

Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

Racharla Suresh Kumar¹ and Prof. Bachala Sathyanarayana²

¹ Sri Krishnadevaraya University

Received: 13 April 2015 Accepted: 3 May 2015 Published: 15 May 2015

Abstract

The earlier defect prediction and fault removal can play a vital role in ensuring software reliability and quality of service. In this paper Hybrid Evolutionary computing based Neural Network (HENN) based software defect prediction model has been developed. For HENN an adaptive genetic algorithm (A-GA) has been developed that alleviates the key existing limitations like local minima and convergence. Furthermore, the implementation of A-GA enables adaptive crossover and mutation probability selection that strengthens computational efficiency of our proposed system. The proposed HENN algorithm has been used for adaptive weight estimation and learning optimization in ANN for defect prediction. In addition, a novel defect prediction and fault removal cost estimation model has been derived to evaluate the cost effectiveness of the proposed system. The simulation results obtained for PROMISE and NASA MDP datasets exhibit the proposed model outperforms Levenberg Marquardt based ANN system (LM-ANN) and other systems as well. And also cost analysis exhibits that the proposed HENN model is approximate 21.66

Index terms— software defect prediction, artificial neural network, adaptive genetic algorithm, levenberg marquardt, object oriented software metrics, cost estimat

1 I. Introduction

With the increase in information technologies and associated software applications, the inevitable requirement of software reliability has alarmed scientific societies, industries as well as academician to develop certain optimal paradigm to ensure defect free software applications for long run reliability.

Furthermore, the cost factor for software products and services also suggests the defect free software solutions, so as to eliminate probability of faults in future and iterative maintenance. In order to accomplish these objectives, the efficient software defect prediction (SDP) systems are of great significance. In order to ensure optimal software reliability, the defect prediction has become an inevitable part of software development life cycle (SDLC) that intends to eliminate the probability of software failure in run time. The earlier defect prediction can enable software professional to identify fault-prone modules and thus can debug the defects to ensure quality of service provisioning. In recent years the application of open source software has increased tremendously and professional prefer to customize software modules and implement as per need. Still, these modules are prone to defect in real time scenarios, thus demanding for fault prediction and verification [1, ??,3,4] before introducing product to the users. The SDP might be functional on the basis of certain software metrics [3,4,5] like changes in source code, earlier defect or fault etc. Typically, software metrics do represent certain quantitative factor that characterizes the properties of software source code, which can be employed to predict fault proneness of software during function. On the other hand, in recent years majority of software applications are being developed using Object-Oriented (OO) paradigm. The object oriented paradigm enables certain metrics that can be employed to examine the quality of software application and associated fault proneness. Some of the predominantly proposed software metrics are MOOD [6], QMOOD [7], Bieman and Kang [8], Briand et al. [9],

2 II. RELATED WORK

44 Etzkorn et al. [10], Halstead [11], Henderson-sellers [12], L and H metrics suite [13], McCabe [14], Tegarden et
45 al. [15], Lorenz and Kidd [16] and CK metric suite [17]. The implementation of object oriented metrics enables
46 software practitioners to examine quality of software in terms of precision, accuracy, fault-resilience, reliable
47 functionality, adaptability, supportability, usability, portability, and cost effectiveness etc. In fact, it makes
48 testing enhanced for large scale software applications. This is the matter of fact that a number of researches have
49 been made for defect prediction. Some of the predominantly employed SDP techniques are based on machine
50 learning and artificial neural network [18,19,20, ??1,22], clustering techniques, statistical method, data mining
51 based fault identification, random forest [23,24,25] approaches etc. However, the emerging software complexities,
52 critical software applications, reliable service assurance, quality oriented service provisioning, and cost effective
53 or economical solutions etc., motivate researchers to develop certain cost effective defect prediction solution. In
54 recent years, primarily, support vector machine (SVM) and artificial neural network (ANN) approaches are being
55 explored for SDP utilities. The emergence of artificial intelligence based applications have motivated researchers
56 to explore ANN based defect prediction that works based on the human brain functions, while encompassing
57 multiple neurons and directed edges possessing certain weights values between input and output layers. In fact,
58 ANN is a complex non-linear mapping process that employs output as the input for learning certain complex
59 non-linear input-output relationship between input and output layers. In function ANN encompasses data sets
60 to optimize key factors such as weight parameters, risk minimization mechanism for stopping training once the
61 learning error enters in expected margin level. Although, ANN has established itself as a potential candidate
62 for prediction and classification applications, still its limitations in terms of slow learning ability, local minima
63 and convergence can't be ignored. In order to enhance the performance of ANN based defect prediction some
64 researchers [26,27] have suggested evolutionary computing paradigm that could enable optimal classification and
65 prediction without introducing any computational complexity and premature convergence.

66 Considering efficiency of evolutionary computing techniques such as Genetic Algorithm (GA) in this paper a
67 robust Adaptive genetic algorithm based ANN learning algorithm has been developed, which has been used for
68 software defect prediction. In addition, to enhance the performance of GA for huge data elements and efficient
69 performance, the genetic parameters (crossover and mutation probability) have been selected dynamically that
70 makes overall system much robust as compared to conventional approaches. In order to examine the performance
71 of the proposed HENN system, a Levenberg Marquardt based ANN (LM-ANN) algorithm has been developed
72 and the comparative performance analysis with the object oriented software metrics, CK metrics [17] has revealed
73 that the proposed HENN algorithm provides better fault detection as compared to LM-ANN. Furthermore, the
74 fault removal cost analysis for both the algorithms has stated that the proposed system is cost effective and can
75 be used for real time defect prediction utilities.

76 The remaining sections discusses, related work in Section II, the research contributions and problem definitions
77 for the proposed software defect prediction model are presented in III, which has been followed by proposed HENN
78 and LM-AMM based SDP model discussion and implementation in Section IV. Section V presents the results
79 and analysis and conclusion has been discussed in Section VI. The references used in this paper are given at the
80 last of the manuscript.

81 2 II. Related Work

82 Software reliability is of course an inevitable need for quality service provisioning. The reliability oriented
83 software defect prediction (SDP) has motivated researchers to develop optimal system for cost efficient defect
84 prediction. Researchers examined the relationship between object oriented software metrics and associated faults
85 [28,29,30,31,32,33] by means of machine learning algorithms and detected fault proneness of software. To achieve
86 better prediction some other approaches such as decision trees, naïve Bayes, and 1-rule [34] based fault detection
87 scheme were developed, where the standard datasets such as NASA MDP was used to examine classification
88 accuracy of the SDP approaches. Chug et al [35] demonstrated fault identification using data mining and employed
89 conventional J48, Random Forest, and Naive Bayesian Classifier (NBC) schemes for performance comparison but
90 still couldn't employ the benefits of advanced classification approaches. To optimize conventional random forest
91 based defect prediction Pushphavathi et al [36] incorporated a hybrid random forest (RF) and Fuzzy C Means
92 (FCM) clustering model for software defect prediction. Unfortunately, these approaches could not address the
93 issue of unbalanced datasets, which motivated researchers to come up with Adaboost. Nc [37] which implemented
94 a number of class imbalance approaches, re-sampling, threshold variations, and ensemble algorithms. Exploring
95 insight, this approach can be found to be complicate and not a cost effective solution for large scale dynamic
96 data. Researchers used SVM based defect prediction scheme [38,39] and a dynamic SVM model was proposed that
97 intended to detect faults in source code by means of error data and faulty code execution. In [40,41] an ANN based
98 defect prediction model was developed. A defect severity model using conventional back-propagation learning
99 based ANN was developed in [42]. Similarly in [43] a Radial Basis ANN was used for SDP. ANN based SDP for
100 Halstead data metrics has been done in [44]. In [45] the Bayesian Regularization (BR) technique based ANN model
101 was developed for software fault detection. Almost all ANN based defect prediction model employs conventional
102 learning and weight estimation techniques that confines applicability with huge datasets with dynamic functional
103 environment. The conventional learning and weight estimation approaches can't eliminate the key issues of local
104 minima and convergence issue that limit the performance of generic ANN. The enhancement of learning scheme
105 and further optimization through certain evolutionary computing approaches can make ANN robust for SDP

