

The Encryption Algorithm AES-RFWKIDEA32-1 based on Network RFWKIDEA32-1

Gulom Tuychiev¹

¹ National University of Uzbekistan,

Received: 10 February 2015 Accepted: 3 March 2015 Published: 15 March 2015

Abstract

8 In this article we developed a new block encryption algorithm based on network
9 RFWKIDEA32-1 using of the transformations of the encryption algorithm AES, which is
10 called AESRFWKIDEA32- 1. The block's length of this encryption algorithm is 256 bits, the
11 number of rounds are 10, 12 and 14. The advantages of the encryption algorithms are that,
12 when encryption and decryption process used the same algorithm. In addition, the encryption
13 algorithm AES-RFWKIDEA32-1 encrypts faster than AES.

Index terms— advanced encryption standard, feystel network, lai-massey scheme, round function, round keys, output transformation, multiplication, addition, multi

The SubBytes() transformation is a nonlinear byte substitution that operates independently on each byte of the State using a substitution table (S-box). Figure 1 illustrates the SubBytes() transformation on the State.

In the ShiftRows() transformation operates on the rows of the State; it cyclically shifts the bytes in each row by a certain o_set . For AES, the first row is left unchanged. Each byte of the second row is shifted one to the left. Similarly, the third and fourth rows are shifted by o_sets of two and three respectively. Figure 2 illustrates the ShiftRows() transformation.

The MixColumns() transformation operates on the State column-by-column, treating each column as a four-term polynomial. The columns are considered as polynomials over GF(2⁸) and multiplied modulo $x^4 + 1$ with a fixed polynomial $a(x)$, given by $a(x) = 3x^2 + x^2 + x + 2$. Let $p = a(x)$. As a result of this multiplication, the four bytes in a column are replaced by the following: $\{02\} \{03\} \{01\} \{00\}$, where $i = 0 \dots 3$ and $y_{4i} = \{02\} s_{4i} + \{03\} s_{4i+1} + \{01\} s_{4i+2} + \{00\} s_{4i+3}$.

1 Analysis of aes, pes and Idea

31 The first attack is a SQUARE attack suggested in [15] which uses 2 128 : 2 119 chosen plaintexts and 2120
 32 encryptions. The second attack is a meet-in-the-middle attack proposed in [16] that requires 2 32 chosen plaintexts
 33 and has a time complexity equivalent to almost 2 128 encryptions. Recently, another attack on 7-round AES-128
 34 was presented in ??1]. The new attack is an impossible differential attack that requires 2 117:5 chosen plaintexts
 35 and has a running time of 2 121 encryptions. Similar results, but with better attack algorithms and lower
 36 complexities were reported in [42]. The resulting impossible differential attack on 7-round AES-192 has a data
 37 complexity of 292 chosen plaintexts and time complexity of 2 162 encryptions, while the attack on AES-256 uses
 38 2 116:5 chosen plaintexts and running time of 2 247:5 encryptions.

39 There are several attacks on AES-192 [1, 14,15,24, ??9,42]. The two most no-table ones are the SQUARE
 40 attack on 8-round AES-192 presented in [15] that requires almost the entire code book and has a running time
 41 of 2 188 encryptions and the meet in the middle attack on 7-round AES-192 in [14] that requires 2 34+n chosen
 42 plaintexts and has a running time of 2 208 -n + 2 82+n encryptions. Legitimate values for n in the meet in the
 43 middle attack on AES-192 are 94 in 17, thus, the minimal data complexity is 2 51 chosen plaintexts (with time
 44 complexity equivalent to exhaustive search), and the minimal time complexity is 2 146 (with data complexity of

2 III. THE ENCRYPTION ALGORITHM AES-

45 2 97 chosen plaintexts). AES-256 is analyzed in [1, 14, 15, 24, 42]. The best attack is the meet in the middle attack
46 in [14] which uses 2 32 chosen plaintexts and has a total running time of 2 209 encryptions. Finally, we would
47 like to note the existence of many related-key attacks on AES-192 and AES-256. As the main issue of this paper
48 is not related-key attacks, and as we deal with the single key model, we do not elaborate on the matter here, but
49 the reader is referred to [43] for the latest results on related-key impossible differential attacks on AES and to
50 [20] for the latest results on related-key rectangle attacks on AES.

51 The strength of AES with respect to impossible differentials was challenged several times. The first attack of
52 this kind is a 5-round attack presented in [4]. This attack is improved in [11] to a 6-round attack. In [29], an
53 impossible differential attack on 7-round AES-192 and AES-256 is presented. The latter attack uses 2 92 chosen
54 plaintexts (or 2 92:5 chosen plaintexts for AES-256) and has a running time of 2186 encryptions (or 2 250:5
55 encryptions for AES-256). The tim 4 Lecture Notes in Computer Science: Authors' Instructions for AES-192.
56 In [1] a new 7-round impossible differential attack was presented. The new attack uses a different impossible
57 differential, which is of the same general type as the one used in previous attacks (but has a slightly different
58 structure). Using the new impossible differential leads to an attack that requires 2 117:5 chosen plaintexts and
59 has a running time of 2 121 encryptions. This attack was later improved in [2, 42] to use 2 115:5 chosen plaintexts
60 with time complexity of 2 119 encryptions.

61 The last application of impossible differential cryptanalysis to AES was the extension of the 7-round attack
62 from [1] to 8-round AES-256 in [42]. The extended attack has a data complexity of 2116:5 chosen plaintexts and
63 time com-plexity of 2 247:5 encryption. We note that there were three more claimed impossible differential attacks
64 on AES in [8{10]. However, as all these attacks are awed [7]. In paper [25] The best attack we present on 8-round
65 AES-256 requires 2 89:1 chosen plain-texts and has a time complexity of 2 129:7 memory accesses. These results
66 are significantly better than any previously published impossible differential attack on AES. We summarize results
67 along with previously known results in Table ???. Table ???: A Summary of the Attacks on AES iterates eight
68 rounds plus an output trans-formation. The cryptanalysis of PES and IDEA presented on Table 2 and Table
69 3. On the basis of encryption algorithm IDEAnd scheme Lai-Massey developed the networks IDEA32-1 and
70 RFWKIDEA32-1, consisting from one round function [30, 31]. In the networks IDEA32-1 and RFWKIDEA32-1,
71 similarly as in the Feistel network, when it encryption and decryption using the same algorithm. In the networks
72 used one round function having 16 input and output blocks and as the round function can use any transformation.

