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6

Abstract7

Software vulnerability mitigation is a well-known research area, and many methods have been8

proposed for it. Some papers try to classify these methods from different specific points of9

views. In this paper, we aggregate all proposed classifications and present a comprehensive10

classification of vulnerability mitigation methods. We define software vulnerability as a kind11

of software fault, and correspond the classes of software vulnerability mitigation methods12

accordingly. In this paper, the software vulnerability mitigation methods are classified into13

vulnerability prevention, vulnerability tolerance, vulnerability removal and vulnerability14

forecasting. We define each vulnerability mitigation method in our new point of view and15

indicate some methods for each class. Our general point of view helps to consider all of the16

proposed methods in this review. We also identify the fault mitigation methods that might be17

effective in mitigating the software vulnerabilities but are not yet applied in this area. Based18

on that, new directions are suggested for the future research.19

20

Index terms—21

1 Introduction22

oftware is an important part of a computer system. Being complex or created by incompetent developers,23
faults might be introduced to the software. There are faults that cause violating the system security. These24
faults are called vulnerability. There has been much research on preventing, detecting and analyzing software25
vulnerabilities.26

By the time of writing this paper there is a number of surveys on the methods of mitigating vulnerabilities,27
i.e. [1], [2], [3] and [4]. Among them, [4] surveys the static analysis vulnerability detection methods that are28
applied in three areas that are associated with sources of vulnerabilities, i.e., accesscontrol, information-flow and29
application-programmingconformance. It reviews around 88 papers. The studied methods, however, do not cover30
all the software vulnerability classes. Static analysis methods are also surveyed in [3]. It reviews 23 papers and31
classifies their methods with a different point of view. In [1] static and dynamic analysis methods are classified32
and 18 papers are briefly reviewed. The classification for static analysis methods presented in that paper is33
similar to the on in [3]. The most comprehensive survey is presented in [2] by Shahriar et al. in 2012. They34
review 173 papers and classify their methods in four classes, i.e., static analysis, dynamic analysis, monitoring35
and hybrid analysis.36

In this paper, we present a new definition for software vulnerability. Based on this definition, vulnerability37
mitigation methods are classified and reviewed with a new point of view. We use the general classification of38
fault mitigation methods as a base and extend it to a detailed classification of software vulnerability mitigation39
methods.40

Our comprehensive classification aggregates many of the classification presented in the previous surveys, i.e.,41
[1], [3], [2] and [5]. Also, the general perspective applied in our survey helps to identify the fault mitigation42
methods that are not yet used in mitigating software vulnerabilities. Since we consider the software vulnerability43
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4 III. VULNERABILITY MITIGATION METHODS

as a type of fault, these methods may be helpful in mitigating software vulnerabilities. We suggest new directions44
for the future researches based on our analysis during the review of the proposed vulnerability mitigation methods.45

In this paper, our definition of software vulnerability is presented in section II. Based on this definition,46
software vulnerability mitigation methods are classified in section III. In this section, each class is described in47
details and some examples are reviewed. Section IV concludes the paper and presents some future directions.48

2 II.49

3 Defining Software Vulnerability50

To review vulnerability mitigation methods, a precise definition of software vulnerability is required. Different51
researchers have suggested definitions for this term which are nearly analogous but have differences. Matt Bishop52
et al. define software vulnerability by modeling the software as a state machine in [6], [7], [8] and [9]. In this53
model, a vulnerable state is the state that let unauthorized reads, changes or accessibility modifications to a54
source. They define vulnerability as a property in the system that let it enter into a vulnerable state. In [8]55
Bishop defines vulnerability as a weakness that makes it possible for a threat to occur, where a threat is a potential56
violation of security policy. Amoroso defines vulnerability as an unfortunate characteristic that allows a threat57
to potentially occur [10]. There are other definitions of software vulnerability in relation with S security policy,58
e.g. [11] and [1]. Most of them define it as a property, characteristic or weakness that may cause compromising59
the security policy.60

In order to clarify the terms property and security policy compromise, we redefine ”software vulnerability”.61
We use the precise definitions for the concepts in software security and reliability that are presented in [12] and62
construct our definition of software vulnerability. The taxonomy in [12] is presented in 2004 for the concepts of63
software security and reliability, such as fault, error, failure, vulnerability and attack. The authors define fault as64
the cause of error, while error is a state of the system that is probable to failure. Failure -or service failure is an65
event in which the delivered service is deviated from the correct service. In fact, a fault may become active and66
produce an error. Also the error may propagate inside the system and produce more errors. If the propagated67
error reaches system boundaries and affects the services, it becomes a failure.68

A service is defined in [12] as the behavior perceived by users in system boundaries. Correct services are69
determined by the system specification. Some parts of the system behavior are specified by the security policy,70
which is a partial system specification. Thus when a system deviates from the security policy, a security failure71
occurs. This means that compromising security policy causes a security failure.72

Faults are classified in [12] based on eight criteria, such as the phase of creation or occurrence, the objective, the73
phenomenological cause, the system boundary and the dimension. All combinations of the eight elementary fault74
classes would result in 256 different combined classes. The authors, however, believe that not all combinations75
are possible. For example, there is no malicious non-deliberate faults, or all the natural faults are non-malicious.76

An attack is defined in [12] as a malicious external fault. An attack may be either an external hardware77
malicious fault, such as heating the RAM with a hairdryer to cause memory errors, or an external software78
malicious fault, such as a Trojan horse [12]. The term vulnerability is also defined in [12] as an internal fault that79
enables an external fault to harm the computer system, although harming the computer system is not clearly80
defined.81

According to the previous definitions, we consider software vulnerabilities as:82
We have concluded this definition, out of the definitions in [12], [8], [10], [11] and [1], since looking a83

vulnerability as a fault, instead of a property, better clarifies the concept of vulnerability by considering its84
relation to error, security failure and thus security policy. Like faults, a vulnerability may be dormant and never85
be activated. It also may be activated and propagated in the system. The activated vulnerability might never86
reach the boundaries. As an example, suppose that a buffer overflow occurs and the value of a return address in87
the stack changes as a result. But using a monitoring procedure, the unauthorized change is detected and the88
program halts. Thus, the security policy is not violated. Monitoring the program, as a vulnerability detection89
method, is explained in section III-B. When an active vulnerability reaches the system boundaries, it causes a90
security failure. For example, an attacker may activate the format string vulnerability in a program and make91
it print some confidential data from the memory [13]. Since the active vulnerability has reached the system92
boundaries, it has made a security failure.93

4 III. Vulnerability Mitigation Methods94

Since vulnerability mitigation is a well-known research area, a structured approach is required to review the95
previous related works. In this paper, we review vulnerability mitigation methods using a new point of view.96
We classify and review these methods based on how we define software vulnerability. In the previous section,97
software vulnerability is defined as an internal software fault. Since we considered vulnerability as a type of98
fault, the classifications of fault mitigation methods can be used as a base for classifying vulnerability mitigation99
methods. Avizienis et al. present a classification for the means of mitigating the faults to achieve a secure and100
dependable system in [12]. We use this general classification as a base and extend it into a detailed classification101
of vulnerability mitigation methods. Our classification is illustrated in figure ??. The vulnerability mitigation102
classes that are shown in figure ?? are described in more details in the following sections. This figure presents a103
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comprehensive view of the previous efforts in mitigating software vulnerabilities. Our classification also aggregates104
the classifications presented in the previous surveys, such as the ones presented in [1], [3], [2]. Moreover, this105
classification helps to identify the fault mitigation methods that can be applied to improve current software106
vulnerability mitigation methods. This helps to suggest new directions for the future research.107