106 applications. In fact, cost feasibility is one of the key factors that decide employability of certain SDP model,
107 but till no any research work has addressed the issue of cost estimation of the defect prediction model. This
108 paper has considered these limitations as motivation and has developed an evolutionary computing A-GA based
109 SDP model which has been compared with Levenberg Marquardt based ANN and respective fault removal cost
110 estimation has been done.

111 **3 III.**

112 **4 Our Contribution**

113 In SDLC the fault resilience and reliability is of great significance. The implementation of efficient SDP
114 strengthenearly fault detection and thus it enables software practitioner to remove faults to ensure reliability and
115 QoS of the software solution. The predominant question in this paper is whether the implementation of Adaptive
116 Genetic Algorithm can enable efficient and cost effective SDP solutions? In this paper, object oriented software
117 metrics [17] has been considered for defect prediction and using proposed SDP models, the fault proneness of
118 metrics data has been retrieved, whether the data is faulty or non-faulty. In order to perform classification of
119 faulty and non-faulty data, initially the conventional ANN learning scheme with Leven berg Marquardt (LM)
120 algorithm [45] has been developed and respective performance towards software defect prediction with NASA
121 defect datasets has been done. This is the matter of fact that LM based ANN performs better as compared to other
122 approaches such as back-propagation or feed-forward learning based NN, still it suffers due to prime limitations
123 of ANN, such as local minima and weight update issues. Thus, considering higher employability of artificial
124 intelligence techniques and respective limitations for critical software applications, in this paper an evolutionary
125 computing based optimization scheme called Genetic Algorithm has been used for weight estimation during ANN
126 learning. Further to ensure optimal performance of GA, in this paper a novelty has been introduced in terms
127 of adaptive GA parameter (Crossover and Mutation probability) selection. The proposed Adaptive Genetic
128 Algorithm (A-GA) performs adaptive weight estimation and learning optimization so as to ensure optimal fault
129 classification and accuracy. The A-GA optimization scheme alleviates the issue of premature convergence and
130 local minima. Such enhancement has lead better classification and accuracy for fault detection in huge datasets.

131 In order to examine the performance of the proposed SDP model, the object oriented software metrics (here,
132 CK metrics [17]) has been considered. The implemented metrics characterizes various software features. In this
133 paper, six predominant software metrics have been considered in fault identification. The considered metrics are
134 WMC, NOC, DIT, CBO, RFC, and LCOM. The individual metrics has been feed as the input of the ANN and
135 performing learning with the proposed HENN model the classification for faults has been done. The discussion
136 of the proposed A-GA based ANN (HENN) has been discussed in the next section of the presented manuscript.
137 In this paper, in order to examine the cost effectiveness of the developed SDP models, certain cost efficiency
138 model can be used ??46, 47, and 48] and with certain standard threshold the applicability of the proposed SDP
139 model for large scale software data can be examined. The performance analysis of the proposed model has been
140 done in terms of accuracy, precision, recall, F-Measures and fault removal cost efficiency. The discussion of the
141 proposed SDP models and its implementation is discussed in the following sections.

142 **5 IV.**

143 **6 System Model**

144 In this section, the proposed Levenberg Marquardt learning based ANN and our proposed HENN based software
145 defect prediction schemes and its algorithmic implementation have been discussed.

146 **7 a) Artificial Neural Network based Software Defect**

147 Prediction This is the matter of fact that the Artificial Neural networks (NN) have seen an explosion of interest
148 over the years, and it has been implemented across a range of problem domains, specifically classification and
149 prediction. In fact, the major problems dealing with prediction and classification, ANN is considered to be
150 the dominating solution. For SDP scenario, ANN can be used with different learning schemes like Gradient
151 Descent (GD), Gauss Newton, and Levenberg Marquardt (LM) etc. Unfortunately majority of existing learning
152 paradigm are ineffective to alleviate the key limitations of ANN such as local minima and convergence issue.
153 Even though, researches have revealed that Levenberg Marquardt (LM) can be a potential candidate for ANN
154 learning due to its stable nature and flexible implementation. In this paper, in addition to LM-ANN algorithm, an
155 evolutionary computing technique called Adaptive Genetic Algorithm (A-GA) has been used for dynamic weight
156 estimation for prediction enhancement. In the proposed ANN model and ultimately intended SDP system, it
157 has been intended to find relation between object oriented software metrics and fault prone classes of the six CK
158 metrics; WMC, NOC, DIT, RFC, CBO, LCOM, which has been considered as independent variable. The fault
159 data has been taken as the dependent data. Figure -1 illustrates the architecture of our proposed ANN model
160 comprising three layers i.e., input layer, hidden layer and output layer. Here, 6 input nodes have been defined
161 that takes six CK matrix [17] having multiple classes as individual input. Since, in the proposed ANN model, the
162 expected outputs are either FAULTY or NO-FAULTY, therefore only one output node is needed. Here, we have

8 B) LEVENBERG MARQUARDT (LM) LEARNING BASED ANN FOR SOFTWARE DEFECT PREDICTION

163 considered 8 hidden layers so as to avoid unwanted computational complexity. Thus in the defined Generally, the
 164 ANN model is defined in terms of a function $\mathbf{y} = \mathbf{\delta}(\mathbf{w}, \mathbf{x})$ where \mathbf{y} states for the output vector and \mathbf{x} is
 165 and \mathbf{w} represent the weight vector and the input vector respectively. In learning process, the weight factor \mathbf{w} is
 166 updated iteratively so as to minimize the Root Mean Square Error (RMSE), which can be estimated by:
 167
$$\mathbf{E} = \frac{1}{2} \sum_{i=1}^n (y_i - \hat{y}_i)^2 \quad (3)$$

168 Where ??depicts the actual output and?? ?? ? represents the expected output.

169 In order to make computation efficient and to process multidimensional data with ANN, it is inevitable to
170 perform the normalization. In the proposed ANN based SDP models; the data normalization has been done
171 using Min-Max approach, which is discussed as follows:

i. Data normalization In this paper, normalization has been performed on the defect datasets that strengthens the proposed ANN based software defect prediction systems for better readability and classification. In the proposed SDP model, the data normalization has been done over the range of [0, 1] so as to adjust the defined range of input feature value and avoid the saturation of neurons. There are a number of normalization approaches such as Min-Max normalization, Z-Score normalization and decimal scaling etc. We have normalized the defect data using Min-Max normalization scheme that performs a linear transformation on the original data and then maps individual data x_i of attribute x to the normalized value \hat{x}_i in the range of [0, 1]. The normalization using Min-Max approach has been done using following equation:

$$\hat{x}_i = \frac{x_i - \min(x)}{\max(x) - \min(x)} \quad (4)$$

181 where ?????(??) and ?????(??) are the maximum and minimum values of the attribute ?? respectively.
 182 In the proposed SDP model, performing data normalization the ANN model has been implemented for fault