73 Using transformation SubBytes(), ShiftRows(), MixColumns(), AddRound-Key() AES encryption algorithm
74 as a round function networks IDEA8-1 [32], RFWKIDEA8-1 [32], PES8-1 [33], RFWKPES8-1 [34], IDEA16-
75 1 [35], created encryption algorithms AES-IDEA8-1 [36], AES-RFWKIDEA8-1 [37], AES-PES8-1 [38], AES-
76 RFWKPES8-1 [39], AES-IDEA16-1 [40].

77 In this paper developed block encryption algorithm AES-RFWKIDEA32-1 based network RFWKIDEA32-1
78 using transformation of the encryption algorithm AES. The length of block of the encryption algorithms is 256
79 bits, the number of rounds n equal to 10, 12, 14 and the length of key is variable from 256 bits to 1024 bits in
80 steps 128 bits, i.e., key length is equal to 256, 384, 512, 640, 768, 896 and 1024 bits.

81 2 III. The Encryption Algorithm aes-

82 Rfwkidea32-1

83 a) The structure of the encryption algorithm AES-RFWKIDEA32-1

84 In the encryption algorithm AES-RFWKIDEA32-1 as the round function used SubBytes(), ShiftRows(),
85 MixColumns() transformation encryption algorithm AES. The scheme n-rounded encryption algorithm AES-
86 RFWKIDEA32-1 shown in Figure 4, and the length of subblocks X 0 , X 1 , ..., X 31 , length of round keys K
87 32(i-1) , K 32(i-1)+1 , ..., K 32(i-1)+31 „ i = 1?n + 1 and K 32n+32 , K 32n+33 , ..., K 32n+95 are equal to
88 8-bits.

89 Consider the round function of the encryption algorithm AES-RFWKIDEA32-1. Initially 32-bit subblocks t
90 0 , t 1 , . . . , t 15 are written into the State array and are executed the above transformations SubBytes(),
91 ShiftRows(), MixColumns(). After the AddRoundKey() transformation we obtain 8-bits subblocks y 0 , y 1 , ...,
92 y 15 . The S-box SubBytes() transformation shown in Table ?? and is the only non-linear transformation. The
93 length of the input and output blocks S-box is eight bits.

94 For example, if the input value the S-box is equal to 0xE7, then the output value is equal 0x79, i.e. selected
95 elements of intersection row 0xE and column 0x7.

96 Table ?? : The S-box of encryption algorithm AES-RFWKIDEA32-1 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8
97 0x9 0xA 0xB 0xC 0xD 0xE 0xF 0x0 0x87 0x1C 0x05 0x06 0x13 0x86 0x84 0xC9 0x3F 0xEF 0x85 0xA6 0x10 0x41
98 0xA2 0x15 0x1 0xD2 0xF3 0xCA 0x0C 0x12 0x4E 0xC5 0x1B 0xA8 0x59 0xB3 0xA0 0x78 0xB9 0x17 0xDB 0x2
99 0x21 0x08 0x63 0xB5 0x35 0x24 0x01 0xD8 0x3D 0xA9 0x89 0xB0 0xF 0x5A 0x2F 0x6D 0x3 0xFD 0xC1 0xA7
100 0xC3 0x7E 0x71 0xED 0x72 0xE5 0x77 0xFB 0x93 0x82 0xA5 0x33 0x0D 0x4 0xEE 0xE3 0xBC 0x76 0x66 0x94
101 0x56 0xBB 0x57 0x26 0x51 0x23 0xAE 0x83 0xA4 0xF9 0x5 0x47 0x4B 0xFF 0x88 0xBF 0x18 0x2B 0x46 0x96
102 0xC2 0x30 0x2E 0xD6 0xDC 0x5E 0xC0 0x6 0x5B 0x80 0xB2 0x02 0xC7 0xCC 0x27 0xE9 0xCD 0x0A 0xF7
103 0x04 0x5F 0x3C 0x60 0xBA 0x7 0x4F 0xA3 0xDF 0xE0 0x73 0x68 0x3E 0x09 0x38 0x31 0x52 0xAF 0x7F 0x00
104 0x03 0x53 0x8 0xC8 0xFC 0x67 0x98 0x44 0x61 0xDD 0x65 0xD9 0xA1 0x14 0x2C 0x9D 0x4C 0x6E 0x07 0x9
105 0x9F 0xEB 0xC4 0x58 0xB7 0xB6 0x7B 0xFA 0xD5 0x90 0x3A 0x7D 0x50 0x54 0xE6 0x42 0xA 0x9B 0x37 0x36
106 0xF6 0xCE 0xF5 0xBD 0x5C 0xD3 0x43 0xB8 0x97 0x6B 0x69 0x99 0xE 0xB 0x81 0xDA 0x25 0x8C 0xE8 0x49