5 a) Vulnerability prevention108

Generally, fault prevention means avoiding the fault introduction and occurrence in the application during the109
development. A fault may be introduced during any of the development phases: requirement analysis, design110
and implementation. To prevent the occurrence of software vulnerabilities during these phases, software security111
is emerged. Software security is the process of designing, building and testing software for security [14]. It112
aims at designing and implementing a secure software and educating developers, architects and users to build113
security in the software [14]. There are various secure software development methods presented by now, such as114
Microsoft Security Development Lifecycle (SDL) [15], Security Quality Requirement Engineering (SQUARE) [16]115
and McGraw’s secure development method [14]. Also, there are secure coding best practices that are suggested116
for different programming languages. These best practices educate the programmers to prevent introduction of117
well-known vulnerabilities during the coding phase, such as [17] for .NET framework, [18] for C/C++ and [19]118
for Java.119

The programmers’ lack of security knowledge is an important reason for the introduction of vulnerabilities.120
Transferring the related information to the developers is an issue in vulnerability prevention. The SHIELDS121
project was an example of the attempts in this area [20]. The goal in this project was to create a database122
of security related information for programmers that can be used automatically. A unified modeling language123
was proposed in SHIELDS for representing this information [21]. Using this language, it is possible to specify a124
vulnerability class and its relations to the well-known attacks. It also helps to define the methods of preventing125
a vulnerability class. Thus, it helps the developers to learn how to prevent vulnerabilities in order to achieve the126
security goals of the application. Some tools were also developed based on this language in that project, such as127
GOAT [20] and TestInv-Code [22].128

6 b) Vulnerability Tolerance129

In spite of vulnerability prevention efforts, vulnerabilities are created. Thus, vulnerability tolerance is required.130
Generally, fault tolerance methods accept the existence of faults and focus on preventing the activated faults131
from reaching the system boundaries and causing a failure. Fault tolerance is usually performed in two steps:132
error detection and recovery [12]. Therefore, we study monitoring methods based on three aspects: the applied133
error detection, error handling and fault handling techniques. Please note that since we look a vulnerability134
as a fault, we consider error as an active vulnerability. Thus, the mentioned three aspects are also named as135
active vulnerability detection, active vulnerability handling and vulnerability handling techniques respectively.136
Fig. ??: Our classification of vulnerability mitigation methods according to the classification of fault mitigation137
methods in [12]. The boxes with dashed borders show the methods that have not been used in mitigating software138
vulnerabilities yet.139

7 C Error detection (active vulnerability detection)140

There are vulnerability mitigation methods that control the execution of a program and detects active141
vulnerabilities at run-time. These methods are also called monitoring methods [2]. Various active vulnerability142
detection techniques have been used in the proposed monitoring methods. Some examples are monitoring the143
memory and validating its integrity [23], [24], [25], controlling the flow of user provided data (taint analysis) [26],144
[27], [28], [29] and validating the arguments of specific functions [30], [31], [32].145

For example, the return addresses of functions in the stack memory of the program are monitored in [23], [24]146
and [25] to detect stack overflows at run-time. If any unauthorized changes of the return addresses is detected, it is147
concluded that a buffer overflow vulnerability has become active in the program. Some monitoring methods track148
the flow of user provided un-trusted data at run-time and react appropriately if the untrusted data reach sensitive149
statements in the program, such as [26], [27], [28], [29]. This method is used to tolerate various vulnerabilities,150
such as DOM-based XSS [29], SQL injection [26], [27], [28], buffer overflow [26], [27], [28] and format string [26],151
[27], [28]. Some monitoring methods locate specific functions in the program and control their arguments during152
the program execution, such as [30], [31] and [32].153

For example, in [31] the program code is analyzed statically and the query strings, that are used as the154
arguments of SQL functions, are parsed to extract the ASTs of legitimate queries. In this method, the code155
is instrumented to control the values of SQL queries before executing the relevant functions. Before executing156
a query with un-trusted data, the monitoring procedure extracts the AST of the query. It then compares the157
extracted AST with the AST of the legitimate queries. Any inconsistency between the two ASTs might reveal a158
malicious query. Thus, an appropriate reaction is taken by the monitoring procedure to prevent security failures.159

Detecting the errors may be performed during the normal service delivery (concurrent detection). Also, it may160
be performed in specific times in which the application does not deliver services (preemptive detection). The161
latter is usually applied to eliminate the negative effects of software aging. All the studied monitoring methods162
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10 C) VULNERABILITY REMOVAL

detect active vulnerabilities during the normal service delivery. However, preemptive error detection can be used163
to detect the activation of vulnerabilities that makes the program overuse the system resources, like the memory164
leakage vulnerability.165

8 Error handling (active vulnerability handling)166

After an error is detected, it is handled in one of three ways: rollback, roll-forward and compensation.167
Many of the presented monitoring methods focus on detecting active vulnerabilities, but less attention is paid168

to handling the active vulnerabilities. It seems that more effort is required on designing appropriate handling169
methods for active vulnerabilities. Although halting the program and throwing an exception prevents a successful170
attack, they violate the availability of the software to the legitimate users. Thus, it may result in deniable of171
service. Therefore, more intelligent active vulnerability handling techniques should be designed for the monitoring172
methods. Since the rollback technique is usually used for the transient faults and software vulnerability is173
a permanent fault, this technique cannot be applied in the monitoring methods. Thus, the roll-forward and174
compensation techniques can be used to design more intelligent active vulnerability handling methods.175

9 Fault handling (vulnerability handling)176

After handling the error, sometimes fault handling is performed to remove the fault and prevent the similar177
errors in the future. Of course, sometimes the fault is handled immediately after error detection. Fault178
handling is performed by first recognizing causes of the Using the rollback method, the system is restored to179
a previously stored error-free state. Then, the program continues normal execution from the restored state. In180
some applications, such as real-time applications, there is no time to rollback. Thus, roll forwarding is performed181
to change the system state into a degraded new state that contains no errors. Then, the program executes182
normally from the degraded state. Roll-forwarding is applicable for predictable errors. Another error handling183
method is compensation. In this method, the redundancy in the current state is used to mask the error and184
let the program continues the execution. Many of the monitoring methods halt the program and generate an185
error message when they detect an active vulnerability, e.g. [32], [27], [33], [24]. In other words, many of the186
monitoring methods do not perform error handling. Some monitoring methods call an exception handler and187
take the program to a pre-defined state [34], [26], [28]. Most of the monitoring methods that are used for web188
applications ignore the requests that result in errors and continue normal execution [30], [31], [35], [29]. Calling189
exception handlers and ignoring the malicious requests can be considered as simple rollforwarding actions, since190
the erroneous state is changed into an error-free state and the program continues normal execution. However,191
more intelligent reactions can be performed after detecting active vulnerabilities. For example, in ??36] the stack192
content and return addresses are stored to compensate for buffer overflow errors. When a buffer overflow error193
is detected, the monitoring procedure uses the stored data to help the program continue execution securely.194

error. Usually, the faulty component is isolated to prevent the future activation of the fault. A spare faultfree195
component is then replaced by the faulty one. The system is reconfigured based on the new structure. We are not196
aware of any monitoring method that consists of a vulnerability handling procedure. However, there are some197
specific methods for automatically patching the software vulnerabilities, such as [37], [38], [39], [40] and [41].198
These methods might be usable in the proposed vulnerability tolerance methods to handle the vulnerabilities.199
The automatic patching methods analyze the malicious data that is used in an attack and modify the program to200
filter similar data in the future. These methods can be combined with preemptive active vulnerability detection201
techniques to generate a complete vulnerability tolerance solution.202

