



GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY: E  
NETWORK, WEB & SECURITY  
Volume 15 Issue 4 Version 1.0 Year 2015  
Type: Double Blind Peer Reviewed International Research Journal  
Publisher: Global Journals Inc. (USA)  
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

# The Encryption Algorithm AES-RFWKIDEA32-1 based on Network RFWKIDEA32-1

By Gulom Tuychiev

*National University of Uzbekistan, Uzbekistan*

**Abstract-** In this article we developed a new block encryption algorithm based on network RFWKIDEA32-1 using of the transformations of the encryption algorithm AES, which is called AES-RFWKIDEA32-1. The block's length of this encryption algorithm is 256 bits, the number of rounds are 10, 12 and 14. The advantages of the encryption algorithms are that, when encryption and decryption process used the same algorithm. In addition, the encryption algorithm AES-RFWKIDEA32-1 encrypts faster than AES.

**Keywords:** advanced encryption standard, feystel network, lai-massey scheme, round function, round keys, output transformation, multiplication, addition, multiplicative inverse, additive inverse.

**GJCST-E Classification :** C.2.1



THE ENCRYPTION ALGORITHM AES-RFWKIDEA32-1 BASED ON NETWORK RFWKIDEA32-1

*Strictly as per the compliance and regulations of:*



RESEARCH | DIVERSITY | ETHICS

# The Encryption Algorithm AES-RFWKIDEA32-1 based on Network RFWKIDEA32-1

Gulom Tuychiev

**Abstract-** In this article we developed a new block encryption algorithm based on network RFWKIDEA32-1 using of the transformations of the encryption algorithm AES, which is called AES-RFWKIDEA32-1. The block's length of this encryption algorithm is 256 bits, the number of rounds are 10, 12 and 14. The advantages of the encryption algorithms are that, when encryption and decryption process used the same algorithm. In addition, the encryption algorithm AES-RFWKIDEA32-1 encrypts faster than AES.

**Keywords:** advanced encryption standard, feistel network, lai-massey scheme, round function, round keys, output transformation, multiplication, addition, multiplicative inverse, additive inverse.

## I. INTRODUCTION

In September 1997 the National Institute of Standards and Technology issued a public call for proposals for a new block cipher to succeed the Data Encryption Standard [41]. Out of 15 submitted algorithms the Rijndael cipher by Daemen and Rijmen [13] was chosen to become the new Advanced Encryption Standard in November 2001 [28]. The Advanced Encryption Standard is a block cipher with a fixed block length of 128 bits. It supports three different key lengths: 128 bits, 192 bits, and 256 bits. Encrypting a 128-bit block means transforming it in  $n$  rounds into a 128-bit output block. The number of rounds  $n$  depends on the key length:  $n = 10$  for 128-bit keys,  $n = 12$  for 192-bit keys, and  $n = 14$  for 256-bit keys. The 16-byte input block  $(t_0, t_1, \dots, t_{15})$  which is transformed during encryption is usually written as a 4x4 byte matrix, the called AES State.

|       |       |          |          |
|-------|-------|----------|----------|
| $t_0$ | $t_4$ | $t_8$    | $t_{12}$ |
| $t_1$ | $t_5$ | $t_9$    | $t_{13}$ |
| $t_2$ | $t_6$ | $t_{10}$ | $t_{14}$ |
| $t_3$ | $t_7$ | $t_{11}$ | $t_{15}$ |

The structure of each round of AES can be reduced to four basic transformations occurring to the elements of the State. Each round consists in applying a) *Lecture Notes in Computer Science: Authors' Instructions*

successively to the State the SubBytes(), ShiftRows(), MixColumns() and AddRoundKey()

**Author:** National University of Uzbekistan, Republic of Uzbekistan, Tashkent. e-mail: blasterjon@gmail.com

transformations. The first round does the same with an extra AddRoundKey() at the beginning whereas the last round excludes the Mix-Columns() transformation.

The SubBytes() transformation is a nonlinear byte substitution that operates independently on each byte of the State using a substitution table (S-box). Figure 1 illustrates the SubBytes() transformation on the State.

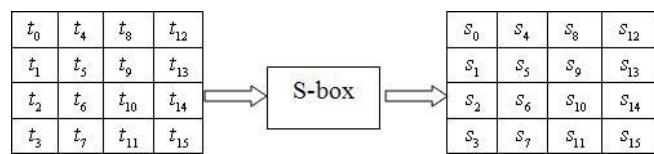



Figure 1: SubBytes() transformation

In the ShiftRows() transformation operates on the rows of the State; it cyclically shifts the bytes in each row by a certain  $o_{\text{set}}$ . For AES, the first row is left unchanged. Each byte of the second row is shifted one to the left. Similarly, the third and fourth rows are shifted by  $o_{\text{sets}}$  of two and three respectively. Figure 2 illustrates the ShiftRows() transformation.

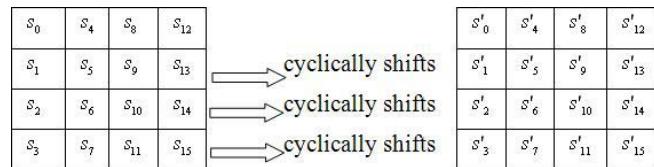



Figure 2 : ShiftRows() transformation

The MixColumns() transformation operates on the State column-by-column, treating each column as a four-term polynomial. The columns are considered as polynomials over  $GF(2^8)$  and multiplied modulo  $x^4 + 1$  with a fixed polynomial  $a(x)$ , given by  $a(x) = 3x^2 + x^2 + x + 2$ . Let  $p = a(x) \otimes s'$ :

$$\begin{bmatrix} p_{4i} \\ p_{4i+1} \\ p_{4i+2} \\ p_{4i+3} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s'_{4i} \\ s'_{4i+1} \\ s'_{4i+2} \\ s'_{4i+3} \end{bmatrix}, \quad i = \overline{0 \dots 3}$$

As a result of this multiplication, the four bytes in a column are replaced by the following:

Figure 3 . illustrates the MixColumns() transformation

$$y_{4i} = (\{02\} \bullet s'_{4i}) \oplus (\{03\} \bullet s'_{4i+1}) \oplus s'_{4i+2} \oplus s'_{4i+3}$$

$$y_{4i+1} = s'_{4i} \oplus (\{02\} \bullet s'_{4i+1}) \oplus (\{03\} \bullet s'_{4i+2}) \oplus s'_{4i+3}$$

$$y_{4i+2} = s'_{4i} \oplus s'_{4i+1} \oplus (\{02\} \bullet s'_{4i+2}) \oplus (\{03\} \bullet s'_{4i+3})$$

$$y_{4i+3} = (\{03\} \bullet s'_{4i}) \oplus s'_{4i+1} \oplus s'_{4i+2} \oplus (\{02\} \bullet s'_{4i+3})$$

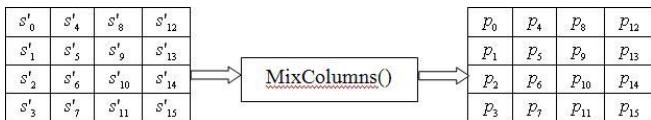



Figure 3 : MixColumns() transformation

## II. ANALYSIS OF AES, PES AND IDEA

The first attack is a SQUARE attack suggested in [15] which uses  $2^{128} - 2^{119}$  chosen plaintexts and 2120 encryptions. The second attack is a meet-in-the-middle attack proposed in [16] that requires  $2^{32}$  chosen plaintexts and has a time complexity equivalent to almost  $2^{128}$  encryptions. Recently, another attack on 7-round AES-128 was presented in [1]. The new attack is an impossible differential attack that requires  $2^{117.5}$  chosen plaintexts and has a running time of  $2^{121}$  encryptions. Similar results, but with better attack algorithms and lower complexities were reported in [42]. The resulting impossible differential attack on 7-round AES-192 has a data complexity of 292 chosen plaintexts and time complexity of  $2^{162}$  encryptions, while the attack on AES-256 uses  $2^{116.5}$  chosen plaintexts and running time of  $2^{247.5}$  encryptions.

