon , G Kruegel , Vigna . USENIX Security Symposium, 2010. p. .

24

http://www.shields-project.eu

1145
1146
1147

1148
1149
1150

1151
1152

1153
1154

1155

1156
1157

1158
1159

1160
1161

[Pellegrino and Balzarotti ()] ‘Toward black-box detection of logic flaws in web applications’. G Pellegrino , D
Balzarotti . Proceedings of the Network and Distributed System Security (NDSS) Symposium, (the Network
and Distributed System Security (NDSS) Symposium) 2014.

[Byers and Shahmehri ()] ‘Unified modeling of attacks, vulnerabilities and security activities’ D Byers , N
Shahmehri . Proceedings of the 2010 ICSE Workshop on Software Engineering for Secure Systems, (the
2010 ICSE Workshop on Software Engineering for Secure Systems) 2010. ACM. p. .

[Xue et al. ()] Using replicated execution for a more secure and reliable web browser, H Xue , N Dautenhahn , S
T King . 2012. NDSS.

[Mallouli et al. ()] ‘Vdc-based dynamic code analysis: Application to ¢ programs’. W Mallouli , A Mammar , A
Cavalli , W Jimenez . Journal of Internet Services and Information Security 2011. 1 (2/3) p. .

[Heelan] ‘Vulnerability detection syst ems:Think cyborg, not robot’. S Heelan . IEEE Security and Privacy 9.

[Rahimi and Zargham ()] ‘Vulnerability scrying method for software vulnerability discovery prediction without
a vulnerability database, Reliability’. S Rahimi , M Zargham . IEEE Transactions on 2013. 62 (2) p. .

[Woo et al. ()] S--W Woo , H Joh , O H Alhazmi , Y K Malaiya . Modeling vulnerability discovery process in
apache and iis http servers, 2011. 30 p. .

[De Moura and Bjgrner ()] Z3: An efficient smt solver, in: Tools and Algorithms for the Construction and
Analysis of Systems, L De Moura , N Bjgrner . 2008. Springer. p. .

25