Table ?? summarizes the presented vulnerability tolerance methods so that the reader can review them easier.203
To sum up, there are various monitoring methods with enhanced error detection mechanisms presented by now.204
These methods pay more attention to detecting the errors. This might be due to the difference between software205
vulnerability and the other faults. Usually, software vulnerability is activated by malicious external faults.206
Therefore, detecting an active vulnerability reveals an ongoing attack. The software should resist the attack207
as soon as possible to prevent further damages. Thus, the quick detection of the active vulnerability is very208
important. Halting the program is the fastest low-risk response to the attack. However, it makes the program209
unavailable to the legitimate users as well. Thus, more intelligent error handling and vulnerability handling210
techniques should be added to the monitoring methods. To do so, a good starting point is inspiring by the211
current fault handling and error handling techniques and designing software vulnerability handling techniques.212

10 c) Vulnerability removal213

Vulnerability removal is performed to detect and remove the vulnerabilities that are created in software despite the214
vulnerability prevention efforts. Based on figure ??, the fault removal process consists of four steps: verification,215
diagnosis, correction and nonregression verification. During the verification step, it is verified if the system216
adheres to the specification. If not, the reason (fault) is diagnosed and corrected. After removing the fault, the217
verification is repeated to check if the removal was effective. The verification at this step is called non-regression218
verification.219

Most of the vulnerability removal methods focus on the verification step and don’t suggest any diagnosis or220
correction methods for the detected vulnerabilities. There are, however, special vulnerability diagnosis methods221
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that diagnose the vulnerabilities that are exploited by malicious users. For example, in [42] exploitation of222
memory corruption vulnerabilities is detected and then the exploited vulnerability is automatically diagnosed.223
The result of diagnosis consists of the instruction that are exploited by an attacker to corrupt critical program224
data, the stack trace at the time of memory corruption and the history that the corrupted data are propagated225
after the initial corruption. This information helps the developers to remove the diagnosed vulnerabilities. We226
could not find any vulnerability diagnosis or correction procedure that is used after the verification step of a227
vulnerability removal method. We need vulnerability diagnosis and correction procedures that can be used after228
the verification step, not after detecting an attack. In other words, these procedures should not be based on the229
attack information, but based on the information achieved during the verification step.230

Some vulnerability detection methods perform the verification step by checking if the software adheres to231
the security specification, while some of them verify if specific vulnerabilities exist in the software. Figure ??232
illustrated our classification of vulnerability verification methods. We divide the verification methods into three233
main classes: static, dynamic and hybrid methods.234

i. Static analysis Static analysis methods do not execute the program. Instead, they examine the program235
code and study its possible behaviors. Therefore, the result of static analysis is true regardless of the input data236
and static methods are usually sound and conservative [43]. A sound method is able to detect any specified237
vulnerability in the program. In other words, if a vulnerability is defined for the static analyzer and exists in a238
program, the analyzer will surely find it. In order to be sound, the analyzer produces conservative results that239
are weaker than the actual ones and may not be very useful [43]. In fact, static analysis is appropriate in proving240
the absence of a specific vulnerability. Usually static analyzers create many false alarms, hence they cannot be241
very useful in proving the existence of a specific vulnerability. Static analysis may be performed on the program242
or on the behavior model of the program [12]. Thus, static analysis methods are divided into two main classes:243
program-based and modelbased methods.244

11 ii. Program-based methods245

As figure ?? shows, these methods are classified into seven subclasses. Each class is explained as follows.246

12 Pattern Matching247

The most basic static analysis method is pattern matching. A pattern matcher considers the program as a248
text file. It may not even distinguish between the code and the comments. The pattern matcher searches for249
vulnerable functions or patterns in the text of the program code. Thus, this method can be implemented using250
any pattern matching utility, such as grep. Such a tool needs a database of the vulnerability patterns. As an251
example, Flawfinder [44] scans C/C++ programs to detect buffer overflow or format string in them. This tool252
ignores the text inside the comments and strings. However, it does not recognize the type of function parameters253
and control flow or data flow of the program. This lack of knowledge results in many false decisions. Thus, it254
makes many false positive and false negative alarms.255

13 Lexical analysis256

In this method, source code of the program is tokenized in order to recognize the variables and function arguments.257
Thus, the results of a lexical analyzer can be more accurate than the results of a pattern matcher. As an example,258
the tool ITS4 applies lexical analysis to detect buffer overflow, format string and race condition vulnerabilities259
in C or C++ programs [45]. ITS4 scans the source code statically and breaks it into series of lexical tokens.260
These tokens are compared with the token streams that are defined in a vulnerability database. The vulnerability261
database contains several handlers for well-known vulnerable functions in C/C++.262

14 Parsing263

In this method, source code of the program is parsed and represented in Abstract Syntax Trees (AST). The264
ASTs are then used to analyze the program syntactically and semantically. For example, Lint uses this method265
to detect vulnerabilities in programs written in C [46]. As another example, in [47] the ASTs of the source code266
are extracted and compared to the ASTs of different vulnerable codes. The main idea in [47] is that different267
vulnerabilities in software may be related to the same flawed programming pattern. Thus, the suggested method268
uses the ASTs of known vulnerable codes and searches for similar patterns in the target program. When a similar269
pattern is found in the program, it may reveal an unknown vulnerability.270

15 Data flow and taint analysis271

In this method, the flow of data among the instructions is analyzed to determine possible values that a variable272
holds during the run time. Two wellknown program representations are used in this method: control flow and273
data flow graphs. In a control flow graph, each node represents an instruction and a274
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19 THEOREM PROVING

16 Global Journal of Computer Science and Technology275

Volume XVII Issue I Version I [48] extracts the control flow and data flow graphs from the source code. It then276
compares extracted graphs with some patterns of known vulnerabilities. In this method, known vulnerabilities277
are specified as simple patterns of vulnerable functions or more complex flow-based rules.278

A subclass of data flow analysis is called taint analysis. A taint analyzer only tracks the flow of data that come279
from un-trusted resources. The un-trusted resources include the network protocols, keyboard, touchpad, webcam,280
files, etc. Since most of the vulnerabilities are exploited by un-trusted input data, this method pays attention281
to the flow of un-trusted input data in the program. If such data reach sensitive statements in the program, a282
vulnerability may be reported by the taint analyzer. The sensitive statements, called sinks, are defined according283
to the specified vulnerabilities. For example, the functions that execute SQL queries are usually defined as the284
sinks for SQL injection vulnerability. The propagation of tainted data among the instructions is determined based285
on some predefined rules. For example, if the data in a tainted variable is assigned to an un-tainted variable, the286
untainted variable will get tainted too.287

Taint analysis is used in many of the proposed vulnerability detection solutions, e.g. [49], [50], [51], [52] and [53],288
to detect various vulnerability classes. Since this method focuses on the flow of tainted data, it does not consider289
the execution paths in the program that are not affected by malicious data. This feature reduces the time of290
analysis and number of produced false positives. However, there are vulnerability classes that cannot be specified291
in such a source-sink structure, e.g. logic vulnerabilities. Although an attacker exploits logic vulnerabilities with292
malicious data, the sinks cannot be easily specified for this class of vulnerability. For example, the sinks for293
SQL injection vulnerability are the query execution statements. But a sink for logic vulnerabilities may be any294
statement that manipulates the input data.295

17 Annotation-based methods296

Annotation is a comment that the programmer makes in the code about the desired behavior of a function or297
an instruction. It may be defined as a set of pre-and post-conditions or as simple pre-execution conditions.298
An annotation-based analysis algorithm reads the annotations, analyzes the code statically and verifies if the299
conditions are met in the program. There are plenty of annotation languages presented so far, such as SPLINT300
[54], MECA [55], Sparse [56], SAL [57] and a Comment [58].301