There are several attacks on AES-192 [1, 14, 15, 24, 29, 42]. The two most notable ones are the SQUARE attack on 8-round AES-192 presented in [15] that requires almost the entire code book and has a running time of  $2^{188}$  encryptions and the meet in the middle attack on 7-round AES-192 in [14] that requires  $2^{34+n}$  chosen plaintexts and has a running time of  $2^{208-n} + 2^{82+n}$  encryptions. Legitimate values for n in the meet in the middle attack on AES-192 are 94 in 17, thus, the minimal data complexity is  $2^{51}$  chosen plaintexts (with time complexity equivalent to exhaustive search), and the minimal time complexity is  $2^{146}$  (with data complexity of  $2^{97}$  chosen plaintexts). AES-256 is analyzed in [1, 14, 15, 24, 42]. The best attack is the meet in the middle attack in [14] which uses  $2^{32}$  chosen plaintexts and has a total running time of  $2^{209}$  encryptions. Finally, we would like to note the existence of many related-key attacks on AES-192 and AES-256. As the main issue of this paper is not related-key attacks, and as we deal with the single key model, we do not elaborate on the matter here, but the reader is referred to [43] for the latest results on related-key impossible differential attacks on AES and to [20] for the latest results on related-key rectangle attacks on AES.

The strength of AES with respect to impossible differentials was challenged several times. The first attack of this kind is a 5-round attack presented in [4]. This attack is improved in [11] to a 6-round attack. In [29], an impossible differential attack on 7-round AES-192 and AES-256 is presented. The latter attack uses  $2^{92}$  chosen plaintexts (or  $2^{92.5}$  chosen plaintexts for AES-256) and has a running time of 2186 encryptions (or

$2^{250.5}$  encryptions for AES-256). The tim 4 Lecture Notes in Computer Science: Authors' Instructions for AES-192. In [1] a new 7-round impossible differential attack was presented. The new attack uses a different impossible differential, which is of the same general type as the one used in previous attacks (but has a slightly different structure). Using the new impossible differential leads to an attack that requires  $2^{117.5}$  chosen plaintexts and has a running time of  $2^{121}$  encryptions. This attack was later improved in [2, 42] to use  $2^{115.5}$  chosen plaintexts with time complexity of  $2^{119}$  encryptions.

The last application of impossible differential cryptanalysis to AES was the extension of the 7-round attack from [1] to 8-round AES-256 in [42]. The extended attack has a data complexity of 2116:5 chosen plaintexts and time complexity of  $2^{247.5}$  encryption. We note that there were three more claimed impossible differential attacks on AES in [8{10}. However, as all these attacks are awed [7]. In paper [25] present a new attack on 7-round AES-128, a new attack on 7-round AES-192, and two attacks on 8-round AES-256. The attacks are based on the attacks proposed in [1, 29] but use additional techniques, including the early abort technique and key schedule considerations.

The best attack we present on 8-round AES-256 requires  $2^{89.1}$  chosen plain-texts and has a time complexity of  $2^{129.7}$  memory accesses. These results are significantly better than any previously published impossible differential attack on AES. We summarize results along with previously known results in Table 1.

Table 1: A Summary of the Attacks on AES

| Number of rounds | complexity          |                        | Attack type                     |
|------------------|---------------------|------------------------|---------------------------------|
|                  | Data (CP)           | Time                   |                                 |
| <b>AES-128</b>   |                     |                        |                                 |
| 7                | $2^{128} - 2^{119}$ | $2^{120}$              | Square [15]                     |
| 7                | $2^{117.5}$         | $2^{121}$              | Impossible Differential [15]    |
| 7                | $2^{117.5}$         | $2^{119}$              | Impossible Differential [2, 42] |
| 7                | $2^{32}$            | $2^{128}$              | Meet in the middle [16]         |
| 7                | $2^{112.2}$         | $2^{117.2}$ MA         | Impossible Differential [25]    |
| <b>AES-192</b>   |                     |                        |                                 |
| 7                | $2^{32}$            | $2^{184}$              | Square [24]                     |
| 7                | $19*2^{32}$         | $2^{155}$              | Square [15]                     |
| 7                | $2^{92}$            | $2^{186.2}$            | Impossible Differential [29]    |
| 7                | $2^{115.5}$         | $2^{119}$              | Impossible Differential [42]    |
| 7                | $2^{92}$            | $2^{162}$              | Impossible Differential [42]    |
| 7                | $2^{34+n}$          | $2^{208-n} + 2^{82+n}$ | Meet in the middle [14]         |
| 8                | $2^{128} - 2^{119}$ | $2^{188}$              | Square [15]                     |
| 7                | $2^{113.8}$         | $2^{118.8}$ MA         | Impossible Differential [25]    |
| 7                | $2^{91.2}$          | $2^{139.2}$            | Impossible Differential [25]    |
| <b>AES-256</b>   |                     |                        |                                 |
| 7                | $2^{32}$            | $2^{200}$              | Square [24]                     |
| 7                | $21*2^{32}$         | $2^{172}$              | Square [15]                     |
| 7                | $2^{92.5}$          | $2^{250.5}$            | Impossible Differential [29]    |
| 7                | $2^{32}$            | $2^{208}$              | Meet in the middle [14]         |
| 7                | $2^{34+n}$          | $2^{208-n} + 2^{82+n}$ | Meet in the middle [14]         |
| 7                | $2^{115.5}$         | $2^{119}$              | Impossible Differential [42]    |
| 8                | $2^{116.5}$         | $2^{247.5}$            | Impossible Differential [42]    |
| 8                | $2^{128} - 2^{119}$ | $2^{204}$              | Square [15]                     |
| 8                | $2^{32}$            | $2^{209}$              | Meet in the middle [14]         |
| 7                | $2^{113.8}$         | $2^{118.8}$ MA         | Impossible Differential [25]    |
| 7                | $2^{92}$            | $2^{163}$ MA           | Impossible Differential [25]    |
| 8                | $2^{111.1}$         | $2^{227.8}$ MA         | Impossible Differential [25]    |
| 8                | $2^{89.1}$          | $2^{229.7}$ MA         | Impossible Differential [25]    |

The Proposed Encryption Standard (PES) is a 64-bit block cipher, using a 128-bit key, designed by Lai and Massey in 1990 (see [22]) and was a predecessor to IDEA (International Data Encryption Algorithm) [21].

IDEA was originally called IPES (Improved PES). PES iterates eight rounds plus an output transformation. The cryptanalysis of PES and IDEA presented on Table 2 and Table 3.