107 0xD4 0xAA 0x9C 0x55 0x19 0x92 0x8D 0x16 0xB0 0xFE 0xC 0x32 0x1E 0xAD 0xB4 0x7C 0xB1 0x39 0xD1
 108 0x9A 0x48 0x1D 0x64 0xC6 0x28 0xE2 0xF2 0xD 0x1F 0x34 0x29 0x95 0xDE 0xE7 0x11 0xF4 0x8F 0x2D 0x45
 109 0x2A 0xF1 0xCB 0x6C 0x70 0xE 0x8B 0x1A 0x7A 0x6F 0x8E 0x4A 0xF0 0x79 0x62 0x74 0xE1 0x8A 0xD0 0x4D
 110 0xBE 0x40 0xF 0xF8 0xAB 0xEA 0xEC 0x20 0x91 0xD7 0x9E 0xCF 0x6A 0xAC 0xE4 0x3B 0x5D 0x22 0x75
 111 Consider the encryption process of encryption algorithm AES-RFWKIDEA32-1. Initially the 256-bit plaintext
 112 X partitioned into subblocks of 8-bits , and performs the following steps: 1. subblocks summed by XOR
 113 respectively with round key K 32n+32 , K 32n+33 , ..., K 32n+63: 2. subblocks multiplied and summed
 114 respectively with the round keys K 32(i-1) , K 32(i-1)+1 , ..., K 32(i-1)+31 and calculated 8-bit sub-blocks t
 115 0 , t 1 , . . . , t 15 . This step can be represented as follows: X 0 0 , X 1 0 , . . . , X 31 0 X 0 0 , X 1 0 , . . .
 116 , X 31 0 X j 0 = X j 0 ? K 32n+32+j , j = 0...31. X 0 0 , X 1 0 , . . . , X 31 0 t 0 = (X 0 i?1 + K 32(i?1))
 117 ? (X 16 i?1 ? K 32(i?1)+16), t 1 = (X 1 i?1 ? K 32(i?1)+1) ? (X 17 i?1 + K 32(i?1)+17), t 2 = (X 2 i?1 +
 118 K 32(i?1)+2) ? (X 18 i?1 ? K 32(i?1)+18), t 3 = (X 3 i?1 ? K 32(i?1)+3) ? (X 19 i?1 + K 32(i?1)+19), t
 119 4 = (X 4 i?1 + K 32(i?1)+4) ? (X 20 i?1 ? K 32(i?1)+20), t 5 = (X 5 i?1 ? K 32(i?1)+5) ? (X 21 i?1 + K
 120 32(i?1)+21), t 6 = (X 6 i?1 + K 32(i?1)+6) ? (X 22 i?1 ? K 32(i?1)+22), t 7 = (X 7 i?1 ? K 32(i?1)+7) ?
 121 (X 23 i?1 + K 32(i?1)+23), t 8 = (X 8 i?1 + K 32(i?1)+8) ? (X 24 i?1 ? K 32(i?1)+24), t 9 = (X 9 i?1 ? K
 122 32(i?1)+9) ? (X 25 i?1 + K 32(i?1)+25), t 10 = (X 10 i?1 + K 32(i?1)+10) ? (X 26 i?1 ? K 32(i?1)+26), t
 123 11 = (X 11 i?1 ? K 32(i?1)+11) ? (X 27 i?1 + K 32(i?1)+27),

124 3 b) Key generation of the encryption algorithm AES- 125 RFWKIDEA32-1

126 In n-round encryption algorithm AES-RFWKIDEA32-1 in each round we applied sixteen (32) round keys of the
 127 8-bit and output transformation sixteen (32) round keys of the 8-bit. In addition, before the first round and after
 128 the output transformation we used sixteen (32) round keys of 8-bits. Total number of 8-bit round keys is equal
 129 to 32n+96. In Figure 4 When generating round keys like the AES encryption algorithm uses an array Rcon:
 130 Rcon=[0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80].

131 The key encryption algorithm K of length 1 (256 1024) bits is divided into 8-bit round keys Lenght 8, here K =
 132 . Then we calculate When generating a round keys + 95, we used transformation SubBytes() and RotWord8(),
 133 here SubBytes()-is transformation 8-bit sub-block into S-box and RotWord8()-cyclic shift to the left of 1 bit of
 134 the 8-bit subblock. When the condition imod3 = 1 is true, then the round keys are com-puted as = SubBytes
 135 SubBytes(RotWord8 Rcon[imod8] otherwise = SubBytes . After each round key generation the value is cyclic
 136 shift to the left by 1 bit.

137 Decryption round keys are computed on the basis of encryption round keys and decryption roundt 12 = (X
 138 12 i?1 + K 32(i?1)+12) ? (X 28 i?1 ? K 32(i?1)+28), t 13 = (X 13 i?1 ? K 32(i?1)+13) ? (X 29 i?1 + K
 139 32(i?1)+29), t 14 = (X 14 i?1 + K 32(i?1)+14) ? (X 30 i?1 ? K 32(i?1)+30), t 15 = (X 15 i?1 ? K 32(i?1)+15
 140) ? (X 31 i?1 + K 32(i?1)+31), , i = 1. X 0 i?1 , X 1 i?1 , . . . , X 31 i?1 , i.. X j i?1 = X j i?1 ?y 15? j , X
 141 j+16 i?1 = X j+16 i?1 ?y 15?j , j = 0...15, i = 1. X j i?1 and X 31?j i?1 , j = 1... X 0 i = X 0 i?1 , X 1 i = X
 142 30 i?1 , X 2 i = X 29 i?1 , X 3 i = X 28 i?1 , X 3 i = X 27 i?1 , X 5 i = X 26 i?1 , X 6 i = X 25 i?1 , X 7 i =
 143 X 24 i?1 , X 8 i = X 23 i?1 , X 9 i = X 22 i?1 , X 10 i = X 21 i?1 , X 11 i = X 20 i?1 , X 12 i = X 19 i?1 , X
 144 13 i = X 18 i?1 , X 14 i = X 17 i?1 , X 15 i = X 16 i?1 , X 16 i = X 15 i?1 , X 17 i = X 14 i?1 , X 18 i = X 13
 145 i?1 , X 19 i = X 12 i?1 , X 20 i = X 11 i?1 , X 21 i = X 10 i?1 , X 22 i = X 9 i?1 , X 23 i = X 8 i?1 , X 24 i =
 146 X 7 i?1 , X 25 i = X 6 i?1 , X 26 i = X 5 i?1 , X 27 i = X 4 i?1 , X 28 i = X 3 i?1 , X 29 i = X 2 i?1 , X 30 i
 147 = X 1 i?1 , X 31 i = X 31 i?1 , i = 1. X 0 n , X 1 n , . . . , X 31 n . X 0 n+1 = X 0 n + K 32n , X 1 n+1 =
 148 X 30 n ? K 32n+1 , X 2 n+1 = X 29 n + K 32n+2 , X 3 n+1 = X 28 n ? K 32n+3 , X 4 n+1 = X 27 n + K
 149 32n+4 , X 5 n+1 = X 26 n ? K 32n+5 , X 6 n+1 = X 25 n + K 32n+6 , X 7 n+1 = X 24 n ? K 32n+7 , X 8
 150 n+1 = X 23 n + K 32n+8 , X 9 n+1 = X 22 n ? K 32n+9 , X 10 n+1 = X 21 n + K 32n+10 , X 11 n+1 = X
 151 20 n ? K 32n+11 , X 12 n+1 = X 19 n + K 32n+12 , X 13 n+1 = X 18 n ? K 32n+13 , X 14 n+1 = X 17 n
 152 + K 32n+14 , X 15 n+1 = X 16 n ? K 32n+15 , X 16 n+1 = X 15 n ? K 32n+16 , X 17 n+1 = X 14 n + K
 153 32n+17 , X 18 n+1 = X 13 n ? K 32n+18 , X 19 n+1 = X 12 n + K 32n+19 , X 20 n+1 = X 11 n ? K 32n+20
 154 , X 21 n+1 = X 10 n + K 32n+21 , X 22 n+1 = X 9 n ? K 32n+22 , X 23 n+1 = X 8 n + K 32n+23 , X 24
 155 n+1 = X 7 n ? K 32n+24 , X 25 n+1 = X 6 n + K 32n+25 , X 26 n+1 = X 5 n ? K 32n+26 , X 27 n+1 = X
 156 4 n + K 32n+27 , X 28 n+1 = X 3 n ? K 32n+28 , X 29 n+1 = X 2 n + K 32n+29 , X 30 n+1 = X 1 n ? K
 157 32n+30 , X 31 n+1 = X 31 n + K 32n+31 , K d i K c i ? 1 ? K c 0 , K c 1 ,..., K c Lenght?1 , = 1/ ? {k 0 , k 1,
 158 ..., k 1?1 }, K c 0 = {k 0 , k 1 , ..., k 7 }, K c 1 = {k 8 , k 9 , ..., k 15 },..., K c Lenght?1 = {k 1?8 , k 1?7 , ..., k
 159 1?1 } and K = K c 0 || K c 1 ||... ||K c Lenght?1 K L = K c 0 ?K c 1 ?...?K c Lenght? 1 . If K L = 0 then K L
 160 is chosen as 0xC5, i.e. K L = 0xC5. K c i , i = Lenght...32n K c i (K c i?Lenght+1) ? K c i?Lenght)) ? ?K L
 161 K c i (K c i?Lenght)?SubBytes(K c i?Lenght+1)? K L K L