Since there is a huge number of statements and functions in the programs, manual annotation is usually very302
time consuming and fault prone [58]. There are annotation languages that provide some facilities to annotate303
the program more easily, such as MECA [55] and aComment [58]. Among them, aComment is designed to help304
in detecting concurrency faults in the operating systems and allows the programmers to define the pre-and post-305
conditions that are related to the interrupts in each function. It also infers the annotation of some functions306
automatically to reduce the programmers’ workload. In this way, the programmers are not supposed to annotate307
all the functions manually.308

Although some of these languages help in reducing the required time and effort for annotating the programs,309
they usually have a different syntax and directed edge between two nodes represents their semantics than the310
applied programming languages. Therefore, the programmers and verifiers have to make extra efforts to learn311
another language in order to use this method. Also, the programmers should be familiar with the security312
requirements of the programs and the vulnerability classes to annotate the program appropriately. Therefore,313
the success of this method depends on the programmers’ knowledge of software security. Moreover, this method is314
not helpful in analyzing the COTS 1 software and third party components since their source code is not available.315

18 Constraint analysis316

In this method, the program is analyzed statically and some constraints are calculated for specific objects in it.317
The constraints are defined according to specific vulnerabilities and are solved to verify if the program suffers318
from those vulnerabilities. Constraint analysis was first proposed by Wagner et al. in [50]. The resulted tool,319
called BOON, considers the strings in a C program as an abstract data type. There are also predefined functions320
that manipulate this data type, such as strcpy(), strcat(), etc. BOON summarizes the state of each string by two321
integer values: the allocated size for the string and its current length. For each string in the buffer, it analyzes322
the string manipulating statements in the program to verify if the length of the string exceeds its allocated size.323
If such condition is inferred, the program might contains buffer overflow vulnerabilities.324

It is important to note that the constraints are determined by the analyzer in this method, not by the325
programmer. This makes the constraint analysis method different from the annotation-based analysis method.326

Moreover, constraint analysis does not increase the programmer’s workload since generation of the constraints327
is performed automatically and does not involve the programmer. Of course, it cannot profit the programmers’328
knowledge of the code to do a more efficient analysis.329

19 Theorem proving330

In this method, the software and its specification are expressed as some formulas of logics or algebraic systems.331
Also, the security requirements of software are expressed as some theorems. Proving these theorems demonstrates332
the satisfaction of the security requirements. Otherwise, there is a fault (vulnerability) in the program. As an333

6



example, in [59] the source code of target program is statically analyzed and some firstorder formulas are generated334
that assert the absence of certain faults and vulnerabilities, such as out-of-bounds array access. If the generated335
asserts are proved, the program does not contain such faults and vulnerabilities.336

Although the results of analysis are accurate in the theorem proving methods, they demand expertise and337
enough experience. In fact, theorem proving is difficult to be achieved automatically and requires highquality338
staff to apply this method, which is very timeconsuming. So it is generally used to verify correct design rather339
than the actual code [60]. Simple, fast.A340

Does not have any idea about the types of function parameters and control or data flow of the program and341
so generates many false alarms. [44].342

20 Lexical Analysis343

Tokenizes the code to recognize variables and function arguments.344
Variables and function arguments are recognized. More accurate than the pattern matching method.345
Lack of knowledge about the syntax and semantics of the code causes false alarms. Requires the high level346

source code. [45].347

21 Parsing348

Parses the code and represents it in Abstract Syntax Trees (AST) to be analyzed syntactically and semantically.349
Understands the code syntactically and semantically, less false alarms in comparison with the above two350

methods.351
Requires the high level source code.352
[47],353
[46], [30], [31], [66].354

22 Annotation-based methods355

Comments that the programmer makes about the desired behavior of the code. The code is then analyzed356
statically to verify if the conditions are met.357

Profits the programmers’ knowledge to do a focused analysis.358
The programmer must learn an additional language to do the annotation.359
[54],360
[55], [56],361
[57], [58].362

23 Theorem proving363

The security requirements of software are expressed as some theorems. Proving these theorems, demonstrates364
the satisfaction of the security requirements or existence of vulnerabilities.365

24 Accuracy.366

Difficult to be achieved automatically and requires high-quality staff to apply this method [59].367

25 Data flow analysis (Taint analysis)368

Tracks the flow of the data that comes from un-trusted resources and warns if the data reaches sensitive program369
points.370

Reduces the analysis time and number of false positives by not considering the execution paths in the program371
that are not affected by un-trusted data.372

Cannot detect vulnerabilities that are not defined specifically in a source-sink structure.373
[51], [52], [53],374
[67], [50],375
[68], [69], [70].376

26 Constraint analysis377

Analyzes the program, associates constraints with some objects in the code and solves them to verify if the378
program is vulnerable.379

Constraints are generated automatically and do not increase the programmer’s workload.380
Does not profit the programmer’s knowledge of the code (in comparison with the annotation method).381
[50],382
[51], [52], [53].383

27 Model checking384

Models the program and then checks the model to verify if it satisfies specified requirements.385
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29 A) CONCRETE EXECUTION

Only the modeling and requirement specification is performed manually by the human analyzer, rest of the386
analysis is done automatically.387

Modeling the program and specifying its security requirements-if done manuallyis time consuming and fault388
prone. State-explosion problem when the number of program states is large.389

[61],390
[62], [63],391
[71], [64]. In this method, the program is modeled and then analyzed to verify if it complies with its392

specifications, e.g. [61], [62], [63] and [64]. If a specific requirement is not satisfied in the software, this method393
provides some counter examples. Model checking helps the human analyzers by automating a noticeable part of394
the analysis. Although modeling and specifying the requirements may be done manually, analyzing all possible395
states of the program and verifying the requirements are done automatically. This is a great help in analyzing396
large programs. A well-known example of using this method for detecting vulnerabilities is MOPS [63]. Using397
MOPS, the program is modeled as a push-down automaton 2 . Also, the requirements are defined through safety398
properties. A safety property is represented as a finite state automaton. It defines the ordering constraints on399
security related operations. After modeling the program and defining its constraints, MOPS searches exhaustively400
through possible program states to check if a reachable state violates the safety properties.401

Abstracting the program in a model is a challenging task in this method. The model should be expressive402
enough to have a precise analysis. Thus, some model checking methods 2A push down automaton is a type of403
computational model. It is similar to NFAs except that it uses an additional component called a stack. In this404
model, state transitions are chosen based on three components; input signal, current state and what is at the405
top of the stack. Thus, the stack plays the role of an additional memory for it. also help the analyzer to model406
the target program. For example, MOPS uses the control flow of the program to build its automata. Also, in407
[64] the GCC compiler is used to automatically model and verify the programs that are written in any language408
supported by this compiler, i.e. C, C++, Java, etc. This is done by employing an intermediate language of GCC,409
called GIMPIL, that is common to all the supported languages. The model is extracted from the intermediate410
representation of the program and is checked against the defined specification by the use of Moped. Moped is a411
model checking tool for push down systems 3 65].412

There are, however, some shortcomings in the model checking method. Although the modeling phase is413
performed automatically in some model checking methods, the analyzer should manually specify the security414
requirements in this method. This is again time consuming and may cause errors in the results. Also, the415
method suffers from state-explosion problem for large programs.416

Table ??I summarizes the reviewed static analysis methods. Note that all these methods inherit the general417
advantages and shortcomings of static analysis. iv.418