Table 2: A Summary of the Attacks on IDEA

| Attack Type                    | Year | Attacked Rounds | Key Bits round | Chosen Plaintext | Time       |
|--------------------------------|------|-----------------|----------------|------------------|------------|
| Differential [26]              | 1993 | 2               | 32             | 210              | 242        |
| Differential [12]              | 1993 | 2.5             | 32             | 210              | 232        |
| Differential [26]              | 1993 | 2.5             | 96             | 210              | 2106       |
| Related-Key Differential [18]  | 1996 | 3               | 32             | 6                | 6 * 232    |
| Differential-Linear [6]        | 1996 | 3               | 32             | 230              | 244        |
| Differential [5]               | 1996 | 3               | 32             | 230              | 0.75 * 244 |
| Truncated Differential [19, 6] | 1997 | 3.5             | 48             | 256              | 267        |
| Miss-in-the-middle [3]         | 1998 | 3.5             | 64             | 238.5            | 253        |
| Miss-in-the-middle [3]         | 1998 | 4               | 69             | 237              | 270        |

|                         |                          |      |     |    |         |           |
|-------------------------|--------------------------|------|-----|----|---------|-----------|
| Related-Key Linear [17] | Differential-Linear [17] | 1998 | 4   | 15 | 38.3    | -         |
| Miss-in-the-Middle [3]  |                          | 1998 | 4.5 | 80 | 264     | 2112      |
| Square attack [27]      |                          | 2000 | 2.5 | 77 | 3 * 216 | 262 + 247 |
| Square attack [27]      |                          | 2000 | 2.5 | 31 | 232     | 262       |
| Square [27]             |                          | 2000 | 2.5 | 31 | 248     | 279       |
| Related-Key Square [27] |                          | 2001 | 2.5 | 32 | 2       | 241       |

Table 3 : A Summary of the Attacks on PES

| Attack Type             | Year | Attacked Rounds | Key Bits round | Chosen Plaintext | Time |
|-------------------------|------|-----------------|----------------|------------------|------|
| Differential [23]       | 1991 | 7               | 96             | 264              | 2160 |
| Square [27]             | 2000 | 2.5             | 31             | 217              | 247  |
| Square [27]             | 2001 | 2.5             | 31             | 232              | 263  |
| Related-Key Square [27] | 2001 | 2.5             | 32             | 2                | 241  |

On the basis of encryption algorithm IDEAnd scheme Lai-Massey developed the networks IDEA32-1 and RFWKIDEA32-1, consisting from one round function [30, 31]. In the networks IDEA32-1 and RFWKIDEA32-1, similarly as in the Feistel network, when it encryption and decryption using the same algorithm. In the networks used one round function having 16 input and output blocks and as the round function can use any transformation.

Using transformation SubBytes(), ShiftRows(), MixColumns(), AddRound-Key() AES encryption algorithm as a round function networks IDEA8-1 [32], RFWKIDEA8-1 [32], PES8-1 [33], RFWKPES8-1 [34], IDEA16-1 [35], created encryption algorithms AES-IDEA8-1 [36], AES-RFWKIDEA8-1 [37], AES-PES8-1 [38], AES-RFWKPES8-1 [39], AES-IDEA16-1 [40].

In this paper developed block encryption algorithm AES-RFWKIDEA32-1 based network RFWKIDEA32-1 using transformation of the encryption algorithm AES. The length of block of the encryption algorithms is 256 bits, the number of rounds n equal to 10, 12, 14 and the length of key is variable from 256 bits to 1024 bits in steps 128 bits, i.e., key length is equal to 256, 384, 512, 640, 768, 896 and 1024 bits.

Consider the round function of the encryption algorithm AES-RFWKIDEA32-1. Initially 32-bit subblocks  $t_0, t_1, \dots, t_{15}$  are written into the State array and are executed the above transformations SubBytes(), ShiftRows(), MixColumns(). After the AddRoundKey() transformation we obtain 8-bits subblocks  $y_0, y_1, \dots, y_{15}$ .

### III. THE ENCRYPTION ALGORITHM AES-RFWKIDEA32-1

#### a) The structure of the encryption algorithm AES-RFWKIDEA32-1

In the encryption algorithm AES-RFWKIDEA32-1 as the round function used SubBytes(), ShiftRows(), MixColumns() transformation encryption algorithm AES. The scheme n-rounded encryption algorithm AES-RFWKIDEA32-1 shown in Figure 4, and the length of subblocks  $X^0, X^1, \dots, X^{31}$ , length of round keys  $K_{32(i-1)}, K_{32(i-1)+1}, \dots, K_{32(i-1)+31}$ ,  $i = 1 \dots n + 1$  and  $K_{32n+32}, K_{32n+33}, \dots, K_{32n+95}$  are equal to 8-bits.

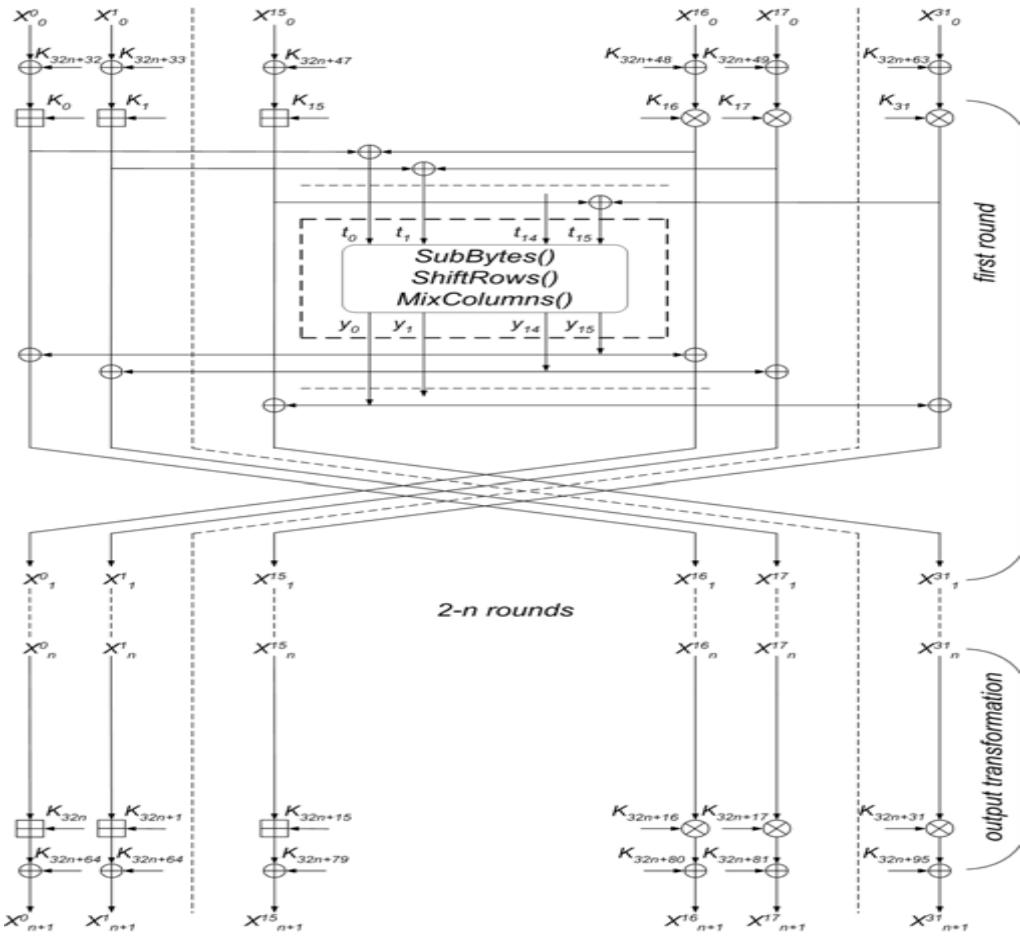



Figure 4: The scheme n-rounded encryption algorithm AES-RFWKIDEA32-1

The S-box SubBytes() transformation shown in Table 1 and is the only non-linear transformation. The length of the input and output blocks S-box is eight bits.