162 keys of the output transformation associate with of encryption round keys as follows: 8. subblocks are summed
 163 to XOR with the roundkey 31. As ciphertext plaintext X receives the combined 16-bit subblocks X 0 n+1 , X 1
 164 n+1 , . . . , X 31 n+1 key K 32n+64 , K 32n+65 , . . . , K 32n+95 : X j n+1 = X j n+1 ? K 32n+64+j , j
 165 = 0... X 0 n+1 ||X 1 n+1 ||...||X 31 n+1 . (K d 32n , K d 32n+1 , K d 32n+2 , K d 32n+3 , K d 32n+4 , K
 166 d 32n+5 , K d 32n+6 , K d 32n+7 , K d 32n+8 , K d 32n+9 , K d 32n+10 , K d 32n+11 , K d 32n+12 , K d
 167 32n+13 , K d 32n+14 , K d 32n+15 , K d 32n+16 , K d 32n+17 , K d 32n+18 , K d 32n+19 , K d 32n+20 , K

5 CONCLUSIONS

168 $d = 32n+21, K = 32n+22, K = 32n+23, K = 32n+24, K = 32n+25, K = 32n+26, K = 32n+27, K = 32n+28,$
169 $K = 32n+29, K = 32n+30, K = 32n+31 = (K_c 0, (K_c \text{Global Journal}) = (K_c 0, (K_c 1) ?1, ?K_c 2, (K_c 3) ?1, ?K_c 4, (K_c 5) ?1, ?K_c 6, (K_c 7) ?1, ?K_c 8, (K_c 9) ?1, ?K_c 10, (K_c 11) ?1, ?K_c 12, (K_c 13) ?1, ?K_c 14, (K_c 15) ?1, (K_c 16) ?1, ?K_c 17, (K_c 18) ?1, ?K_c 19, (K_c 20) ?1, ?K_c 21, (K_c 22) ?1, ?K_c 23, (K_c 24) ?1, ?K_c 25, (K_c 26) ?1, ?K_c 27, (K_c 28) ?1, ?K_c 29, (K_c 30) ?1, ?K_c 31).$

173 For example, if the number of rounds is 10 the formula is as follows: $(K_d 0, K_d 1, K_d 2, K_d 3, K_d 4, K_d 5, K_d 6, K_d 7, K_d 8, K_d 9, K_d 10, K_d 11, K_d 12, K_d 13, K_d 14, K_d 15, K_d 16, K_d 17, K_d 18, K_d 19, K_d 20, K_d 21, K_d 22, K_d 23, K_d 24, K_d 25, K_d 26, K_d 27, K_d 28, K_d 29, K_d 30, K_d 31) = (K_c 32n, (K_c 32n+1) ?1, ?K_c 32n+2, (K_c 32n+3) ?1, ?K_c 32n+4, (K_c 32n+5) ?1, ?K_c 32n+6, (K_c 32n+7) ?1, ?K_c 32n+8, (K_c 32n+9) ?1, ?K_c 32n+10, (K_c 32n+11) ?1, ?K_c 32n+12, (K_c 32n+13) ?1, ?K_c 32n+14, (K_c 32n+15) ?1, (K_c 32n+16) ?1, ?K_c 32n+17, (K_c 32n+18) ?1, ?K_c 32n+19, (K_c 32n+20) ?1, ?K_c 32n+21, (K_c 32n+22) ?1, ?K_c 32n+23, (K_c 32n+24) ?1, ?K_c 32n+25, (K_c 32n+26) ?1, ?K_c 32n+27, (K_c 32n+28) ?1, ?K_c 32n+29, (K_c 32n+30) ?1, ?K_c 32n+31).$