28 Dynamic Analysis419

By executing the program with actual data, dynamic analysis studies the exact run-time behavior of the program.420
Dynamic analysis can be as fast as the execution of the program, whereas static analysis generally requires more421
computation time to obtain accurate results [43]. The main challenge in dynamic analysis methods is executing422
all the possible execution paths in the program and activating all vulnerabilities in those paths. In fact, acquiring423
an appropriate test data set, that make the program behave more diversely, is an issue in these methods. The424
most important shortcoming of dynamic analysis methods is that they components; input signal, current state425
and what is at the top of the stack. Thus, the stack plays the role of an additional memory for it. are unable to426
guarantee the analysis of all feasible execution paths. Therefore, the dynamic analysis is not sound and is mostly427
used to prove the existence of specific vulnerabilities in the programs. The dynamic methods are classified into428
two main classes in [12]: methods that use symbolic input values and methods that use actual (concrete) input429
values to test the program. Based on the recent advances in dynamic analysis methods, we classify these methods430
in three classes based on the type of applied input values: concrete execution, symbolic execution and concolic431
(concrete + symbolic) execution methods. The following subsections describe each class in more details.432

29 a) Concrete execution433

In this method, the program is executed with actual data and its behavior is analyzed to detect vulnerabilities.434
There are four dynamic analysis methods that use actual data to execute the program during the analysis: fault435
injection, mutation-based analysis, dynamic taint analysis and dynamic model checking.436

i. Fault injection In this method, the external faults are injected to the program to examine its behavior.437
According to our definition in section II, the external faults abuse the internal faults and cause unauthorized438
behaviors in the program. In other words, internal faults are activated by the external fault and are propagated439
to reach the program boundaries. Therefore, inability to handle external faults may reveal a vulnerability in the440
program.441

The external faults may be injected by corrupting input data to verify if the program is able to handle them.442
Most of the blackbox vulnerability scanners corrupt input data and analyze the reaction of the program, such as443
[72] and [73]. The black-box scanners have access to the inputs and outputs of the program. They might also have444
very little knowledge about the program internal structure [74]. They usually create the corrupted data based on445
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known attack patterns to study if the program can resist these attacks or suffers from the relevant vulnerabilities.446
Another group of dynamic vulnerability detectors that inject corrupted input data to the programs are fuzzers.447
Takanen et al. introduced fuzzing for detecting vulnerabilities for the first time. They suggested injecting448
unexpected random input data to the program and studying its behavior [74]. The difference between fuzzers449
and black-box vulnerability scanners is that fuzzers don’t corrupt input data exactly based on a list of attack450
patterns. In fact, they generate numerous random faulty data hoping that some data make the program crash.451
The main advantages of this method were simplicity and independence from the analyzed program. Thus, the452
method could be used easily to detect vulnerabilities in different programs. However, fuzzers were not intelligent453
enough to corrupt input data effectively and cover most of the execution paths. In order to have better program454
coverage, new fuzzers focus on producing well-formed corrupted data [75], satisfying data validation checks in455
the program like checksums [76], being aware of the state of the program during the fuzzing [77] and producing456
consistent input data with the path conditions to make the program execute all the branches [78], [79], [80], [81].457
All these enhancements made fuzzers play an effective role in detecting vulnerabilities during the recent years458
[82]. Injecting faults into the program can be done randomly or intelligently. By the word random, we mean459
that faulty data are generated semi-randomly based on predefined patterns. For example, in order to detect460
buffer overflow, random input data with different lengths are generated. Here the predefined pattern determines461
the length of input data and the other properties are set randomly. Takanen et al. consider random fuzzers as462
the ones that make small random changes into the valid data. For example, a FTP fuzzer may randomly add463
valid/invalid commands to the test data or chose the arguments of the commands randomly [74]. Random fuzzers464
sometimes use evolutionary algorithms to guide random choices and extend the program coverage, e.g. [83], [84].465
Random corruption of data is simple and independent from the logic and structure of the programs. Moreover,466
randomness helps to reveal a wide range of behaviors of the programs while the designed testcases by the human467
analyzer may not. This is because the designed test-cases are prepared by a human analyzer who may not think468
of all possible behaviors of the program.469

Corrupting the data intelligently is performed based on a previous analysis of the program. Although it470
requires more analysis efforts, it helps in extending the program coverage. For example, imagine a program that471
compares one of the input values with an integer value and exits if they are not equal. Using the random method,472
the possibility of passing this constraint is one out of 232. By analyzing the code before injecting faulty data,473
the analyzer is able to extract the constraint and generate the data in a way that complies with the constraint.474
This helps the intelligent corruption method have more reliable program coverage [74].475

30 ii. Mutation-based analysis476

As mentioned before, acquiring appropriate test data is an issue in dynamic analysis. When the program behaves477
normally during the test process, it means that either there is no vulnerability in the program or the test data478
don’t reveal the vulnerabilities in the program. In the latter case, the data set is not diverse enough to activate479
the vulnerabilities. Mutation is a method that is concerned with enhancing the data set during the dynamic480
analysis. In this method, specific vulnerabilities are injected into the program code intentionally. If the current481
data set does not detect the injected vulnerability, it will not detect similar vulnerabilities in the original version482
of the program. Thus, the analyzer augments the data set so that it can detect the vulnerability. A version of a483
program in which a specific vulnerability is created, is called a mutant. For example, in a mutant the function484
strncpy( ) is replaced with strcpy( ) to make it buffer overflow vulnerable. A good test data set distinguishes the485
mutants from the original version of the program and kills them. If no test-case kills the mutants, the data set486
must be augmented [85].487

This method is effective in detecting software vulnerabilities [85], though it requires considerable amount of488
time and effort. If the changed statements in a mutant are executed by the test data, the mutant would be489
effective. Otherwise, the result of analysis does not reveal the difference between the mutant and the original490
version of the program. Therefore, some computations are required to generate appropriate testcases that make491
the program execute the intended path which contains the vulnerability.492

Also, automatic creation of mutants for complex vulnerabilities is a challenge. As an example, the strncpy (493
) functions are automatically changed to strcpy ( ) for creating mutants to detect buffer overflow in [85]. There494
are, however, more complicated buffer overflow scenarios like copying an array in a loop that causes overflow.495
Moreover, creating mutants for logic vulnerabilities requires a deep understanding of the logic of the program.496
Thus, automatic generation of mutants may not be feasible.497

iii. Dynamic model checking This method, which is also called executionbased model checking [86], [87], is a498
model checking method that executes the program exhaustively and checks if it satisfies the specifications. For499
example, the tools VeriSoft [88], JavaPathFinder [89], CMC [90], Bogor [91] and DART [92] apply this method in500
their analysis. Random execution in dynamic model checking is mostly the result of two factors: program inputs501
and scheduling choices of a scheduler [87]. For each random input and schedule choice, the resulted behavior502
of the program is analyzed by monitoring the process and its environment, e.g. registers and the stack. Here,503
each state consists of the entire machine state. When the execution reaches a state, in which the specification is504
compromised, the related input value and schedule choice are presented as a counterexample.505

An advantage of dynamic model checking is that by executing the program, the machine handles the semantics506
of the instructions. In other words, there is no need to formally represent the semantics of the programming507
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32 C) CONCOLIC EXECUTION

language and the machine instructions [87]. However, there is a time-state-soundness tradeoff in this method.508
Since the states represent the entire machine state, they contain many details and require more storage space.509
Thus, storing all the states might be infeasible for large programs. At the same time, exploring the states without510
a history of visited ones may cause visiting similar states again and again. When no state is recorded, the model511
checker spends too much time to make sure it has traversed all possible states. Storing the states reduces the512
verification time by making sure that no state is revisited. Yet, it requires too much space [87].513

iv. Dynamic taint analysis This method is similar to static taint analysis as it tracks the flow of information514
from un-trusted sources to the sinks. However, it tracks the flow of tainted data during the execution of the515
program, some examples are [93], [94], [95] and [96]. Schwartz et al. describe this method precisely in [93]. They516
introduce a language, named SIMPIL, that formally defines the algorithms of dynamic taint analysis. Before the517
execution, all the variables are considered untainted. While executing the program, variables may get tainted518
according to a predefined policy. This policy defines how the taint data propagate from a variable to other519
variables. For example, when tainted data are used in an argument of an arithmetic operation, the policy defines520
that the result of this operation should be considered tainted. If a tainted value reaches a sink, the analyzer521
reports a vulnerability.522