For example, if the input value the S-box is equal to 0xE7, then the output value is equal 0x79, i.e. selected elements of intersection row 0xE and column 0x7.

Table 1 : The S-box of encryption algorithm AES-RFWKIDEA32-1

| 0x0 | 0x1  | 0x2  | 0x3  | 0x4  | 0x5  | 0x6  | 0x7  | 0x8  | 0x9  | 0xA  | 0xB  | 0xC  | 0xD  | 0xE  | 0xF  |      |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0x0 | 0x87 | 0x1C | 0x05 | 0x06 | 0x13 | 0x86 | 0x84 | 0xC9 | 0x3F | 0xEF | 0x85 | 0xA6 | 0x10 | 0x41 | 0xA2 | 0x15 |
| 0x1 | 0xD2 | 0xF3 | 0xCA | 0x0C | 0x12 | 0x4E | 0xC5 | 0x1B | 0xA8 | 0x59 | 0xB3 | 0xA0 | 0x78 | 0xB9 | 0x17 | 0x0D |
| 0x2 | 0x21 | 0x08 | 0x63 | 0xB5 | 0x35 | 0x24 | 0x01 | 0xD8 | 0x3D | 0xA9 | 0x89 | 0x0B | 0x0F | 0x5A | 0x2F | 0x6D |
| 0x3 | 0xFD | 0xC1 | 0xA7 | 0xC3 | 0xE  | 0x71 | 0xED | 0x72 | 0xE5 | 0x77 | 0xFB | 0x93 | 0x82 | 0xA5 | 0x33 | 0x0D |
| 0x4 | 0xE6 | 0x33 | 0xB2 | 0x7C | 0x66 | 0x94 | 0x56 | 0xB6 | 0x57 | 0x26 | 0x51 | 0x23 | 0xAE | 0x83 | 0x44 | 0xF9 |
| 0x5 | 0x47 | 0x4B | 0xFF | 0x88 | 0xBF | 0x18 | 0x2B | 0x46 | 0x96 | 0xC2 | 0x30 | 0x2E | 0xD6 | 0xDC | 0x5E | 0xC0 |
| 0x6 | 0x5B | 0x80 | 0xB2 | 0x02 | 0xC7 | 0xCC | 0x27 | 0xE9 | 0xCD | 0x0A | 0xF7 | 0x04 | 0x5F | 0x3C | 0x60 | 0xBA |
| 0x7 | 0x4F | 0xA3 | 0xD9 | 0xE0 | 0x73 | 0x68 | 0x3E | 0x09 | 0x38 | 0x31 | 0x52 | 0xAF | 0x7F | 0x00 | 0x03 | 0x53 |
| 0x8 | 0xC8 | 0xFC | 0x67 | 0x98 | 0x44 | 0x61 | 0xDD | 0x65 | 0xD9 | 0xA1 | 0x14 | 0x2C | 0x9D | 0x4C | 0x6E | 0x07 |
| 0x9 | 0x9F | 0xEB | 0xC4 | 0x58 | 0xB7 | 0xB6 | 0x7B | 0xFA | 0xD5 | 0x90 | 0x3A | 0x7D | 0x50 | 0x54 | 0xE6 | 0x42 |
| 0xA | 0x9B | 0x37 | 0x36 | 0xF6 | 0xCE | 0xF5 | 0xBD | 0x5C | 0xD3 | 0x43 | 0xB8 | 0x97 | 0x6B | 0x69 | 0x99 | 0x0E |
| 0xB | 0x81 | 0xDA | 0x25 | 0x8C | 0xE8 | 0x49 | 0xD4 | 0xAA | 0x9C | 0x55 | 0x19 | 0x92 | 0x8D | 0x16 | 0xB0 | 0xFE |
| 0xC | 0x32 | 0x1E | 0xDA | 0xB4 | 0x7C | 0xB1 | 0x39 | 0xD1 | 0x9A | 0x48 | 0x1D | 0x64 | 0xC6 | 0x28 | 0xE2 | 0xF2 |
| 0xD | 0x1F | 0x34 | 0x29 | 0x95 | 0xDE | 0xE7 | 0x11 | 0xF4 | 0x8F | 0x2D | 0x45 | 0x2A | 0xF1 | 0xCB | 0x6C | 0x70 |
| 0xE | 0x8B | 0x1A | 0x7A | 0x6F | 0x8E | 0x4A | 0xF0 | 0x79 | 0x62 | 0x74 | 0xE1 | 0x8A | 0xD0 | 0x4D | 0x8E | 0x40 |
| 0xF | 0xF8 | 0xAB | 0xEA | 0xEC | 0x20 | 0x91 | 0xD7 | 0x9E | 0xCF | 0x6A | 0xAC | 0xE4 | 0x3B | 0x5D | 0x22 | 0x75 |

Consider the encryption process of encryption algorithm AES-RFWKIDEA32-1. Initially the 256-bit plaintext  $X$  partitioned into subblocks of 8-bits  $X_0^0, X_0^1, \dots, X_0^{31}$ , and performs the following steps:

1. subblocks  $X_0^0, X_0^1, \dots, X_0^{31}$  summed by XOR respectively with round key  $K_{32n+32}, K_{32n+33}, \dots, K_{32n+63}$ .

$$X_0^j = X_0^j \oplus K_{32n+32+j}, j = 0 \dots 31.$$

2. subblocks  $X_0^0, X_0^1, \dots, X_0^{31}$  multiplied and summed respectively with the round keys  $K_{32(i-1)}, K_{32(i-1)+1}, \dots, K_{32(i-1)+31}$  and calculated 8-bit sub-blocks  $t_0, t_1, \dots, t_{15}$ . This step can be represented as follows:

$$\begin{aligned}
 t_0 &= (X_{i-1}^0 + K_{32(i-1)}) \oplus (X_{i-1}^{16} \cdot K_{32(i-1)+16}), \\
 t_1 &= (X_{i-1}^1 \cdot K_{32(i-1)+1}) \oplus (X_{i-1}^{17} + K_{32(i-1)+17}), \\
 t_2 &= (X_{i-1}^2 \cdot K_{32(i-1)+2}) \oplus (X_{i-1}^{18} \cdot K_{32(i-1)+18}), \\
 t_3 &= (X_{i-1}^3 \cdot K_{32(i-1)+3}) \oplus (X_{i-1}^{19} + K_{32(i-1)+19}), \\
 t_4 &= (X_{i-1}^4 \cdot K_{32(i-1)+4}) \oplus (X_{i-1}^{20} \cdot K_{32(i-1)+20}), \\
 t_5 &= (X_{i-1}^5 \cdot K_{32(i-1)+5}) \oplus (X_{i-1}^{21} \cdot K_{32(i-1)+21}), \\
 t_6 &= (X_{i-1}^6 \cdot K_{32(i-1)+6}) \oplus (X_{i-1}^{22} \cdot K_{32(i-1)+22}), \\
 t_7 &= (X_{i-1}^7 \cdot K_{32(i-1)+7}) \oplus (X_{i-1}^{23} + K_{32(i-1)+23}), \\
 t_8 &= (X_{i-1}^8 \cdot K_{32(i-1)+8}) \oplus (X_{i-1}^{24} \cdot K_{32(i-1)+24}), \\
 t_9 &= (X_{i-1}^9 \cdot K_{32(i-1)+9}) \oplus (X_{i-1}^{25} + K_{32(i-1)+25}), \\
 t_{10} &= (X_{i-1}^{10} + K_{32(i-1)+10}) \oplus (X_{i-1}^{26} \cdot K_{32(i-1)+26}), \\
 t_{11} &= (X_{i-1}^{11} \cdot K_{32(i-1)+11}) \oplus (X_{i-1}^{27} + K_{32(i-1)+27}),
 \end{aligned}$$

$$\begin{aligned}
 t_{12} &= (X_{i-1}^{12} + K_{32(i-1)+12}) \oplus (X_{i-1}^{28} \cdot K_{32(i-1)+28}), \\
 t_{13} &= (X_{i-1}^{13} \cdot K_{32(i-1)+13}) \oplus (X_{i-1}^{29} + K_{32(i-1)+29}), \\
 t_{14} &= (X_{i-1}^{14} + K_{32(i-1)+14}) \oplus (X_{i-1}^{30} \cdot K_{32(i-1)+30}), \\
 t_{15} &= (X_{i-1}^{15} \cdot K_{32(i-1)+15}) \oplus (X_{i-1}^{31} + K_{32(i-1)+31}), \quad i = 1.
 \end{aligned}$$