183 classification.
184 In ANN based systems, the efficient weight estimation and learning approach is of great significance. Till

185 a number of approaches have been developed for learning optimization in ANN based artificial intelligence
 186 applications. Some of the predominant approaches are: Gauss Newton, Gradient descent, Levenberg Marquardt
 187 (LM) etc. Interestingly LM can work as both gradient descent as well as gauss Newton. Some researchers also
 188 have advocated that LM can outperform other existing learning schemes in ANN. Thus considering significance
 189 of LM for effective learning for SDP, in this paper initially LM based ANN (LMANN) has been developed for
 190 SDP model. The discussion of the proposed LMANN model for SDP application is given as follows:

191 8 b) Levenberg Marquardt (LM) Learning based ANN for
192 Software Defect Prediction

193 The prime scope for ANN optimization is the enhancement of its weight estimation and respective learning
 194 optimization. Therefore, considering these factors, a number of algorithms have been proposed for weight update
 195 in ANN learning (Table ??) Levenberg Marquardt (M) algorithm performs localization of the bare minimum value
 196 of multivariate function in a repetitive manner, which is expressed as the sum of squares of non-linear real-valued
 197 functions. Similar to GD algorithm, in HENN, LM algorithm updates the weights during NN learning process.
 198 Considering the performance novelty, the proposed LM algorithm comprises the functional ability of Steepest
 199 Descent and Gauss Newton method. The proposed LM algorithm can update the weight vector by following
 200 expression: ?? ??+1 = ?? ?? ? (?? ?? ?? ?? ?? + ???) ?1 ?? ?? ?? ?? ?? (1)

Where ?? refers the weight counts and the input patterns are P . The output patterns are indicated by ??.

In the proposed SDP model, in the initial phase the LM algorithm has been used to estimate the weights for the learning scheme. Figure ?? represents the adaptive weight estimation approach using LM algorithm. The weights are updated dynamically so as to reduce RMSE and satisfying the stopping criteria, the classification has been done for fault prediction. On the basis of fault classification, the confusion matrix has been obtained which has been employed further to examine performance of the proposed SDP model. This is the matter of fact that LM-ANN has been employed for varied classification utilities but considering the specific requirements of fault prediction and robust function with huge data sets in real time software utilities, the local minima problem and convergence issues of ANN can't be ignored. Thus, considering these limitations, in this paper, the evolutionary algorithm Adaptive-Genetic Algorithm (A-GA) has been used for parameter optimization that can strengthen the function of the proposed system to yield more precise, accurate and efficient outputs. The implementation of A-GA for ANN based SDP utility has been discussed in the following section

219 **9 c) HENN: Hybrid Evolutionary Computing Based Neural**
220 **Network for Software Defect Prediction**

221 In recent years a number of optimization schemes have been developed on the basis of the concept of human
222 evolution and Genetic Algorithm (GA) is one of the predominant one. GA is an adaptive search approach based
223 on the evolutionary concepts of natural selection that intends to find certain optimal or near optimal solutions.
224 In fact, the basic concept of GA is based on the philosophy of natural selection and Darwin principle of the
225 survival of fittest. In function, GA at first performs random population generation, where population represents
226 certain set of solutions. In fact, these solutions are nothing else but a chromosome possessing a form of binary
227 strings where all the comprising parameters are supposed to be encoded. Performing population generation,
228 GA calculates the fitness value, also known as fitness function for the individual chromosome. The fitness value
229 represents a user-defined function that provides the estimation results for individual chromosome, and thus a
230 higher fitness value signifies the chromosome to be the dominant one. On the basis of retrieved fitness values,
231 the offspring are generated by means of genetic operators called crossover and mutation. Implementing genetic
232 operators the population generation continues until the stopping criteria is achieved. Here, it must be noted that
233 after every generation, chromosomes having fitness value more than defined threshold are considered for next
234 generation otherwise are mutated out of competition.

235 As depicted in Figure -1, the developed HENN model [59] encompasses ?? ? ? ? ?? network configuration
236 having?? input layer, ? hidden layer and ?? output layer or nodes. In the proposed ANN model, all the six CK
237 metrics under consideration have been fed as input to the individual input nodes, where the individual metrics can
238 have multiple classes depending on the size of software and dimensions. As already discussed with the considered
239 6-8-1 ANN configuration, the total number of weights, N to be calculated are:?? = (?? + ??) * ?(5)

240 In the proposed model the individual weight is considered as a gene in the chromosomes and is a real number.
241 Consider??, the gene length or the number of digits be??, then the length of the chromosome ?? ?????????? can
242 be obtained using following equation:?? ?????????? = ?? * ?? = (?? + ??) * ? * ??(6)

243 In the proposed A-GA based scheme all chromosomes are considered as the population and for each
244 chromosomes the fitness values and weights are estimated. In our proposed model, the weights (?? ??)
245 has been obtained using following equation:?? ?? = ? ? ? ? ? ? ? ? ??δ ???"δ ???" 0 ? ?? ??? +1 < 5 ? ?? ???
246 +2 * 10 ???" 2 + ?? ???" 3 + ? + ?? (??+1)? 10 ???" 2 ???"δ ???" 5 <= ?? ??? +?? <= 9 + ??
247 ???" 2 + 2 * 10 ???" 2 + ?? ???" 3 + 3 * 10 ???" 3 + ? + ?? (??+1)? 10 ???" 2(7)

248 To perform A-GA based weight estimation in ANN, the fitness values for individual chromoseomes are needed
249 to be obtained. The algorithm developed for fitness value estimation is given in the following figure ?? ?? = 1
250 ?? ?? = 1 ? ? ?? ?? ?? =?? ?? =1

251 ?? Figure ?? : Fitness generation using A-GA Genetic algorithm (GA) has been considered as a potential
252 global optimization approach for major applications; still this approach can be further optimized to alleviate
253 issues of premature convergence. In this paper, in order to alleviate these issues, the genetic parameters, cross
254 over probability (?? ??) and mutation probability (?? ??) has been selected dynamically so as to get optimal
255 or sub-optimal solution efficiently without converging. To update ?? ?? and ?? ?? the following mathematical
256 equations has been used:(?? ??) ??+1 = (?? ??) ?? ? ?? 1 * ??5(?? ??) ??+1 = (?? ??) ?? ? ?? 2 * ??
257 5(8)

258 where The overall discussion of the proposed HENN model is given as follows:

259 **10 ? HENN-SDP Simulation**

260 Since, the proposed HENN model operates on the basis of genetic algorithm principle; it also encompasses
261 processes such as, population generation, selection, crossover, fitness estimation, and mutation. A brief discussion
262 of the implemented HENN simulation model is given as follows:

263 Step-1 Population Initialization: In our model randomly 50 chromosomes are selected randomly to perform
264 competition. These randomly selected chromosomes perform crossover with defined crossover and mutation
265 probability.