181 Decryption round keys of the first round associates with the encryption round keys as follows: $(K_d 32(i?1), K_d 32(i?1)+1, K_d 32(i?1)+2, K_d 32(i?1)+3, K_d 32(i?1)+4, K_d 32(i?1)+5, K_d 32(i?1)+6, K_d 32(i?1)+7, K_d 32(i?1)+8, K_d 32(i?1)+9, K_d 32(i?1)+10, K_d 32(i?1)+11, K_d 32(i?1)+12, K_d 32(i?1)+13, K_d 32(i?1)+14, K_d 32(i?1)+15, K_d 32(i?1)+16, K_d 32(i?1)+17, K_d 32(i?1)+18, K_d 32(i?1)+19, K_d 32(i?1)+20, K_d 32(i?1)+21, K_d 32(i?1)+22, K_d 32(i?1)+23, K_d 32(i?1)+24, K_d 32(i?1)+25, K_d 32(i?1)+26, K_d 32(i?1)+27, K_d 32(i?1)+28, K_d 32(i?1)+29, K_d 32(i?1)+30, K_d 32(i?1)+31) = (K_c 32(n?i+1), (K_c 32(n?i+1)+30) ?1, ?K_c 32(n?i+1)+29, (K_c 32(n?i+1)+28) ?1, ?K_c 32(n?i+1)+27, (K_c 32(n?i+1)+26) ?1, ?K_c 32(n?i+1)+25, (K_c 32(n?i+1)+24) ?1, ?K_c 32(n?i+1)+23, (K_c 32(n?i+1)+22) ?1, ?K_c 32(n?i+1)+21, (K_c 32(n?i+1)+20) ?1, ?K_c 32(n?i+1)+19, (K_c 32(n?i+1)+18) ?1, ?K_c 32(n?i+1)+17, (K_c 32(n?i+1)+16) ?1, (K_c 32(n?i+1)+15) ?1, ?K_c 32(n?i+1)+14, (K_c 32(n?i+1)+13) ?1, ?K_c 32(n?i+1)+12, (K_c 32(n?i+1)+11) ?1, ?K_c 32(n?i+1)+10, (K_c 32(n?i+1)+9) ?1, ?K_c 32(n?i+1)+8, (K_c 32(n?i+1)+7) ?1, ?K_c 32(n?i+1)+6, (K_c 32(n?i+1)+5) ?1, ?K_c 32(n?i+1)+4, (K_c 32(n?i+1)+3) ?1, ?K_c 32(n?i+1)+2, (K_c 32(n?i+1)+1) ?1, ?K_c 32(n?i+1)+31), i = 2...n$

194 Likewise, the decryption round keys of the second, third and n{round associates with the encryption round keys as follows:

196 Decryption round keys applied to the _rst round and after the output transformation associated with the encryption round keys as follows: $K_d 32n+32+j = K_c 32n+64+j, K_d 32n+64+j = K_c 32n+32+j, j = 0...31.$
198 IV.

4 Results

200 Using the transformations SubBytes(), ShiftRows(), MixColumns() of the encryption algorithm AES as the round 201 function network RFWKIDEA32-1 we developed encryption algorithm AES-RFWKIDEA32-1. In the algorithm, 202 the number of rounds of encryption and key's length is variable and the user can select the number of rounds 203 and the key's length in dependence of the degree of secrecy of information and speed encryption.

204 As in the encryption algorithms based on the Feistel network, the advantages of the encryption algorithm AES- 205 RFWKIDEA32-1 are that, when encryption and decryption process used the same algorithm. In the encryption 206 algorithm AES-RFWKIDEA32-1 in decryption process encryption round keys are used in reverse order, thus on 207 the basis of operations necessary to compute the inverse. For example, if the round key is multiplied by the 208 subblock, while decryption is is necessary to calculate the multiplicative inverse, if summarized, it is necessary 209 to calculate the additive inverse.

210 It is known that the resistance of AES encryption algorithm is closely associated with resistance S-box, applied 211 in the algorithm. In the S-box's encryption algorithm AES algebraic degree of nonlinearity $\text{deg} = 7$, nonlinearity 212 $\text{NL} = 112$, resistance to linear cryptanalysis = 256, resistance to differential cryptanal ysis = 256, strict avalanche 213 criterion $\text{SAC} = 8$, bit independence criterion $\text{BIC} = 8.?=32?=4/$

214 In the encryption algorithm AES-RFWKIDEA32-1 resistance S-box is equal to resistance S-box's encryption 215 algorithm AES, i.e., $\text{deg} = 7$, $\text{NL} = 112$, $\text{SAC} = 8$, $\text{BIC} = 8$.

216 V.

5 Conclusions

218 It is known that as a network-based algorithms Feystel the resistance algorithm based on network RFWKIDEA32- 219 1 closely associated with resistance round function. Therefore, selecting the transformations SubBytes(), 220 ShiftRows(), Mix-Columns() of the encryption algorithm AES, based on round function network RFWKIDEA32-1 221 we developed relatively resistant encryption algorithm.

¹© 2015 Global Journals Inc. (US)

²© 2015 Global Journals Inc. (US) 1

Figure 1: Introductionn

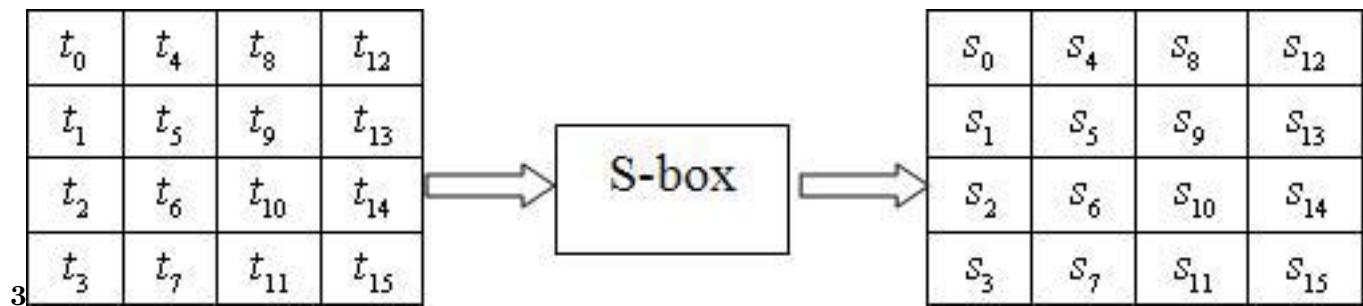


Figure 2: Figure 3 .