The basic taint analysis methods limit taint propagation to the direct assignments. This might make the results523
of the analysis inaccurate [97]. Sarwar et al. present some scenarios in [97] to show how basic taint analysis can524
be ineffective. An example scenario is that the tainted data are used in a conditional statement (without any525
direct assignment to other variables) and affect on the control flow of the program. Also, tainted data might526
be used to define the number of an iterative action or as the index of an un-tainted array. The taint analysis527
method should pay attention to these indirect effects of the tainted data in calculating the taint propagation.528
Considering such effects is not always easy. For example, the tainted variable might cause information leakage529
through a side channel. To detect such vulnerability, the analyzer should taint a large amount of variables that530
results in many false alarms [97].531

Table ??II summarizes and compares the advantages and disadvantages of the concrete execution methods.532
Each method inherits the advantages and shortcomings of dynamic analysis.533

31 b) Symbolic execution534

Using the symbolic execution method, the program is executed with symbolic input values instead of concrete535
data values [98], [99]. Thus, the values of program variables are represented as symbolic expressions over the536
symbolic input. During the symbolic execution, the state of the program and the conditions of the current path537
are calculated symbolically. The path conditions are updated any time a branch instruction is executed. At the538
end of an executed path, the path conditions are solved using a constraint solver. There are various constraint539
solvers presented by now, such as STP [100] and Z3 [101] that solve the constraints on binary vectors and Hampi540
[102] and S3 [103] that solve the constraints on string variables. If the constraint solver solves the path conditions,541
it generates some concrete input data that are used to execute the intended path in the program.542

There are several challenges with the symbolic execution method. For example path explosion, the overhead543
of constraint solving for complicated paths, non-determinism of concurrent programs and the tradeoff between544
precision and scalability of modeling the memory are some of the challenges in applying symbolic execution [104].545
Cadar and Sen present the challenges of this method and mention some solutions for them [104].546

To overcome these challenges, a solution is combining symbolic execution with concrete execution. The result547
is a new method that is called concolic execution. This method is described in the next section.548

32 c) Concolic execution549

A problem with pure symbolic execution is that the constraints of complex loops and recursive functions may550
get very complicated and cannot be resolved in an acceptable time [105]. Concrete execution applies real data551
to execute the program. There is a little chance to traverse all the feasible paths in this method. Using the552
combined method, concolic + symbolic execution, the concrete data is used to simplify the complex constraints553
that are generated by the symbolic execution. This method was first presented by Godefroid et al. in [92].554
Concolic execution is performed by changing some symbols in the complex constraints into the concrete values.555
This helps to achieve better program coverage with much less computation overhead.556

A New View on Classification of Software Vulnerability Mitigation Methods Concolic execution is used in557
many of the recent fuzzers to extend their knowledge about the program, such as KLEE [78], EXE [80], Simfuzz558
[75], CUTE [106], SAGE [79], Taintscope [105] and [107]. For example, CUTE combines symbolic execution with559
concrete execution to create input data traverse deeper paths in the program. It first executes the program with560
concrete input data. During the execution, it calculates symbolically the constraints of the executed path. The561
calculated constraints are then negated one by one, from the last to the first. After each negation, the resulted562
constraints are queried from a constraint solver. If the constraint solver solves the new constraints, the result is563
used to generate new test data that traverse other execution paths in the program.564
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33 Global565

34 Table 3: Concrete execution methods: a comparison566

Concolic execution is also used in other dynamic vulnerability detection methods. For example in [108] a567
dynamic model checking method is applied that uses concolic execution for state-space exploration of the analyzed568
application. In [108], concolic execution helps to model the application as a finitestate automata and to guide569
further state-space exploration.570

35 d) Hybrid analysis571

The previous sections described static and dynamic analysis methods and their advantages and shortcomings.572
The idea of combining static and dynamic analysis was first proposed by Ernst in [43]. He suggested that hybrid573
analysis can combine the static and dynamic analysis methods to generate a new analysis method that profits a574
great amount of soundness and accuracy advantages of each method with little sacrifices.575

Monitoring and static analysis methods are also combined in [110] to detect SQL injection errors and [83],576
[84], [75], [76], [78], [79], [80].577

36 Mutation-based Analysis578

Injects vulnerability into the program code. If the current data set does not reflect the injected vulnerability, it579
would not detect similar vulnerabilities in the original version of the program.580

Reduces false negatives by enriching test data.581
Expensive in time and computation. Automatic mutation of complicated vulnerabilities is a challenge. [85].582

37 Dynamic taint analysis and sanitization583

Tracks the flow of information from input sources to the sinks during the run-time.584
Reduces the analysis time and number of false positives by not considering the paths in the program that are585

not affected by malicious data.586
Cannot detect vulnerabilities that are not defined in specific source-sink structure.587
[93], [96].588

38 Dynamic Model checking589

A model checking method in which the program is executed with concrete input values exhaustively.590
No need to formally represent the semantics of the programming languages and machine instructions. Time-591

state-soundness tradeoff.592
[88], [89], [90], [91], [92].593
From then, many researchers have combined these methods, in different manners, to make up for each other’s594

shortcomings. For example, Monga et al. combine static and dynamic analysis to detect XSS and SQL injection595
vulnerabilities in PHP applications in [109]. The suggested method first analyzes the code statically and extracts596
the control flow graph of the functions in it. These graphs are then connected together to obtain an inter-597
procedural control flow graph (iCFG). The iCFG is analyzed to extract the possible paths from the tainted598
sources to the sinks in it. For each sink, backward slicing is used to detect the statements that affect the tainted599
argument. These statements are monitored at run time. When a tainted value is used in a sink, the monitoring600
procedure passes it to an oracle to verify if it can exploit a vulnerability. The oracle have a database of well-known601
attack patterns that are used to exploit different vulnerabilities. For example, the implemented oracle for mysql602
query() performs a limited syntactically analysis on the SQL queries and searches for the tainted characters in603
unsafe positions. In this method, the sanitizing procedures are assumed to be perfect. prevent the successful604
attacks. In the static analysis phase the hotspots, that are statements in the program that execute a SQL query,605
are identified. Also the control flow of the program is extracted. Then, the query strings in the hotspots are606
parsed. Considering the control flow of the program, a FSA for each hotspot is created to model the legitimate607
queries. During the monitoring phase, the queries are checked against the relative FSA to prevent execution of608
malicious queries.609

As the last example, hybrid analysis is used in [111] to detect logic vulnerabilities in web applications. The610
logic vulnerabilities are usually related to the intended functionality of an application. Thus, there is no general611
specification for them that can be used in different applications. For example, consider an online store that allows612
the users to use coupons for having discount on specific items. It has a policy which determines that each coupon613
should be used only once. A logic vulnerability, however, allows the users to reuse a coupon and reduce the cost614
to zero. Since logic vulnerabilities are created based on the functionality of the application, the vulnerability615
detection method requires the specification of the program. The proposed method in [111] consists of two steps.616
First, the web application is executed with normal input data. The executed traces are then analyzed to infer617
the specification of the application. This is based on the intuition that normal behavior of the program reflects618
the properties that are intended by the programmer. In fact, because the specification of the program is not619
always available, this method uses dynamic analysis to obtain it. The inferred specification is presented in the620