266 Step-2 Weight Estimation: HENN estimates weight ?? ?? for each selected chromosomes as input to the
267 hidden layer and hidden layer to the output layer using equation (7).

268 Step-3 Fitness Estimation: On the basis of weight estimated, the fitness value is obtained for individual
269 chromosome with an intention to minimize the root mean square error (RMSE) obtained at the output node of
270 ANN.

271 Step-4 Chromosome Ranking and Mutation: On the basis of fitness values for the individual chromosomes,
272 the ranking is performed which is followed by mutation of the chromosomes having lower fitness values and
273 chromosomes with higher ranking replaces chromosomes with lower fitness.

274 Step-5 Crossover: In the proposed HENN model, the two point crossover is performed with the selected
275 chromosomes. Here to enhance computational efficiency the GA parameters, ?? ?? and ?? ?? are varied
276 adaptively, as per equation (6). Initially, ?? ?? and ?? ?? have been assigned as 0.6 and 0.1 respectively and
277 ??refers the number of chromosome having similar fitness value.

278 ? Stopping Criteria: The process of weight estimation using HENN algorithm continues till the stopping

12 RESULT AND ANALYSIS

279 criteria is not achieved and the 95% chromosomes in gene pool achieves unique fitness value, as beyond it the
280 fitness level of chromosomes get saturated.

281 Step 6 Fault Classification: Considering step-3, and stopping criteria, with the optimal RMSE, the final output
282 at output layer of ANN is obtained that more than 0.5 signifies towards FAULTY class otherwise NON-FAULTY.

283 Step 7 Confusion Matrix: On the basis of FAULTY and NON-FAULTY label of comprising classes, a Confusion
284 Matrix is derived that is used for performance evaluation. Thus, implementing the above mentioned approaches,
285 the proposed HENN model performs Software Defect Prediction. This is the matter of fact that a number of SDP
286 systems have been developed but only prediction accuracy and precision can't be the justification for a system to
287 be employable in real time scenarios. Industries demands for certain cost effective and efficient system for defect
288 prediction. A system with higher computational efficiency with minimal cost of fault detection and removal can
289 be of great significance and can be suggested to be used in real time SDP applications.

290 Thus, considering the need of a novel cost analysis mechanism, in this paper a novel cost estimation approach
291 has been developed which has been used to assess the computational (Fault detection and removal) cost analysis
292 for both our proposed HENN based SDP as well as reference, LM-ANN based SDP model. The discussion of the
293 proposed cost estimation model is given as follows:

294 11 d) Software Fault Estimation and Removal Cost analysis

295 In this paper, a novel cost estimation approach has been developed that estimates the cost of fault detection and
296 removal, as the efficiency to be considered as a criterion that decides whether the system should be used or not
297 in real time applications. The proposed cost estimation model has been derived from [46]. In the developed cost
298 estimation approach, certain constraints have been assumed such as, varied testing phases might take different
299 cost for certain fault removal as different softwares are developed in varied software platform and with varied
300 development standards, and it is impractical to perform comprising unit testing on all the associated modules [47].
301 In the proposed cost estimation model, the identification efficiency model proposed in [48] has been incorporated
302 that suggests following efficiencies to be used for cost estimation model. In this paper, the following notations
303 have been used to formulate mathematical model for fault estimation and removal cost. Cost Norm = ??????????
304 ?????????_??????_????????_????????_???????? = ? < 1, ?????δ ???δ ???δ ???δ ?????????????
305 ?????????????? ? 1 Not Suitable(11)

306 Here, Cost Estm SDP represents the estimated fault removal cost for software with fault prediction scheme,
307 Cost Estm _WSDP is the fault removal cost without using any SDP system. The variable Cost Norm refers the
308 normalized cost with the SDP models. As illustrated in above expression, the minimal normalized cost signifies
309 better employability of a defect prediction system. In this paper, the cost analysis for both the proposed HENN
310 as well as Levenberg Marquardt based ANN (LMANN) has been done. The results obtained are given in Table
311 7.

312 V.

313 12 Result and Analysis

314 This section discusses the experimental setup, benchmark fault data, results and performance analysis.

315 In this paper, the overall algorithms for artificial neural network, Levenberg Marquardt based ANN, Adaptive
316 Genetic Algorithm and its implementation with ANN for defect prediction, etc have been developed using
317 MATLAB2012b software model. In addition, the toolboxes of machine learning and artificial neural network
318 have been considered to perform simulation. In order to examine the performance of the proposed HENN model,
319 object oriented software metrics suite, CK Metrics [17] has been considered, which has been derived from the
320 fault data taken from PROMISE [49] and NASA MDP [50] fault data repository. The software metrics from
321 the fault datasets (JEdit, Ant, Camel and IVY) have been derived using Chidamber and Kemerer Java Metrics
322 tool (CKJM) tool that extracts software metrics by executing byte code of compiled Java cases and assigns a
323 definite weight of the comprising classes having feature vectors. In this paper, six predominant CK metrics have
324 been considered as depicted in the Table-4. A set of approaches that can be executed in response to a message
325 received by an object of that class LCOM Dissimilarity measurement of varied methods in a class using instanced
326 attributes/variables In our work, the six software metrics have been considered as the independent data while
327 the fault data has been taken as dependent variable.

328 The considered data JEdit, Ant, Camel and IVY comprise static code measures along with varied modules
329 sizes, defective modules and defect rates. In the proposed SDP models the respective extracted weights and
330 features of the data classes have been taken as input to the ANN as illustrated in Figure -1. On the basis of
331 final outcome of the both SDP models, LM-ANN as well as HENN for individual datasets, the confusion matrix
332 has been obtained. A confusion matrix comprises two rows and columns representing true positive (TP), false
333 negatives (FN), false positive (FP) and true Negative variables. The variables in confusion matrix represent the
334 faulty and non-faulty data and its severity. As depicted in Table-5, TP depicts modules which are classified
335 as FAULTY, FN represents the modules which are FAULTY but are classified incorrectly as NON-FAULTY.
336 Similarly, FP represents the modules which are non-faulty but are classified as faulty.