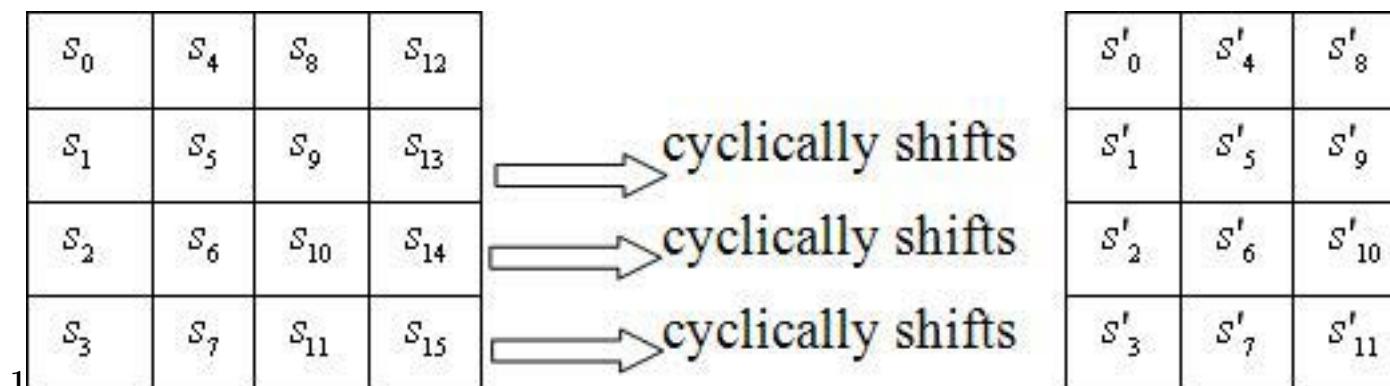


Figure 3: Figure 1 :

5 CONCLUSIONS

	t_0	t_4	t_8	t_{12}
	t_1	t_5	t_9	t_{13}
	t_2	t_6	t_{10}	t_{14}
2	t_3	t_7	t_{11}	t_{15}

Figure 4: Figure 2 :

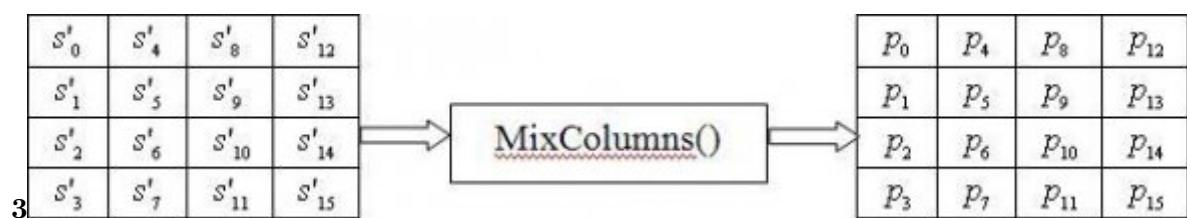


Figure 5: Figure 3 :