3. performed SubBytes(), ShiftRows(), MixColumns() transformation. Output subblocks of the round function of the encryption algorithm are  $y_0, y_1, \dots, y_{31}$ .  
 4. subblocks  $y_0, y_1, \dots, y_{31}$  are summed to XOR with subblocks  $X_{i-1}^0, X_{i-1}^1, \dots, X_{i-1}^{31}$ , i.e.  $X_{i-1}^j = X_{i-1}^j \oplus y_{15-j}$ ,  $X_{i-1}^{j+16} = X_{i-1}^{j+16} \oplus y_{15-j}$ ,  $j = 0 \dots 15$ ,  $i = 1$ .

5. at the end of the round subblocks  $X_{i-1}^j$  and  $X_{i-1}^{31-j}$ ,  $j = 1 \dots 15$  swapped, i.e.,

$$\begin{aligned}
 X_i^0 &= X_{i-1}^0, X_i^1 = X_{i-1}^{30}, X_i^2 = X_{i-1}^{29}, X_i^3 = X_{i-1}^{28}, \\
 X_i^3 &= X_{i-1}^{27}, X_i^5 = X_{i-1}^{26}, X_i^6 = X_{i-1}^{25}, X_i^7 = X_{i-1}^{24}, \\
 X_i^8 &= X_{i-1}^{23}, X_i^9 = X_{i-1}^{22}, X_i^{10} = X_{i-1}^{21}, X_i^{11} = X_{i-1}^{20}, \\
 X_i^{12} &= X_{i-1}^{19}, X_i^{13} = X_{i-1}^{18}, X_i^{14} = X_{i-1}^{17}, X_i^{15} = X_{i-1}^{16}, \\
 X_i^{16} &= X_{i-1}^{15}, X_i^{17} = X_{i-1}^{14}, X_i^{18} = X_{i-1}^{13}, X_i^{19} = X_{i-1}^{12}, \\
 X_i^{20} &= X_{i-1}^{11}, X_i^{21} = X_{i-1}^{10}, X_i^{22} = X_{i-1}^{9}, X_i^{23} = X_{i-1}^{8}, \\
 X_i^{24} &= X_{i-1}^{7}, X_i^{25} = X_{i-1}^{6}, X_i^{26} = X_{i-1}^{5}, X_i^{27} = X_{i-1}^{4}, \\
 X_i^{28} &= X_{i-1}^3, X_i^{29} = X_{i-1}^2, X_i^{30} = X_{i-1}^1, X_i^{31} = X_{i-1}^0, \\
 i &= 1.
 \end{aligned}$$

6. repeating steps 2-5  $n$  times, i.e.,  $i = 2 \dots n$  obtain subblocks  $X_n^0, X_n^1, \dots, X_n^{31}$ .

7. in output transformation round keys are multiplied and summed into sub-blocks, i.e.

$$\begin{aligned}
 X_{n+1}^0 &= X_n^0 + K_{32n}, X_{n+1}^1 = X_n^{30} \cdot K_{32n+1}, \\
 X_{n+1}^2 &= X_n^{29} + K_{32n+2}, X_{n+1}^3 = X_n^{28} \cdot K_{32n+3}, \\
 X_{n+1}^4 &= X_n^{27} + K_{32n+4}, X_{n+1}^5 = X_n^{26} \cdot K_{32n+5}, \\
 X_{n+1}^6 &= X_n^{25} + K_{32n+6}, X_{n+1}^7 = X_n^{24} \cdot K_{32n+7}, \\
 X_{n+1}^8 &= X_n^{23} + K_{32n+8}, X_{n+1}^9 = X_n^{22} \cdot K_{32n+9}, \\
 X_{n+1}^{10} &= X_n^{21} + K_{32n+10}, X_{n+1}^{11} = X_n^{20} \cdot K_{32n+11}, \\
 X_{n+1}^{12} &= X_n^{19} + K_{32n+12}, X_{n+1}^{13} = X_n^{18} \cdot K_{32n+13}, \\
 X_{n+1}^{14} &= X_n^{17} + K_{32n+14}, X_{n+1}^{15} = X_n^{16} \cdot K_{32n+15}, \\
 X_{n+1}^{16} &= X_n^{15} \cdot K_{32n+16}, X_{n+1}^{17} = X_n^{14} + K_{32n+17}, \\
 X_{n+1}^{18} &= X_n^{13} \cdot K_{32n+18}, X_{n+1}^{19} = X_n^{12} + K_{32n+19}, \\
 X_{n+1}^{20} &= X_n^{11} \cdot K_{32n+20}, X_{n+1}^{21} = X_n^{10} + K_{32n+21}, \\
 X_{n+1}^{22} &= X_n^9 \cdot K_{32n+22}, X_{n+1}^{23} = X_n^8 + K_{32n+23}, \\
 X_{n+1}^{24} &= X_n^7 \cdot K_{32n+24}, X_{n+1}^{25} = X_n^6 + K_{32n+25}, \\
 X_{n+1}^{26} &= X_n^5 \cdot K_{32n+26}, X_{n+1}^{27} = X_n^4 + K_{32n+27}, \\
 X_{n+1}^{28} &= X_n^3 \cdot K_{32n+28}, X_{n+1}^{29} = X_n^2 + K_{32n+29}, \\
 X_{n+1}^{30} &= X_n^1 \cdot K_{32n+30}, X_{n+1}^{31} = X_n^0 + K_{32n+31},
 \end{aligned}$$

8. subblocks  $X_{n+1}^0, X_{n+1}^1, \dots, X_{n+1}^{31}$  are summed  $K$   $K$

to XOR with the roundkey  $\text{key}_{32n+64}, \text{key}_{32n+65}, \dots, \text{key}_{32n+95}$ :  $X_{n+1}^j = X_{n+1}^j \oplus \text{key}_{32n+64+j}$ ,  $j = 0 \dots 31$ . As ciphertext plaintext  $X$  receives the combined 16-bit subblocks  $X_{n+1}^0 || X_{n+1}^1 || \dots || X_{n+1}^{31}$ .

b) Key generation of the encryption algorithm AES-RFWKIDEA32-1

In  $n$ -round encryption algorithm AES-RFWKIDEA32-1 in each round we applied sixteen (32) round keys of the 8-bit and output transformation sixteen (32) round keys of the 8-bit. In addition, before the first round and after the output transformation we used sixteen (32) round keys of 8-bits. Total number of 8-bit round keys is equal to 32n+96. In Figure 4 encryption used encryption round keys  $K_i^c$  instead of  $K_i$ , while decryption used decryption round keys  $K_i^d$ . If  $n=10$  then need 416 to generate round keys, if  $n=12$ , you need to generate 480 round keys and if  $n=14$  need 544 to generate round keys.