337 13 a) Result Analysis

338 The following section represents the results obtained from the proposed HENN based SDP model and a reference
339 model based on Leven berg Marquardt based ANN. Here, from the results obtained it can be found that the
340 proposed HENN based SDP model performs better than Leven berg Marquardt algorithm based ANN (LMANN).
341 Here, it can be found that the average fault prediction accuracy of the proposed HENN model is 87.23%, on
342 contrary, the LM-ANN based SDP models delivers 75.48% and hence the proposed system outperforms the
343 existing and till most efficient ANN model, LMANN. In addition, the analysis results states that the proposed
344 system provides 98.2% precision, 92.74% F-measure, 88.55% of recall, which is 87.7% 85.7%, and 85.4% for
345 LMANN based SDP system, respectively. The following figures (Figure ??-8) represent the average performance
346 of the proposed system with four benchmark datasets (JEdit, Ant, Camel and IVY). The performance results for
347 the developed SDP models with individual datasets are given in Table-7. Considering cost effectiveness of HENN
348 and LMANN based SDP models, Figure ?? depicts that the proposed HENN based system is most cost efficient
349 as compared to LMAMM, and hence it can be implemented for real time applications intending software defect
350 prediction and removal. 7 depicts that the proposed defect prediction approach is highly robust and efficient as
351 compared to Levenberg-Marquardt based ANN system, which is supposed to be the most effective ANN system
352 till. The proposed HENN model has exhibited better cost effectiveness for the fault detection and removal than
353 LMANN. Further to explore effectiveness of the proposed HENN model as compared to other existing systems,
354 a comparison has been done (Table -8) and results revealed that the proposed system can be the best optimal
355 solution for defect prediction for object oriented software applications. [57] 94.2 –Symbolic Regression [57] 89.50
356 –RBP-NN [57] 80.0 –LP [52] 86.6 86.6 87.4 Naive Based [52] 85.6 83.1 83.9 CPSO [53] 69.2 67.6 –T-SVM [54] 75.8
357 84.1 80.9 GANN [53] 73.4 81.6 -AdaBoost [53] 79.1 82.3 -Random Forest [58] 91.4 -k-NN [56] 91.8 -C4.5 [56] 88.
358 J 48 [56] 90.9 Levenberg-Marquardt-NN [56] 88.0 –NNEP-Evolutionary [53] 88.8 81.2 -PSO [55] 78.7 –PSO-NN
359 [57] 97.7 –HENN SDP 97.9 1 98.9

360 VI.

361 14 Conclusion

362 In order to ensure optimal software reliability and quality of service the earlier prediction of faults and its
363 removal is of great significance. In addition, the cost effective solution for defect prediction and fault removal
364 has motivated industries as well as academician to develop a novel SDP solution that could ensure cost effective
365 and optimal defect prediction solutions. In this paper, an object oriented software matrix based defect prediction
366 model has been developed.

367 Considering the limitations of artificial intelligence techniques such as artificial neural network, in this paper
368 an evolutionary computing technique named Adaptive Genetic Algorithm (A-GA) has been developed for
369 ANN dynamic weight estimation and learning optimization. The proposed Hybrid Evolutionary computing
370 based Neural Network (HENN) based system has been employed for SDP system. Furthermore, Levenberg
371 Marquardt algorithm based ANN algorithm (LMANN) has been developed for defect prediction. Considering
372 cost effectiveness of the defect prediction systems, a novel mathematical model has been derived and the cost
373 analysis results confirms that the proposed HENN model is cost effective as well as performs better as compared
374 to other existing systems. The simulation results obtained with PROMISE and NASA MDP datasets exhibits
375 that the proposed model performs on average 87.23% accuracy and the best classification accuracy obtained
376 is 97.99% with 100% precision. The proposed model delivers 98.97% of Fmeasure. The cost analysis exhibits
377 that the proposed HENN model is approximate 21.66% cost effective as compared to LMANN. The comparative
378 analysis in this paper reveals that the proposed HENN model performs better as compared to other existing
379 techniques. This paper could perform cost analysis of only HENN and LMANN, hence in future other defect
380 prediction models can also be examined for their cost effectiveness for real time applications.

381 15 Global Journal of Computer Science and Technology

382 Volume XV Issue II Version I Year () 1 2 3

¹© 2015 Global Journals Inc. (US)

²© 2015 Global Journals Inc. (US) 1

³Evolutionary Computing based an Efficient and Cost Effective Software Defect Prediction System

Figure 1: Figure 1 :

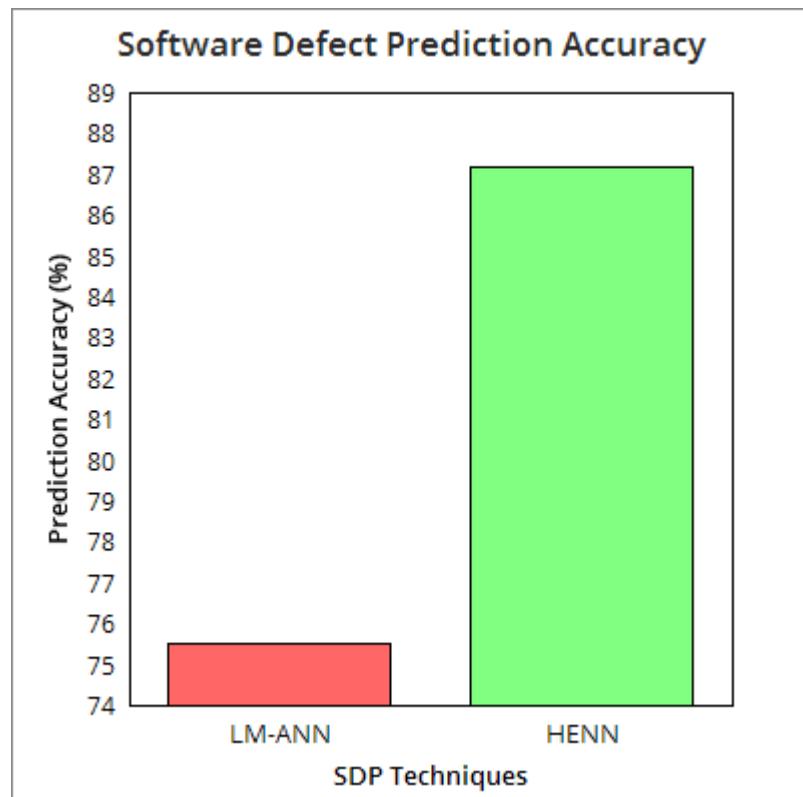


Figure 2:

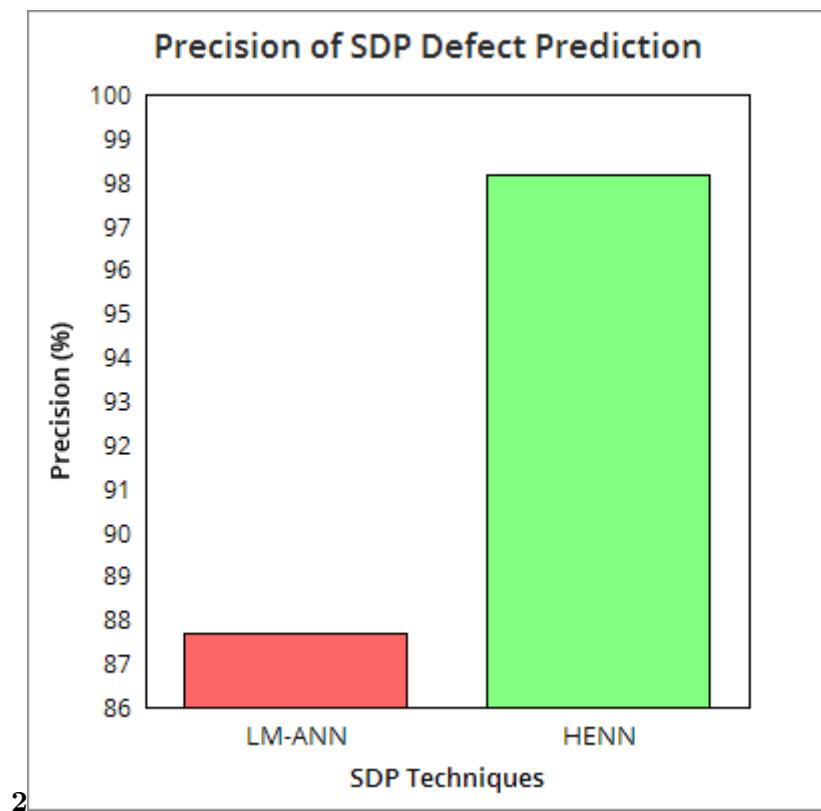


Figure 3: Figure 2 :