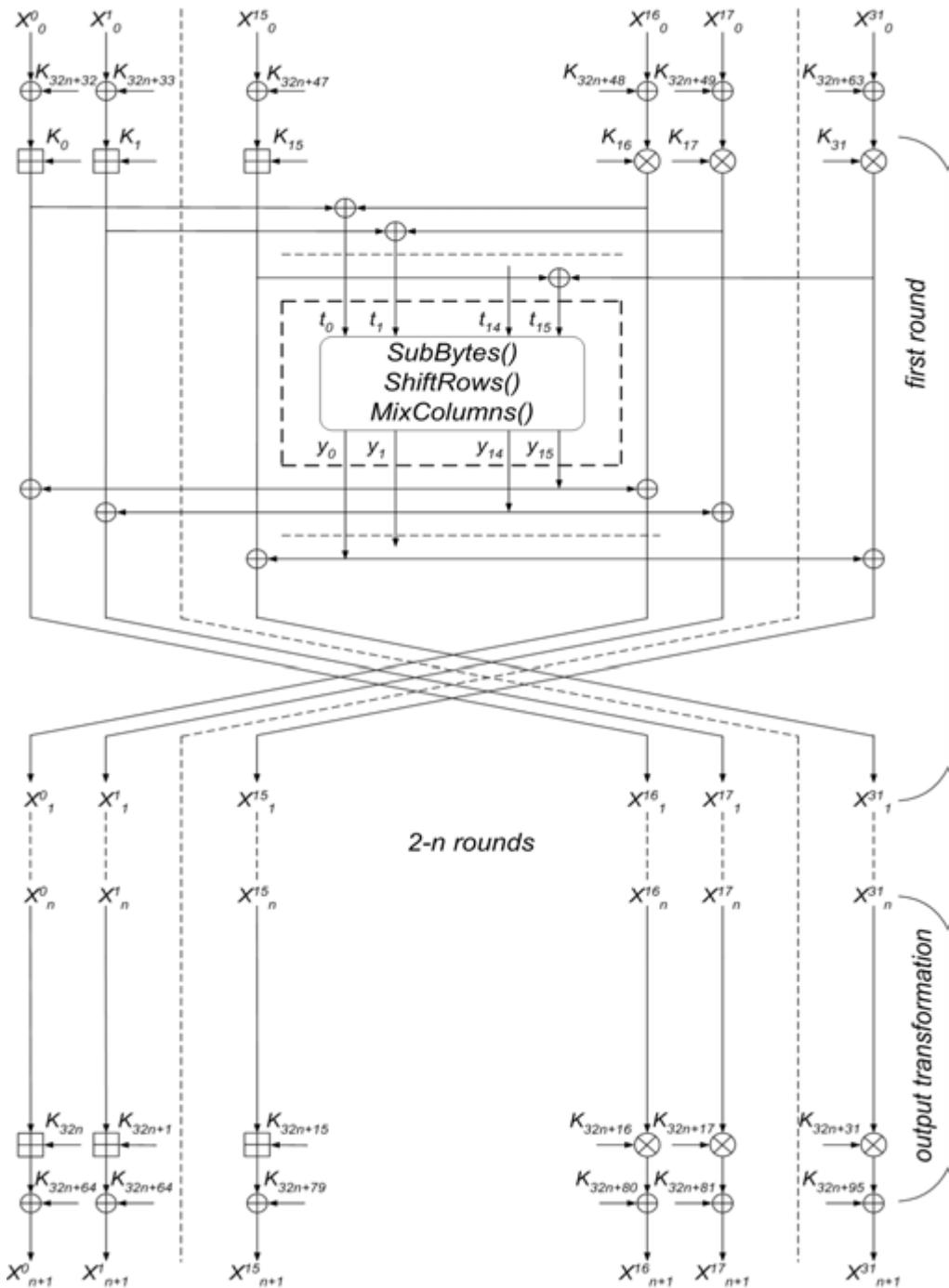


Figure 6:

5 CONCLUSIONS

2

Attack Type	Year	Attacked Rounds	Key Bits round	Chosen Plaintext	Time
Differential [26]	1993	2	32	210	242
Differential [12]	1993	2.5	32	210	232
Differential [26]	1993	2.5	96	210	2106
Related-Key [18]	1996	3	32	6	6 * 232
Differential-Linear [6]	1996	3	32	230	244
Differential [5]	1996	3	32	230	0.75 *
					244
Truncated Differential [19, 6]	1997	3.5	48	256	267
Miss-in-the-middle [3]	1998	3.5	64	238.5	253
Miss-in-the-middle [3]	1998	4	69	237	

Figure 7: Table 2 :

3

The Encryption Algorithm AES-RFWKIDEA32-1 based on Network RFWKIDEA32-1

Figure 8: Table 3 :

222 [Chen J. Personal communications (2008)] , *Chen J. Personal communications* August 2008.

223 [Demirci and Selcuk ()] ‘A Meet-in-the-Middle Attack on 8-Round AES // proceedings of Fast Software
224 Encryption 15’. H Demirci , A Selcuk . Lecture Notes in Computer Science 2008. Springer. 5806 p. 116126.

225 [Chen et al. ()] ‘A New Method for Impossib le Di_erential cryptanalysis of 8-Round’. J Chen , Y Hu , Y Wei .
226 *Lecture Notes in Computer Science: Authors’ Instructions 13*, 2006. 11 p. . Adanced Encryption Standard
227 // Wuhan Univeristy Journan of NationalSciences

228 [Chen et al. ()] ‘A New Method for Impossible Di_erential Cryptanalysis of 7-round Advanced Encryption
229 Standard’. J Chen , Y Hu , Y Wei . *Proceedings of International Conference on Communications, Circuits
230 and Systems Proceedings*, (International Conference on Communications, Circuits and Systems Proceedings)
231 2006. 2006. IEEE. 3 p. .

232 [Bahrak and Reza ()] *A Novel Impossible Di_erential Cryptanalysis of AES // proceedings of the Western
233 European Workshop on Research in Cryptology*, B Bahrak , A M Reza . 2007. Bochum, Germany.

234 [Lai and Massey ()] ‘A Proposal for a New Block Encryption Standard // Advances in Cryptology’. X Lai , J L
235 Massey . *LNCS* I.B. Damgard (ed.) 1990. Springer-Verlag. 90 p. 389404.

236 [Tuychiev ()] *About networks IDEA16{4, IDEA16{2, IDEA16{1, created on the basis of network IDEA16{8 //
237 Compilation of theses and reports republican seminar Information security in the sphere communication and
238 information. Problems and their solutions* {Tashkent, G N Tuychiev . 2014.

239 [Tuychiev ()] *About networks IDEA328, IDEA324, IDEA322, IDEA321, created on the basis of network
240 IDEA3216 // Infocommunications: Networks Technologies-Solutions*, G N Tuychiev . 2014. Tashkent. p.
241 4550.

242 [Tuychiev ()] *About networks IDEA8-2, IDEA8-1 and RFWKIDEA8-4, RFWKIDEA8-2, RFWKIDEA8-1
243 developed on the basis of network IDEA8-4 // Uzbek mathematical journal*, {Tashkent, G N Tuychiev .
244 2014. 3 p. .

245 [Tuychiev ()] *About networks PES8-2 and PES8-1, developed on the basis of network PES8-4 // Transactions of
246 the international scientific conference Modern problems of applied mathematics and information technologies
247 {Al {Khorezmiy, G N Tuychiev . 2012. 2014. Tashkent. II p. .*

248 [Tuychiev ()] *About networks RFWKPES8{4, RFWKPES8{2, RFWKPES8{1, developed on the basis of network
249 PES8{4 // Transactions of the international scientific conference Modern problems of applied mathematics
250 and information technologies {Al {Khorezmiy, G N Tuychiev . 2012. 2014. Tashkent. 2 p. .*

251 [Daeman and Rijmen ()] *AES proposal: Rijndael, version 2*, J Daeman , V Rijmen . <http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf> 1999.

252 [Lucks ()] ‘Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys // proceedings of the Third AES
253 Candidate Conference (AES3)’. S Lucks . *Journal of Information Technology* 2000. 2015. 3 (1) p. .

254 [Borst et al. ()] J Borst , L Knudsen , V Rijmen . *Advances in Cryptology, Eurocrypt97, LNCS 1233, W. Fumy,*
255 1997. Springer-Verlag. p. 113.

256 [Daemen et al. (1993)] *Cryptanalysis of 2.5 Rounds of IDEA (Extended Abstract) // Department of Electrical
257 Engineering*, J Daemen , R Govaerts , J Vandewalle . 93/1. Mar. 1993. p. 16. (Technical Report)

258 [Biham and Keller ()] *Cryptanalysis of Reduced Variants of Rijndael // unpublished manuscript*, E Biham , N
259 Keller . 1999.

260 [Borst] *Di_erential-Linear Cryptanalysis of IDEA // Department of Electrical Engineering*, J Borst . 96/2.
261 (Technical Report) (14 pages)

262 [Ferguson et al.] N Ferguson , J Kelsey , S Lucks , B Schneier , M Stay , D Wagner , D Whiting . *Cryptanalysis of
263 Rijndael // proceedings of Fast Software The Encryption Algorithm AES-RFWKIDEA32-1 based on Network*,
264 p. .