When generating round keys like the AES encryption algorithm uses an array Rcon:  $\text{Rcon} = [0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80]$ .

The key encryption algorithm  $K$  of length  $l$  ( $256 \leq l \leq 1024$ ) bits is divided into 8-bit round keys  $K_0^c, K_1^c, \dots, K_{l-1}^c$ ,  $K_0^c = \{k_0, k_1, \dots, k_7\}$ ,  $K_1^c = \{k_8, k_9, \dots, k_{15}\}, \dots, K_{l-1}^c = \{k_{l-8}, k_{l-7}, \dots, k_{l-1}\}$  and  $K = K_0^c || K_1^c || \dots || K_{l-1}^c$ . Then we calculate  $K_L = K_0^c \oplus K_1^c \oplus \dots \oplus K_{l-1}^c$ . If  $K_L = 0$  then  $K_L$  is chosen as 0xC5, i.e.  $K_L = 0xC5$ .

When generating a round keys  $K_i^c$ ,  $i = \text{Length} \dots 32n + 95$ , we used transformation SubBytes() and RotWord8(), here SubBytes()-is transformation 8-bit sub-block into S-box and RotWord8()-cyclic shift to the left of 1 bit of the 8-bit subblock. When the condition  $\text{imod}3 = 1$  is true, then the round keys are computed as  $K_i^c = \text{SubBytes}(K_{i-\text{Length}+1}^c) \oplus \text{SubBytes}(\text{RotWord8}(K_{i-\text{Length}}^c)) \oplus \text{Rcon}[\text{imod}8] \oplus K_L$  otherwise  $K_i^c = \text{SubBytes}(K_{i-\text{Length}}^c) \oplus \text{SubBytes}(K_{i-\text{Length}+1}^c) \oplus K_L$ . After each round key generation the value  $K_L$  is cyclic shift to the left by 1 bit.

Decryption round keys are computed on the basis of encryption round keys and decryption round keys of the output transformation associate with of encryption round keys as follows:

$$\begin{aligned}
 (K_{32n}^d, K_{32n+1}^d, K_{32n+2}^d, K_{32n+3}^d, K_{32n+4}^d, K_{32n+5}^d, K_{32n+6}^d, K_{32n+7}^d, \\
 K_{32n+8}^d, K_{32n+9}^d, K_{32n+10}^d, K_{32n+11}^d, K_{32n+12}^d, K_{32n+13}^d, K_{32n+14}^d, K_{32n+15}^d, \\
 K_{32n+16}^d, K_{32n+17}^d, K_{32n+18}^d, K_{32n+19}^d, K_{32n+20}^d, K_{32n+21}^d, K_{32n+22}^d, \\
 K_{32n+23}^d, K_{32n+24}^d, K_{32n+25}^d, K_{32n+26}^d, K_{32n+27}^d, K_{32n+28}^d, K_{32n+29}^d, \\
 K_{32n+30}^d, K_{32n+31}^d) = (-K_0^c, (K_1^c)^{-1}, -K_2^c, (K_3^c)^{-1}, -K_4^c, (K_5^c)^{-1}, \\
 -K_6^c, (K_7^c)^{-1}, -K_8^c, (K_9^c)^{-1}, -K_{10}^c, (K_{11}^c)^{-1}, -K_{12}^c, (K_{13}^c)^{-1}, -K_{14}^c, \\
 (K_{15}^c)^{-1}, (K_{16}^c)^{-1}, -K_{17}^c, (K_{18}^c)^{-1}, -K_{19}^c, (K_{20}^c)^{-1}, -K_{21}^c, (K_{22}^c)^{-1}, \\
 -K_{23}^c, (K_{24}^c)^{-1}, -K_{25}^c, (K_{26}^c)^{-1}, -K_{27}^c, (K_{28}^c)^{-1}, -K_{29}^c, (K_{30}^c)^{-1}, -K_{31}^c).
 \end{aligned}$$

$$(K_{320}^d, K_{321}^d, K_{322}^d, K_{323}^d, K_{324}^d, K_{325}^d, K_{326}^d, K_{327}^d, K_{328}^d, K_{329}^d, K_{330}^d, K_{331}^d, K_{332}^d, K_{333}^d, K_{334}^d, K_{335}^d, K_{336}^d, K_{337}^d, K_{338}^d, K_{339}^d, K_{340}^d, K_{341}^d, K_{342}^d, K_{343}^d, K_{344}^d, K_{345}^d, K_{346}^d, K_{347}^d, K_{348}^d, K_{349}^d, K_{350}^d, K_{351}^d) = (-K_0^c, (K_1^c)^{-1}, -K_2^c, (K_3^c)^{-1}, -K_4^c, (K_5^c)^{-1}, -K_6^c, (K_7^c)^{-1}, -K_8^c, (K_9^c)^{-1}, -K_{10}^c, (K_{11}^c)^{-1}, -K_{12}^c, (K_{13}^c)^{-1}, -K_{14}^c, (K_{15}^c)^{-1}, (K_{16}^c)^{-1}, -K_{17}^c, (K_{18}^c)^{-1}, -K_{19}^c, (K_{20}^c)^{-1}, -K_{21}^c, (K_{22}^c)^{-1}, -K_{23}^c, (K_{24}^c)^{-1}, -K_{25}^c, (K_{26}^c)^{-1}, -K_{27}^c, (K_{28}^c)^{-1}, -K_{29}^c, (K_{30}^c)^{-1}, -K_{31}^c).$$

For example, if the number of rounds is 10 the formula is as follows:

Decryption round keys of the first round associates with the encryption round keys as follows:

$$(K_0^d, K_1^d, K_2^d, K_3^d, K_4^d, K_5^d, K_6^d, K_7^d, K_8^d, K_9^d, K_{10}^d, K_{11}^d, K_{12}^d, K_{13}^d, K_{14}^d, K_{15}^d, K_{16}^d, K_{17}^d, K_{18}^d, K_{19}^d, K_{20}^d, K_{21}^d, K_{22}^d, K_{23}^d, K_{24}^d, K_{25}^d, K_{26}^d, K_{27}^d, K_{28}^d, K_{29}^d, K_{30}^d, K_{31}^d) = (-K_{32n}^c, (K_{32n+1}^c)^{-1}, -K_{32n+2}^c, (K_{32n+3}^c)^{-1}, -K_{32n+4}^c, (K_{32n+5}^c)^{-1}, -K_{32n+6}^c, (K_{32n+7}^c)^{-1}, -K_{32n+8}^c, (K_{32n+9}^c)^{-1}, -K_{32n+10}^c, (K_{32n+11}^c)^{-1}, -K_{32n+12}^c, (K_{32n+13}^c)^{-1}, -K_{32n+14}^c, (K_{32n+15}^c)^{-1}, (K_{32n+16}^c)^{-1}, -K_{32n+17}^c, (K_{32n+18}^c)^{-1}, -K_{32n+19}^c, (K_{32n+20}^c)^{-1}, -K_{32n+21}^c, (K_{32n+22}^c)^{-1}, -K_{32n+23}^c, (K_{32n+24}^c)^{-1}, -K_{32n+25}^c, (K_{32n+26}^c)^{-1}, -K_{32n+27}^c, (K_{32n+28}^c)^{-1}, -K_{32n+29}^c, (K_{32n+30}^c)^{-1}, -K_{32n+31}^c).$$