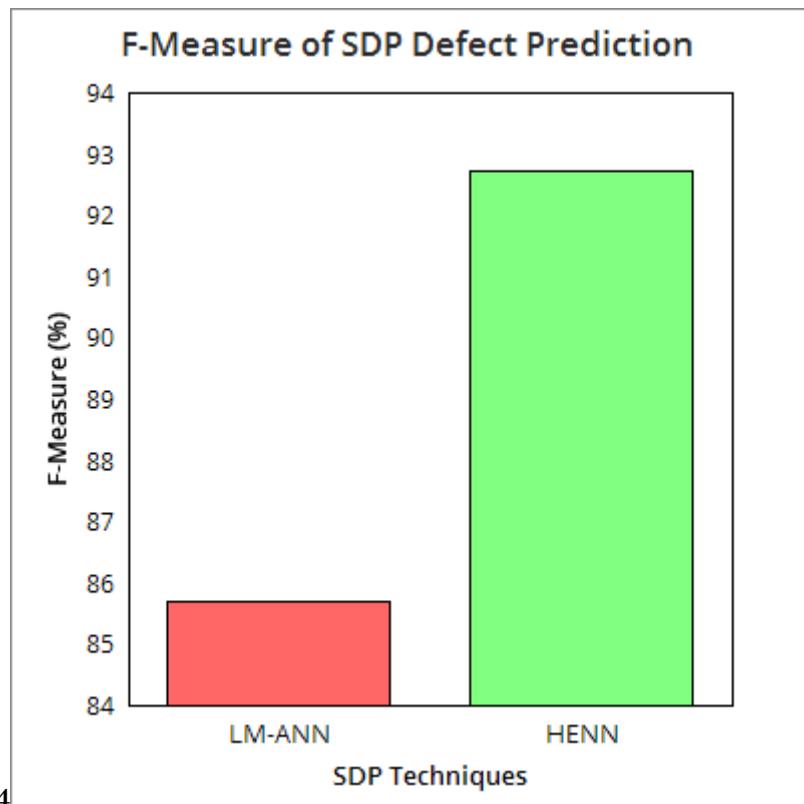


Figure 4: Figure 4 :

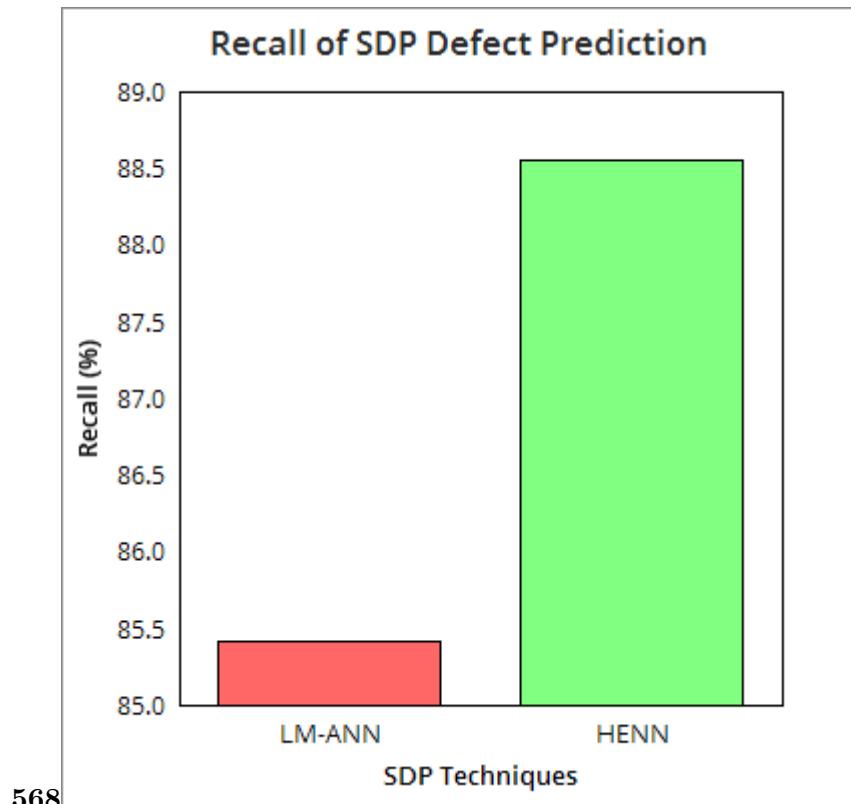


Figure 5: Figure 5 :Figure- 6 :Figure- 8 :

1

1). In this paper,

[Note: G]

Figure 6: Table 1 :

Algorithm for Fitness Estimation

Input:?? ?

?? ?? =

? ??δ ???"δ ???" 0 ? ?? ???? +1 < 5 ?? ???? +2 * 10 ???2 + ?? ????
?
?
?
?
?
?
?
?
?
+

Phase-4: Calculate RMSE of chromosome?? ??

?? ?? = ?

?
??
=??
??
=1
??

Where ?? is the number of training data

Phase-5: Calculate the fitness value for chromosome?? ??

[Note: ?? = (?? 1?? ,)]

Figure 7:

Generate Random Population
of

'n=50' genes or Chrosomes

Extract the Weight of each
chromosomes

Perform Crossover

Replace the Minimum Fitness
value Chromosome by Maxi-
mum fitness value Chromosome

Fed the Weight values for training
in HENN model

Estimate the Fitness value for
each chrosomes

NoIs threshold meet? (If Stop Cri-
teria is accomplished. Implement
the Model for Software Defect
Prediction Yes

Year
Volume XV Is-
sue II Version I

() G
Global Journal
of C omp ute
S cience and T
echnology

[Note: functioning till 95% of chromosomes are having similar fitness value. Once the stopping criterion is achieved the A-GA terminates and the final output at output layer0 o is obtained. If the final estimated output is more than 0.5, it signifies class as FAULTY otherwise NON-FAULTY. On the basis of retrieved FAULTY and NON-FAULTY data, a confusion matrix is obtained, which is further used for performance assessment. Figure-4 represents the flow diagram of the proposed HENN based SDP model.]

Figure 8:

2

	Min	Max	Median
Testing Unit	1.5	6	2.5
System	2.82	8.37	6.2
Field	3.9	27.24	27

Figure 9: Table 2 :

3

Cost Estm _SDP	Estimated fault removal cost of the software when fault prediction is performed	Cost Estm _WSDP	Estimated fault removal cost of the software when fault prediction is performed
----------------	---	-----------------	---

TP

Number of true positive

TN

Number of true negative

TC

Total number of classes

FC

Total number of faulty classes

? u

Fault identification efficiency of unit testing

? s

Fault identification efficiency of system testing

Figure 10: Table 3 :

4

WMC	Overall complexities of the methods in comprising classes
NOC	Number of sub-classes subordinate to a class in the class hierarchy
DIT	Maximum height of the class hierarchy
CBO	Number of other classes to which it is allied with
RFC	

Figure 11: Table 4 :

5

	Predicted Defective	Predicted Defect Free
FAULTY	True Positive	False Positive
NON-FAULTY	False Negative	True Negative

In this paper, the performance of the proposed HENN as well as LM-ANN SDP models has been examined in terms of fault prediction accuracy, precision, F-measure, recall, specification and fault detection and removal cost. The mathematical expression for considered performance parameters are given in Table-6.