265 [Gilbert and Minier ()] H Gilbert , M Minier . *Rijndael // proceedings of the Third AES Candidate Conference
266 (AES3)*, (New York, USA) 2000. p. 230241.

267 [Hawkes ()] P Hawkes . *Di_erential-LinearWeak Key Classes of IDEA // Advances in Cryptology,Eurocrypt98,*
268 *LNCS 1403, K. Nyberg*, 1998. Springer-Verlag. p. 112126.

269 [Bahrak and Reza ()] ‘Impossible Di_erential Attack on Seven-Round AES-128’. B Bahrak , A M Reza . *IET
270 Information Security journal* 2008. 2 (2) p. 2832. (IET)

271 [Chen et al. ()] ‘Impossible di_erential cryptanalysis of Advanced Encryption Standard’. J Chen , Y Hu , Y
272 Zhang . *Science in China Series F: Information Sciences* 2007. Springer-Verlag. 50 (3) p. 342350.

273 [Cheon et al. ()] ‘Improved Impossible Di_erential Cryptanalysis of Rijndael and Crypton // proceedings of
274 Information Security and Cryptology ICISC’. J Cheon , M Kim , K Kim , J-Y Lee , S Kang . *Lecture Notes
275 in Computer Science* 2001. 2002. Springer. 2288 p. 3949.

5 CONCLUSIONS

277 [Zhang et al. ()] 'Improved Related-Key Impossible Di_ erential Attacks on Reduced-Round AES-192 // Proceedings of Selected Areas in Cryptography'. W Zhang , W Wu , L Zhang , Dengguo Feng . *Computer Science: Authors' Instructions 15*, Lecture Notes in Computer Science 2006. 2007. Springer-Verlag. 4356 p. 1527.

281 [Kelsey et al. (ed.) ()] J Kelsey , B Schneier , D Wagner , Key-Schedule Cryptanalysis Of , Idea , Gost Gdes , Triple-Des / . *Advances in Cryptology, Crypto96, LNCS 1109*, N Koblitz (ed.) 1996. Springer-Verlag. p. 237251.

284 [Lai et al. ()] X Lai , J L Massey , S Murphy . *Markov Ciphers and Di_ erential Cryptanalysis // Advances in Cryptology, Eurocrypt91*, D W Davies (ed.) 1991. Springer-Verlag. 547 p. 1738.

286 [Lu et al.] J Lu , O Dunkelman , N Keller , J Kim . *New Impossible Di_ erential Attacks on AES*,

287 [Biham et al. ()] 'Miss-in-the-Middle Attacks on IDEA'. E Biham , A Biryukov , A Shamir . *Khufu and Khafre // 6th Fast Software Encryption Workshop*, L R Knud-Sen (ed.) 1999. Springer-Verlag. 1636 p. 124138.

289 [Tuychiev] *New encryption algorithm based on network IDEA16-1 using of the transformation of the encryption algorithm AES // IPASJ International The Encryption Algorithm AES-RFWKIDEA32-1 based on Network*, G Tuychiev . p. .

292 [Tuychiev ()] 'New encryption algorithm based on network IDEA8-1 using of the transformation of the encryption algorithm AES'. G Tuychiev . *IPASJ International Journal of Computer Science* 2015. 3 (1) p. .

294 [Tuychiev ()] *New encryption algorithm based on network PES8-1 using of the transformations of the encryption algorithm AES // International Journal of Multidisciplinary in Cryptology and Information Security*, G Tuychiev . 2015. 4 p. .

297 [Tuychiev ()] 'New encryption algorithm based on network RFWKIDEA8-1 using transformation of AES encryption algorithm'. G Tuychiev . *International Journal of Computer Networks and Communications Security* 2015. 3 (2) p. .

300 [Tuychiev ()] 'New encryption algorithm based on network RFWKPES8-1 using of the transformations of the encryption algorithm AES'. G Tuychiev . *International Journal of Multidisciplinary in Cryptology and Information Security* 2014. 3 p. .

303 [Zhang et al. ()] 'New Results on Impossible Di_ erential Cryptanalysis of Reduced AES // proceedings of ICISC'. W Zhang , W Wu , D Feng . Lecture Notes in Computer Science 2007. 2007. Springer-Verlag. 4817 p. 239250.

305 [Lai ()] *On the Design and Security of Block Ciphers // Hartung-Gorre Verlag*, X Lai . 1992. Konstanz.

306 [Meier ()] 'On the Security of the IDEA Block Cipher // Advances in Cryptology'. W Meier . *LNCS* T. Helleseth (ed.) 1994. Springer-Verlag. 93 p. 371385.

308 [Kim et al. ()] 'Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 // Proceedings of Fast Software Encryption 14'. J Kim , S Hong , B Preneel . Lecture Notes in Computer Science 2007. Springer-Verlag. 4593 p. 225241.

311 [Nakahara et al. ()] 'SQUARE Attacks on Reduced-Round PES and IDEA Block Ciphers. 28. National Institute of Standards and Technology'. J Nakahara , S L M Paulo , Barreto , B Preneel , J Vandewalle , Y Kim . <http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf> 29. *Phan R. Ch-W. Impossible Di_ erential Cryptanalysis of 7-round Advanced Encryption Standard (AES) // Information Processing Letters*, 2001. 2004. Elsevier. 91 p. . (Federal Information Processing Standards Pub-14 Lecture Notes in Computer Science: Authors' Instructions lication 197)

317 [Tuychiev (2015)] 'To the networks RFWKIDEA3216, RFWKIDEA328, RFWKIDEA324, RFWKIDEA322 and RFWKIDEA321, based on the net-work IDEA3216'. G Tuychiev . *International Journal on Cryptography and Information Security (IJCIS)* March 2015. 5 (1) p. .

320 [Knudsen and Rijmen] *Truncated Di_ erentials of IDEA // Department of Electrical Engineering*, L R Knudsen , V Rijmen . 97/1. (Technical Report)