Likewise, the decryption round keys of the second, third and n{round associates with the encryption round keys as follows:

$$(K_{32(i-1)}^d, K_{32(i-1)+1}^d, K_{32(i-1)+2}^d, K_{32(i-1)+3}^d, K_{32(i-1)+4}^d, K_{32(i-1)+5}^d, K_{32(i-1)+6}^d, K_{32(i-1)+7}^d, K_{32(i-1)+8}^d, K_{32(i-1)+9}^d, K_{32(i-1)+10}^d, K_{32(i-1)+11}^d, K_{32(i-1)+12}^d, K_{32(i-1)+13}^d, K_{32(i-1)+14}^d, K_{32(i-1)+15}^d, K_{32(i-1)+16}^d, K_{32(i-1)+17}^d, K_{32(i-1)+18}^d, K_{32(i-1)+19}^d, K_{32(i-1)+20}^d, K_{32(i-1)+21}^d, K_{32(i-1)+22}^d, K_{32(i-1)+23}^d, K_{32(i-1)+24}^d, K_{32(i-1)+25}^d, K_{32(i-1)+26}^d, K_{32(i-1)+27}^d, K_{32(i-1)+28}^d, K_{32(i-1)+29}^d, K_{32(i-1)+30}^d, K_{32(i-1)+31}^d) = (-K_{32(n-i+1)}^c, (K_{32(n-i+1)+30}^c)^{-1}, -K_{32(n-i+1)+29}^c, (K_{32(n-i+1)+28}^c)^{-1}, -K_{32(n-i+1)+27}^c, (K_{32(n-i+1)+26}^c)^{-1}, -K_{32(n-i+1)+25}^c, (K_{32(n-i+1)+24}^c)^{-1}, -K_{32(n-i+1)+23}^c, (K_{32(n-i+1)+22}^c)^{-1}, -K_{32(n-i+1)+21}^c, (K_{32(n-i+1)+20}^c)^{-1}, -K_{32(n-i+1)+19}^c, (K_{32(n-i+1)+18}^c)^{-1}, -K_{32(n-i+1)+17}^c, (K_{32(n-i+1)+16}^c)^{-1}, (K_{32(n-i+1)+15}^c)^{-1}, -K_{32(n-i+1)+14}^c, (K_{32(n-i+1)+13}^c)^{-1}, -K_{32(n-i+1)+12}^c, (K_{32(n-i+1)+11}^c)^{-1}, -K_{32(n-i+1)+10}^c, (K_{32(n-i+1)+9}^c)^{-1}, -K_{32(n-i+1)+8}^c, (K_{32(n-i+1)+7}^c)^{-1}, -K_{32(n-i+1)+6}^c, (K_{32(n-i+1)+5}^c)^{-1}, -K_{32(n-i+1)+4}^c, (K_{32(n-i+1)+3}^c)^{-1}, -K_{32(n-i+1)+2}^c, (K_{32(n-i+1)+1}^c)^{-1}, -K_{32(n-i+1)+1}^c), i = \overline{2...n}$$

Decryption round keys applied to the \_rst round and after the output transformation associated with the encryption round keys as follows:  $K_{32n+32+j}^d = K_{32n+64+j}^c$ ,  $K_{32n+64+j}^d = K_{32n+32+j}^c$ ,  $j = \overline{0...31}$ .

#### IV. RESULTS

Using the transformations SubBytes(), ShiftRows(), MixColumns() of the encryption algorithm AES as the round function network RFWKIDEA32-1 we developed encryption algorithm AES-RFWKIDEA32-1. In the algorithm, the number of rounds of encryption and key's length is variable and the user can select the number of rounds and the key's length in dependence of the degree of secrecy of information and speed encryption.

As in the encryption algorithms based on the Feistel network, the advantages of the encryption

algorithm AES-RFWKIDEA32-1 are that, when encryption and decryption process used the same algorithm. In the encryption algorithm AES-RFWKIDEA32-1 in decryption process encryption round keys are used in reverse order, thus on the basis of operations necessary to compute the inverse. For example, if the round key is multiplied by the subblock, while decryption is necessary to calculate the multiplicative inverse, if summarized, it is necessary to calculate the additive inverse.

It is known that the resistance of AES encryption algorithm is closely associated with resistance S-box, applied in the algorithm. In the S-box's encryption algorithm AES algebraic degree of nonlinearity  $\deg = 7$ , nonlinearity  $NL = 112$ , resistance to linear cryptanalysis  $\lambda = 32 = 256$ , resistance to differential cryptanalysis  $\delta = 4/256$ , strict avalanche criterion  $SAC = 8$ , bit independence criterion  $BIC = 8$ .

In the encryption algorithm AES-RFWKIDEA32-1 resistance S-box is equal to resistance S-box's encryption algorithm AES, i.e., deg = 7, NL = 112,  $\_ = 32=256$ ,  $\_ = 4=256$ , SAC= BIC=8.

## V. CONCLUSIONS

It is known that as a network-based algorithms Feystel the resistance algorithm based on network RFWKIDEA32-1 closely associated with resistance round function. Therefore, selecting the transformations SubBytes(), ShiftRows(), Mix-Columns() of the encryption algorithm AES, based on round function network RFWKIDEA32-1 we developed relatively resistant encryption algorithm.