Figure 12: Table 5 :

6

Construct	Mathematical Expression
Recall	$????/(???? + ????)$
Precision	$????/(???? + ????)$
Specification	$????/(???? + ????)$
F-measure Accuracy	$?????????????. \quad ?????????????????? \quad ?????????????? + ?????????????????? (???? + ????)/(???? + ???? + ???? + ???? 2.$

Figure 13: Table 6 :

7

Figure 14: Table 7 :

8

SDP Techniques	Accuracy (%)	Precision (%)	F-Measure (%)
LLE-SVM[51]	81.1	82.5	80.4
SVM [51]	69.4	68.1	69.7
SVM [52]	55.3	88.0	83.2
Natural Gas			

Figure 15: Table 8 :

Data Modules	Tech.	Accuracy	Precision	F-Measure	Recall	Specification	
						Norm.	Fault Removal Cost (Norm.)
JEDIT	492	HENN 0.9799	1	0.9897	1	0.9756	0.2406
		LMANN 0.8394	0.8503	0.9119	0.9832	0.0526	0.2927
ANT	744	HENN 0.8145	0.9343	0.8867	0.8438	0.6346	0.9149
		LMANN 0.7675	0.9879	0.8684	0.7748	0	0.9763
IVY	352	HENN 0.8835	0.9936	0.9380	0.8883	0.3333	0.7115
		LMANN 0.6278	0.6955	0.7681	0.8577	0.0404	0.8936
CAMEL	965	HENN 0.8114	1	0.8952	0.8102	1	0.8771
		LMANN 0.7845	0.9743	0.8792	0.8011	0	1.3401
			3	-	-		

Figure 16:

383 [Colonnade Road Suite] , *Colonnade Road Suite* 204.

384 [Boehm ()] , B W Boehm . *Software Engineering Economics* 1981. Prentice-Hall.

385 [Henderson-Sellers and Metrics ()] , B Henderson-Sellers , Software Metrics . 1996. UK: Prentice-Hall.

386 [6th International Conference (2013)] *6th International Conference*, Nov. 2013. 2 p. .

387 [McCabe (1976)] 'A complexity measure'. T J McCabe . *IEEE Transactions on Software Engineering* December 1976. 2 p. .

388 [Fenton et al. ()] 'A Critique of Software Defect Prediction Models'. N E Fenton , M Neil , I Bellini , P Bruno , D Nesi , Rogai . *IEEE Trans. Softw. Engineering* 1999. 25 (5) p. . University of Florence

389 [Zuse ()] *A Framework of Software Measurement*, H Zuse . 1998. Walter de Gruyter Publish.

390 [Bansya and Davis (2002)] 'A hierarchical model for Object-Oriented design quality assessment'. J Bansya , C G Davis . *ACM Transactions on Programming Languages and Systems* August 2002. 128 p. .

391 [Shrivastava and Shrivastava (2014)] 'A Hybrid Model of Soft Computing Technique for Software Fault Prediction'. A Shrivastava , V Shrivastava . *International Journal of Current Engineering and Tech* Aug 2014. 4 (4) .

392 [W ()] 'A literature survey of the quality economics of defect-detection techniques'. W . *Proceedings of the ACM/IEEE International Symposium on Empirical Software Engineering (ISESE)*, (the ACM/IEEE International Symposium on Empirical Software Engineering (ISESE)) 2006. p. .

393 [Kutlubay and Bener ()] *A Machine Learning Based Model for Software Defect Prediction*, O Kutlubay , A Bener . 2005. Boaziçi University, Computer Engineering Department (working paer)

394 [Chidamber and Kemerer (1994)] 'A metrics suite for Object-Oriented design'. S R Chidamber , C F Kemerer . *IEEE Transactions on Software Engineering* June 1994. 20 p. .

395 [Jianhong et al.] 'A Neural network based approach for modeling of severity of defects in function based software systems'. Z Jianhong , P S Sandhu , S Rani . *International Conference on Electronics and information Engineering*, 2 p. .

396 [Xia et al. (2014)] 'A new metrics selection method for software defect prediction'. Y Xia , G Yan , X Jiang , Y Yang . *Progress in Informatics and Computing (PIC), International Conference*, May 2014. p. .

397 [Xing et al. ()] 'A novel method for early software quality prediction based on support vector machine'. F Xing , P Guo , M R Lyu . *Software Reliability Engineering, International Symposium*, 2005. p. .

398 [Pushphavathi et al. ()] 'A novel method for software defect prediction: Hybrid of FCM and random forest'. T Pushphavathi , V Suma , V Ramaswamy . *Electronics and Communication Systems (ICECS)*, 2014.

399 [Tegarden et al. ()] 'A software complexity model of Object-Oriented systems'. D P Tegarden , S D Sheetz , D E Monarchi . *Decision Support Systems* 1995. 13 (3) p. .

400 [Bo et al. (2007)] 'A study on software reliability prediction based on support vector machines'. Bo , Xiang Yang , Li . *The Annual IEEE International Conference on Industrial Engineering and Engineering Management*, 2-4 Dec. 2007. p. .

401 [Rojas and Fernandez-Reyes (2005)] 'Adapting multiple kernel parameters for support vector machines using genetic algorithms'. S A Rojas , D Fernandez-Reyes . *The 2005 IEEE Congress on Evolutionary Computation*, September, 2005. 1 p. .

402 [Racharla Suresh Kumar and Satyanarayana ()] 'Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction'. Bachala Racharla Suresh Kumar , Satyanarayana . *Global Journal of Computer Science and Technology : D* 2015. 15 (1) p. . (Version 1.0)

403 [Khoshgoftaar et al. (2001)] 'An Application of Zero-Inflated Poisson Regression for Software Fault Prediction. Software Reliability Engineering'. T M Khoshgoftaar , K Gao , R M Szabo . *ISSRE 2001. Proceedings of 12th International Symposium*, 27-30 Nov. 2001. p. .

404 [Briand et al. (2002)] 'Assessing the Applicability of Fault-Proneness Models Across Object-Oriented Software Projects'. L C Briand , W L Melo , J Wu , St . *IEEE Trans. Software Eng* July 2002. 28 (7) p. .

405 [Cai ()] K Cai . *On the Neural Network Approach in Software Reliability Modeling*, 2001. p. .

406 [Kang and Bieman (1995)] 'Cohesion and reuse in an Object-Oriented system'. B K Kang , J M Bieman . *Proceedings of the ACM SIGSOFT Symposium on software reusability*, (the ACM SIGSOFT Symposium on software reusabilitySeattle) March 1995. p. .

407 [Bellini ()] 'Comparing Fault-Proneness Estimation Models'. P Bellini . *10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'05)*, 2005. p. .

408 [Lanubile et al. (1995)] 'Comparing Models for Identifying Fault-Prone Software Components'. F Lanubile , A Lonigro , G Visaggio . *Proceedings of Seventh International Conference on Software Engineering and Knowledge Engineering*, (Seventh International Conference on Software Engineering and Knowledge Engineering) June 1995. p. .