11



39 E) VULNERABILITY FORECASTING

form of likely invariants. In the second step, model checking is used to analyze the web application based on the621
inferred specification.622

39 e) Vulnerability forecasting623

Generally, fault forecasting is used to predict the quality or quantity of the faults that are left in the system and624
will be activated in the future. It is mainly concerned with estimating the current reliability of the system and625
predicting its future reliability. This prediction may be qualitative or quantitative (usually probabilistic). The626
qualitative forecasting identifies and ranks the future failure modes. Also, the event combinations that lead to627
the failures are identified.628

The quantitative forecasting is performed by modeling or operational testing. These methods are comple-629
mentary, since the results of operational tests are usually used to model the system more accurately. Software630
Reliability Growth Models (SRGM) are used generally for fault forecasting. In fact, SRGMs model the testing631
process [112]. In most of these models, the rate of fault detection gradually reduces and the cumulative number of632
faults eventually approaches a fixed value. These models help to predict the number of left faults in the software633
and determine when the software is ready to be released. They are also used to estimate the required efforts for634
future maintenance.635

There are probabilistic models for predicting the rate of vulnerability detection, named Vulnerability Detection636
Models (VDM). Alhazmi and Malaiya proposed a specific model, named AM 4 for vulnerability detection in [113].637
In this model the rate of vulnerability detection depends on two factors: one of these factors reduces as the number638
of remaining undetected vulnerabilities declines. The second factor increases with the time. In this way, the rate639
of vulnerability detection is modeled in a S-shaped form. In fact, AML is created based on the observation that640
the detectors 5 pay little attention to the newly published software. Gradually people become familiar with the641
software and the detectors pay more attention to it. Thus, the rate of vulnerability detection increases by time642
and peaks at some period. By the introduction of newer versions of the program, the detectors’ interest becomes643
lower and the rate of vulnerability detection decreases. Alhazmi and Malaiya examined the applicability of this644
model to various operating systems in [113] and [114]. The results demonstrated that AML fits the data of several645
operating systems.646

All the mentioned models are time-based. It means that they determine the detection rate based on the647
calendar time. An effort-based model, named AME 2, is proposed by Alhazmi and Malaiya in [113]. They648
believe that time-based models do not consider the changes that occur in the environment during the lifetime of649
the system. Thus, they consider the number of installations as an important environmental factor that affects650
the rate of vulnerability detection. It is based on the observation that the detectors are more interested in the651
software that is installed in many computers. Therefore, the rate of vulnerability detection is modeled in AME652
based on the number of installations. Sungwhan Woo et al. explore the applicability of AML and AME to653
some HTTP servers, i.e., IIS and Apache. The results indicate that these models are applicable to the HTTP654
servers in addition to the operating systems [112]. Of course, this method does not consider many of the effective655
factors on the detection trend. For example, it only calculates the cyclomatic complexity to estimate the code656
complexity. There are other complexity metrics that can be considered in addition to A problem with the studied657
VDMs is that they are parametric models that should be fitted to real vulnerability data [115]. To model the658
vulnerability detection rate in a specific application, a large amount of historical vulnerability data is required.659
Therefore, it is necessary that many of the vulnerabilities be discovered already. Hence, these models cannot be660
applied to predict the detection rate for newly released software. Also, it is shown in [116] that the precision of661
VDMs depend on the number of known vulnerabilities. The precision of the VDMs are usually very low at the662
early stages in the lifecycle of the program. It seems that the problem is because the models don’t consider the663
features of each application in their predictions. Thus, they need a history of detected vulnerabilities to estimate664
the security level of the program. There are many features in each application and its environment that affect665
the rate of vulnerability detection. Rahimi and Zargham present a VDM in [115] based on two effective factors:666
code complexity and code quality. The code complexity is defined based on the cyclomatic complexity. Also,667
the code quality determines its compliance with secure coding practices. They believe that more vulnerabilities668
are detected in the applications with lower code quality. Also, the possibility of detecting vulnerabilities is less669
in the applications with complicated codes. Thus, the source code of the application is statically analyzed to670
compute the two factors. The computed data are then used to model the vulnerability detection rate. Since this671
model does not need a database of detected vulnerabilities, it can be used for newly released applications. The672
authors analyze four applications to study the impact of these factors on the vulnerability detection trend. The673
analysis results show that the proposed method can predict vulnerabilities even in early stages of the application’s674
lifecycle.675

this one. The environmental parameters can also be considered for a good prediction. As an example, even676
the seasonal changes affect the rate of vulnerability discovery. It is shown in [117] that more vulnerabilities are677
reported during the mid-end and year-end months. Also, the presented method in [115] is based on analyzing678
the source code of the application. So it cannot be helpful when the source code is not available. There are some679
qualitative methods for estimating the current security level of the application. For example OWASP ASVS680
consists of several check lists that helps to determine the security level of a web application [118]. It classifies681
the check lists in thirteen classes, such as authentication, access control, session management, etc. In each class682
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the check lists are grouped into three security levels. If an application passes all the check lists of a group, it683
is achieves the respective security level. These methods only estimate the current security level. Based on the684
current level, it is possible to predict the future failure modes. However, we could not find any qualitative method685
that predicts and ranks the future security failures based on the current state.686

V.687

40 Conclusions688

During the past decades various methods have been presented for mitigating software vulnerabilities. A689
comprehensive classification of the proposed methods helps to achieve a general understanding of this research690
area. In this paper, we defined software vulnerability as an internal fault. By considering software vulnerability691
as a type of fault, we classified the vulnerability mitigation methods based on the general classification of the fault692
mitigation methods. We extended the general classification of fault mitigation methods, represented it in the693
context of software vulnerability and added more detailed subclasses into it. We divided vulnerability mitigation694
methods into four main classes: vulnerability prevention, vulnerability tolerance, vulnerability removal and695
vulnerability forecasting. The vulnerability prevention methods attempt to prevent the occurrence of software696
vulnerability. Software security and the secure coding best practices are examples of these efforts. The question697
is why, despite the vulnerability prevention efforts, vulnerabilities are still created. Oliveira et al. believe that698
educating the developers is not enough for preventing the vulnerabilities [119], because security is not an issue for699
the developers. They believe that the human’s memory is limited and can only keep a limited number of mental700
elements available at a time. The programmers are also supposed to create applications with correct functionality701
and acceptable performance. Under the time pressure, an ordinary situation in software programming, the702
programmers usually chose the simplest solutions for developing the software and pay little attention to the703
security concerns. Oliveira et al. suggest developing assistant tools that remind the educated programmers the704
security concerns during the development.705

Besides educating the programmers, intelligent assistant tools are required to notify the security concerns706
at specific statements or functions. Thus, in the future we should work on designing and implementing707
intelligent assistant tools that help the programmers to avoid generating vulnerabilities during the design and708
implementation of the applications. These tools should be intelligent enough not to bother the developers with709
many false alarms. They may use the enhanced static analysis methods to analyze the code during the coding710
phase and warn the programmers at sensitive situations. This will help the programmers to use their security711
knowledge more effectively in preventing the vulnerabilities.712