## REFERENCES RÉFÉRENCES REFERENCIAS

1. Bahrak B., Reza A.M. A Novel Impossible Di\_erential Cryptanalysis of AES // proceedings of the Western European Workshop on Research in Cryptology 2007, Bochum, Germany, 2007.
2. Bahrak B., Reza A.M. Impossible Di\_erential Attack on Seven-Round AES-128 // IET Information Security journal, Vol. 2, Number 2, pp. 2832, IET, 2008.
3. Biham E., Biryukov A., Shamir A.. Miss-in-the-Middle Attacks on IDEA, Khufu and Khafre // 6th Fast Software Encryption Workshop, LNCS 1636, L.R. Knud-sen,Ed., Springer-Verlag, 1999, pp. 124138.
4. Biham E., Keller N. Cryptanalysis of Reduced Variants of Rijndael // unpublished manuscript, 1999.
5. Borst J. Di\_erential-Linear Cryptanalysis of IDEA // Department of Electrical Engineering, ESATCOSIC Technical Report 96/2, 14 pages.
6. Borst J., Knudsen L., Rijmen V. Two Attacks on Reduced IDEA (extended abstract) // Advances in Cryptology, Eurocrypt97, LNCS 1233, W. Fumy, Ed., Springer-Verlag, 1997, pp. 113.
7. Chen J. Personal communications, August 2008.
8. Chen J., Hu Y., Wei Y. A New Method for Impossible Di\_erential Cryptanalysis of 7-round Advanced Encryption Standard // Proceedings of International Conference on Communications, Circuits and Systems Proceedings 2006, Vol. 3, pp. 1577-1579, IEEE, 2006.
9. Chen J., Hu Y., Wei Y. A New Method for Impossible Di\_erential cryptanalysis of 8-Round Advanced Encryption Standard // Wuhan University Journal of National Sciences, vol. 11, number 6, pp. 1559-1562, 2006. Lecture Notes in Computer Science: Authors' Instructions 13V
10. Chen J., Hu Y., Zhang Y. Impossible di\_erential cryptanalysis of Advanced Encryption Standard // Science in China Series F: Information Sciences, vol. 50, number 3, pp. 342350, Springer-Verlag, 2007.
11. Cheon J., Kim M., Kim K., Lee J-Y., Kang S. Improved Impossible Di\_erential Cryptanalysis of Rijndael and Crypton // proceedings of Information Security and Cryptology ICISC 2001, Lecture Notes in Computer Science 2288,pp. 3949, Springer, 2002.
12. Daemen J., Govaerts R., J. Vandewalle. Cryptanalysis of 2.5 Rounds of IDEA (Extended Abstract) // Department of Electrical Engineering, ESATCOSIC Technical Report 93/1, Mar. 1993, pp. 16.
13. Daeman J., Rijmen V. AES proposal: Rijndael, version 2, 1999. <http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf>
14. Demirci H, Selcuk A. A Meet-in-the-Middle Attack on 8-Round AES // proceedings of Fast Software Encryption 15, Lecture Notes in Computer Science 5806,pp. 116126, Springer, 2008.
15. Ferguson N., Kelsey J., Lucks S., Schneier B., Stay M., Wagner D., Whiting D. Improved Cryptanalysis of Rijndael // proceedings of Fast Software Encryption 7, Lecture Notes in Computer Science 1978, pp. 213230, Springer-Verlag, 2001.
16. Gilbert H., Minier M. A collision attack on 7 rounds of Rijndael // proceedings of the Third AES Candidate Conference (AES3), pp. 230241, New York, USA, 2000.
17. Hawkes P. Di\_erential-LinearWeak Key Classes of IDEA // Advances in Cryptology,Eurocrypt98, LNCS 1403, K. Nyberg, Ed., Springer-Verlag, 1998, pp. 112126.
18. Kelsey J., Schneier B., Wagner D. Key-Schedule Cryptanalysis of IDEA, GDES,GOST, SAFER and Triple-DES // Advances in Cryptology, Crypto96, LNCS 1109,N. Koblitz, Ed., Springer-Verlag, 1996, pp. 237251.
19. Knudsen L.R., Rijmen V. Truncated Di\_erentials of IDEA // Department of Electrical Engineering, ESATCOSIC Technical Report 97/1.
20. Kim J., Hong S., Preneel B. Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 // Proceedings of Fast Software Encryption 14, Lecture Notes in Computer Science 4593, pp. 225241, Springer-Verlag, 2007.
21. Lai X. On the Design and Security of Block Ciphers // Hartung-Gorre Verlag, Konstanz, 1992.
22. Lai X., Massey J.L. A Proposal for a New Block Encryption Standard // Advances in Cryptology, Eurocrypt90, LNCS 473, I.B. Damgard, Ed., Springer-Verlag, 1990, pp. 389404.
23. Lai X., Massey J.L., Murphy S. Markov Ciphers and Di\_erential Cryptanalysis // Advances in Cryptology, Eurocrypt91, LNCS 547, D.W. Davies, Ed., Springer-Verlag, 1991, pp. 1738.

24. Lucks S. Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys // proceedings of the Third AES Candidate Conference (AES3), pp. 215229, New York, USA, 2000.

25. Lu J., Dunkelman O., Keller N., Kim J. New Impossible Differential Attacks on AES

26. Meier W. On the Security of the IDEA Block Cipher // Advances in Cryptology, Eurocrypt93, LNCS 765, T. Helleseth, Ed., Springer-Verlag, 1994, pp. 371385.

27. Nakahara J., Paulo S.L.M. Barreto, Preneel B., Vandewalle J., Kim Y. SQUARE Attacks on Reduced-Round PES and IDEA Block Ciphers.

28. National Institute of Standards and Technology. Announcing the Advanced Encryption Standard (AES), 2001. Federal Information Processing Standards Pub-14 Lecture Notes in Computer Science: Authors' Instructions lication 197. <http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf>

29. Phan R. Ch-W. Impossible Differential Cryptanalysis of 7-round Advanced Encryption Standard (AES) // Information Processing Letters, Vol. 91, Number 1, pp. 33-38, Elsevier, 2004.

30. Tuychiev G.N. About networks IDEA328, IDEA324, IDEA322, IDEA321, created on the basis of network IDEA3216 // Infocommunications: Networks Technologies- Solutions. Tashkent, 2014. 2 (30), pp. 4550.

31. Tuychiev G.N. To the networks RFWKIDEA3216, RFWKIDEA328, RFWKIDEA324, RFWKIDEA322 and RFWKIDEA321, based on the net- work IDEA3216 // International Journal on Cryptography and Information Security (IJCIS), Vol. 5, No. 1, March 2015, pp. 9-20

32. Tuychiev G.N. About networks IDEA8-2, IDEA8-1 and RFWKIDEA8-4, RFWKIDEA8-2, RFWKIDEA8-1 developed on the basis of network IDEA8-4 // Uzbek mathematical journal, {Tashkent, 2014, 3, pp. 104-118}

33. Tuychiev G.N. About networks PES8-2 and PES8-1, developed on the basis of network PES8-4 // Transactions of the international scientific conference Modern problems of applied mathematics and information technologies {AI {Khorezmiy 2012, Volume II, { Tashkent, 2014, pp. 28-32.

34. Tuychiev G.N. About networks RFWKPES8{4, RFWKPES8{2, RFWKPES8{1, developed on the basis of network PES8{4 // Transactions of the international scientific conference Modern problems of applied mathematics and information technologies {AI {Khorezmiy 2012, Volume 2, { Tashkent, 2014, pp. 32-36

35. Tuychiev G.N. About networks IDEA16{4, IDEA16{2, IDEA16{1, created on the basis of network IDEA16{8 // Compilation of theses and reports republican seminar Information security in the sphere communication and information. Problems and their solutions {Tashkent, 2014}

36. Tuychiev G. New encryption algorithm based on network IDEA8-1 using of the transformation of the encryption algorithm AES // IPASJ International Journal of Computer Science, 2015, Volume 3, Issue 1, pp. 1-6

37. Tuychiev G. New encryption algorithm based on network RFWKIDEA8-1 using transformation of AES encryption algorithm // International Journal of Computer Networks and Communications Security, 2015, Vol. 3, NO. 2, pp. 43-47

38. Tuychiev G. New encryption algorithm based on network PES8-1 using of the transformations of the encryption algorithm AES // International Journal of Multidisciplinary in Cryptology and Information Security, 2015, vol.4., 1, pp. 1-5

39. Tuychiev G. New encryption algorithm based on network RFWKPES8-1 using of the transformations of the encryption algorithm AES // International Journal of Multidisciplinary in Cryptology and Information Security, 2014, vol.3., 6, pp. 31-34

40. Tuychiev G. New encryption algorithm based on network IDEA16-1 using of the transformation of the encryption algorithm AES // IPASJ International Journal of Information Technology, 2015, Volume 3, Issue 1, pp. 6-12

41. U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology. Data Encryption Standard (DES), 1979. Federal Information Pro-cessing Standards Publication 46-3, <http://csrc.nist.gov/publications/fips/fips46-3/fips46-.pdf>

42. Zhang W., Wu W., Feng D. New Results on Impossible Differential Cryptanalysis of Reduced AES // proceedings of ICISC 2007, Lecture Notes in Computer Science 4817, pp. 239250, Springer-Verlag, 2007.

43. Lecture Notes in Computer Science: Authors' Instructions 15 Zhang W., Wu W., Zhang L. Dengguo Feng, Improved Related-Key Impossible Differential Attacks on Reduced-Round AES-192 // Proceedings of Selected Areas in Cryptography 2006, Lecture Notes in Computer Science 4356, pp. 1527, Springer-Verlag, 2007.

# GLOBAL JOURNALS INC. (US) GUIDELINES HANDBOOK 2015

---

WWW.GLOBALJOURNALS.ORG