439 [Etkorn et al. ()] 'Design and code complexity metrics for Object-Oriented classes'. L Etkorn , J Bansya , C
440 Davis . *Object-Oriented Programming* 1999. 12 (10) p. .

441 [Mahajan et al. ()] 'Design Of Software Fault Prediction Model Using BR Technique'. R Mahajan , S Gupta , R
442 K Bedi . *Procedia Computer Science* 2015. 46 p. .

443 [Hu et al. (2006)] 'Early software reliability prediction with extended ANN model'. Q Hu , Y S Dai , M
444 Xie , S H Ng . *Proceedings of the 30th Annual International Computer Software and Applications
445 Conference (COMPSAC'06)*, (the 30th Annual International Computer Software and Applications Conference
446 (COMPSAC'06)) September 2006. 2 p. .

447 [Denaro (2000)] 'Estimating Software Fault-Proneness for Tuning Testing Activities'. Giovanni Denaro . *Proceed-
448 ings of the 22nd International Conference on Software Engineering*, (the 22nd International Conference on
449 Software EngineeringLimerick, Ireland) June 2000.

450 [Briand et al. (2000)] 'Exploring the relationships between design measures and software quality in Object-
451 Oriented systems'. L C Briand , J Wust , J W Daly , D V Porter . *The Journal of Systems and Software* May
452 2000. 51 p. .

453 [Yousef ()] 'Extracting software static defect models using data mining'. A H Yousef . *Ain Shams Engineering
454 Journal* 2015. 6 p. .

455 [Brun and Michael (2004)] 'Finding Latent Code Errors via Machine Learning over Program Executions'. Y
456 Brun , D E Michael . *Proceedings of the 26th International Conference on Software Engineering*, (the 26th
457 International Conference on Software Engineering) May, 2004.

458 [Grosan and Abraham ()] C Grosan , A Abraham . *Hybrid Evolutionary Algorithms: Methodologies, Architec-
459 tures, and Reviews*, 2011. 75 p. .

460 [Halstead ()] M Halstead . *Elements of Software Science*, (New York, USA) 1977. Elsevier Science.

461 [Sandhu et al. (2007)] 'Intelligence System for Software Maintenance Severity Prediction'. Parvinder Sandhu ,
462 Sunil Singh , Hardeep Kumar , Singh . *Journal of Systems and Software* 2007. Feb. 2008. 3 (5) p. . (Journal
463 of Computer Science)

464 [International Conference] *International Conference*, 5 p. .

465 [Benlarbi et al. ()] 'Issues in Validating Object-Oriented Metrics for Early Risk Prediction'. Saida Benlarbi ,
466 Khaled El Emam , Nishith Geol . *Cistel Technology* 1999. p. 210.

467 [Li and Henry ()] 'Maintenance metrics for the Object-Oriented paradigm'. W Li , S Henry . *Proceedings of First
468 International Software Metrics Symposium*, (First International Software Metrics Symposium) 1993. p. .

469 [Huitt and Wilde ()] 'Maintenance support for object-oriented programs'. R Huitt , N Wilde . *IEEE Transactions
470 on Software Engineering* 1992. 18 (12) p. .

471 [Armah et al.] 'Multilevel data preprocessing for software defect prediction'. G K Armah , Guangchun Luo , Ke
472 Qin . *Information Management, Innovation Management and Industrial Engineering* p. 2013. (ICIII)

473 [Abreu and Carapuca ()] 'Object-Oriented software engineering: Measuring and controlling the development
474 process'. F B E Abreu , R Carapuca . *Proceedings of the 4th International Conference on Software Quality*,
475 (the 4th International Conference on Software Quality) 1994. 186.

476 [Lorenz and Kidd ()] *Object-Oriented Software Metrics*, M Lorenz , J Kidd . 1994. NJ, Englewood: Prentice-Hall.

477 [Malhotra et al. (2014)] 'On the applicability of evolutionary computation for software defect prediction'. R
478 Malhotra , N Pritam , Y Singh . *Advances in Computing, Communications and Informatics (ICACCI, 2014
479 International Conference*, Sept. 2014. p. .

480 [Deodhar (2002)] *Prediction Model and the Size Factor for Fault-proneness of Object Oriented Systems*, Manasi
481 Deodhar . Dec. 2002. Michigan Tech. University (MS Thesis)

482 [Rosenberg and Sheppard (1994)] L Rosenberg , S B Sheppard . *Metrics in Software Process Assessment, Quality
483 Assurance and Risk Assessment*, (London) October, 1994. (2nd International Symposium on Software Metrics)

484 [Shan et al.] C Shan , B Chen , C Hu , J Xue , N Li . *SOFTWARE DEFECT PREDICTION MODEL BASED
485 ON LLE AND SVM*,

486 [Singh and Salaria (2013)] 'Software Defect Prediction Tool based on Neural Network'. M Singh , D S Salaria .
487 *International Journal of Computer Applications* May 2013. 70 p. .

488 [Mahdi Askari and Bardsiri ()] 'Software Defect Prediction using a High Performance Neural Network'. Mo-
489 hamad Mahdi Askari , Vahid Khatibi Bardsiri . *International Journal of Software Engineering and Its
490 Applications* 2014. 8 (12) p. .

491 [Askari and Bardsiri ()] 'Software Defect Prediction using a High Performance Neural Network'. M M Askari ,
492 V K Bardsiri . *International Journal of Software Engineering and Its Applications* 2014. 8 (12) p. .

493 [Jindal et al. (2014)] 'Software defect prediction using neural networks'. R Jindal , R Malhotra , A Jain . *3rd*
494 *International Conference on Reliability, Infocom Technologies and Optimization (ICRITO)*, 8-10 Oct, 2014.
495 p. .

496 [Chug and Dhall (2013)] 'Software defect prediction using supervised learning algorithm and unsupervised
497 learning algorithm'. A Chug , S Dhall . *Confluence 2013: The Next Generation Information Technology*
498 *Summit*, Sept. 2013. p. .

499 [Chug and Dhall (2013)] 'Software defect prediction using supervised learning algorithm and unsupervised
500 learning algorithm'. A Chug , S Dhall . *Confluence 2013: The Next Generation Information Technology*
501 *Summit*, Sept. 2013. p. .

502 [Chug and Dhall (2013)] 'Software defect prediction using supervised learning algorithm and unsupervised
503 learning algorithm'. A Chug , S Dhall . *Confluence 2013: The Next Generation Information Technology*
504 *Summit*, Sept. 2013. p. .

505 [Verma and Gupta (2012)] 'Software defect prediction using two level data pre-processing'. R Verma , A Gupta
506 . *Recent Advances in Computing and Software Systems (RACSS)*, International Conference, April 2012. p. .

507 [J ()] 'Software quality in 2010: a survey of the state of the art'. J . *Founder and Chief Scientist Emeritus*, 2010.

508 [Wang and Yao (2013)] 'Using Class Imbalance Learning for Software Defect Prediction'. S Wang , X Yao .
509 *Reliability, IEEE Transactions*, June 2013. 62 p. .

510 [Harman ()] 'Why the Virtual Nature of Software makes it Ideal for Search Based Optimization'. M Harman .
511 *Fundamental Approaches to Software Engineering*, 2010.