Vulnerability tolerance methods accept the existence of vulnerabilities in the programs and prevent the active713
vulnerabilities from making security failures. In this paper, the vulnerability tolerance methods were studied714
based on three aspects: the applied active vulnerability detection technique, active vulnerability A New View715
on Classification of Software Vulnerability Mitigation Methods handling technique and vulnerability handling716
technique. All the reviewed vulnerability mitigation methods detect active vulnerabilities during the normal717
execution of the program (concurrently). However, there are active vulnerabilities that overuse system resources718
and make the resources unavailable to legitimate users after a period of time, such as the memory leakage719
vulnerability. The security failure as a result of these vulnerabilities can be prevented by checking the system720
resources periodically. Thus, preemptive error detection can be applied to detect if such vulnerabilities are active.721

Most of the vulnerability tolerance methods focus on detecting the active vulnerabilities. However, less722
attention is paid to handling the (active) vulnerability. In the proposed methods, active vulnerabilities are723
handled by halting the program, restarting the program or invoking an exception handler. Although these724
mechanisms limit the negative effects of the active vulnerability, they violate the availability of the application725
to the legitimate users. Thus, more intelligent vulnerability handling techniques are required for the current726
vulnerability tolerance methods. A good starting point is inspiring by the current fault tolerance methods. As an727
example, software diversity is a fault tolerance method that is used to make the programs reliable. In this method,728
various versions of software with the same specification but different design or implementationprocess the same729
request and the correct result is achieved by voting the results of the different versions. The result of such system730
is more reliable, since it is less possible that all the versions of software suffer from the same fault and so a request731
does not cause errors in all versions. This method can be used in software security to tolerate malicious requests.732
For example, recently software diversity has been used in [120] to tolerate active vulnerabilities in web browsers.733
In the proposed method, different browsers are used to process the user’s requests. Since the browsers are designed734
and implemented differently, it is less probable that all the applied browsers contain similar vulnerabilities. Thus,735
malicious data cannot compromise all the browsers. The correct response to the client’s request is achieved by736
voting the responses of the browsers. Also, some protection mechanisms, such as ASLR that protects system737
against memory corruption vulnerabilities [121], are inspired by the idea of using diversity to make the program738
unpredictable for the attackers. A new direction for the future research could be adopting the current fault739
tolerance methods to handle different software vulnerabilities. As there is no vulnerability handling mechanism740
in the current proposed methods, we should work on designing complete vulnerability tolerance methods that741
contain appropriate active vulnerability handling and vulnerability handling mechanisms.742

Vulnerability removal is performed to detect and remove the vulnerabilities in the software. The focus of most743
of the current vulnerability removal methods is on verifying the vulnerabilities. In fact, less attention is paid744
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on designing appropriate methods for diagnosis, correction and regression verification of software vulnerabilities.745
There are some vulnerability diagnosis and correction methods that are used after detecting the exploitation of746
a vulnerability. But specific methods are required for diagnosis and correction of the vulnerabilities that are747
detected during the verification of the program. Currently, automatic patching methods analyze an attack and748
generate software patches based on the pattern of malicious data that are used in the attack. These methods749
can be modified to automatically generate patches based on the results of analyzing the program and according750
to the mechanism of detected vulnerabilities.751

There are numerous vulnerability detection methods presented by now. Most of the recent vulnerability752
detection methods tend to combine the previous methods in order to profit their advantages at the same time.753
For example, the concolic execution method combines the concrete and symbolic execution methods to reduce754
the complexity of pure symbolic execution and increase the program coverage. As another example, static taint755
analysis is used with the constraint analysis method to limit the overhead of program analysis and compute756
the constraints only on the tainted data [51]. Also, the control and data flow of the program are extracted in757
[122], ??62] and [63] to model the program automatically and detect vulnerabilities by performing the model758
checking. There are more possible combinations that are not applied yet and might be effective in detecting759
the vulnerabilities more accurately. For example, the annotation can be used in model checking to profit the760
programmers’ knowledge for modeling the program.761

Also, most of the vulnerability removal and vulnerability tolerance methods consider a specific vulnerability762
class based on their own definition of the relevant software vulnerability. Therefore, an imprecise definition of the763
intended vulnerability would cause inaccurate results in the proposed method. In addition, some methods only764
consider a limited number of vulnerability classes. To handle new vulnerability classes, the algorithm of these765
methods has to be changed. Many of the presented methods or tools are not able to detect all of the vulnerability766
classes [123], [124]. By now, the researchers’ focus was mainly on designing more accurate methods.767

A new research trend is making the vulnerability detection methods extendable. In this way, an accurate768
method for detecting a specific vulnerability can also be used to detect other vulnerabilities. To make a769
vulnerability detection method extendable, we suggest designing vulnerability detection algorithms that are770
A New View on Classification of Software Vulnerability Mitigation Methods independent from the sought771
vulnerability classes. Such algorithms are able to detect any specified vulnerabilities in the program. Designing772
such methods requires a general model for specifying the vulnerabilities that encompasses any vulnerability773
classes, even the future ones. Based on this model, various vulnerabilities are specified for the detection algorithms774
to be detected automatically in the programs.775

There are a few extendable vulnerability removal methods, such as [125], [126] and [124]. However, these776
methods are limited to specific programming languages. Also, some of them are not expressive enough to specify777
any vulnerability classes. For example, in [127] an extendable vulnerability method is presented for detecting the778
vulnerabilities in web applications that are written in Java. The specification method of [127] does not support779
some data types, e.g. integer, float and character. Therefore, it is not possible to define certain operations, such780
as mathematical operations or comparing the characters, in specifying a vulnerability. This is not a limitation for781
specifying vulnerabilities in object-oriented programs, such as Java. Because they encapsulate these operations in782
certain methods for each data type. It is, however, a limitation for specifying vulnerabilities in other languages,783
such as C. For example, it is not possible to specify integer overflow vulnerabilities in C programs with this784
method.785

The vulnerability forecasting methods predict the number of left vulnerabilities in the software and determine786
when the software is ready to be released. They are also used to estimate the required efforts for the future787
maintenance. Some vulnerability forecasting methods use the vulnerability detection models to predict the rate788
of vulnerability detection during the lifecycle of the software. The first vulnerability detection models were in789
fact software reliability growth models that were applied for predicting the vulnerability detection rate. The next790
models were designed especially for the vulnerability detection rate. These models consider effective parameters791
on the detection of vulnerabilities, such as time and the number of installations. Since these models do not792
consider characteristics of the software in their predictions, they need a history of the detected vulnerabilities to793
predict the vulnerability detection rate in the future. These models are not accurate especially at the early stages794
in the lifecycle of programs. New vulnerability detection models consider the characteristics of the software to795
achieve more accurate predictions. In this paper, we reviewed a vulnerability detection model that is based on two796
characteristics of the program: cyclomatic complexity of the source code and the level of compliance with secure797
coding practices. There are, however, other characteristics that affect on the rate of vulnerability detection, such798
as software support, version of the program, availability of the source code or usage of third-party components.799
For example, the rate of vulnerability detection decreases in time for a program with effective support that800
periodically presents patches and resolves problems in the program. Also, it might be more difficult to detect801
vulnerabilities in the higher versions of a program than in its lower versions. The future models can use other802
characteristics of software to model the vulnerability prediction rate more accurately. Also, they can combine803
software characteristics with the effective environmental factors, such as time and number of installations, to804
generate more accurate models.805

The possibility of analyzing the program and the program analysis method become important when the806
vulnerability detection models consider the characteristics of software. For example, a model may be based on807
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some characteristics in the source code of the program. Thus, it is not possible to use such model when the source808
code of the program is not available. Also, vulnerability forecasts based on inaccurate software analysis are not809
reliable. In the future, static and dynamic analysis methods that are proposed for detecting the vulnerabilities810
can be used to better analyze the current characteristics of a program and predict the future rate of vulnerability811
detection accurately. 1 2

Figure 1: A
812

1© 2017 Global Journals Inc. (US)
2Commercial off-the-shelf
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