

1 Study of Effective Scheduling Algorithm for Application of Big 2 Data

3 Tanmay Paul¹

4 ¹ Adamas Institute of Technology

5 *Received: 10 December 2016 Accepted: 4 January 2017 Published: 15 January 2017*

7 **Abstract**

8 In this new era with the advancement in the technological world the data storage, analysis
9 becomes a major problem. Although the availability of different data storage component like
10 electronic storage such as hard drive or virtual storage such as cloud still the problems
11 remains. The major issue is processing the data because usually the data is in several format
12 and size. Usually processing such huge amount of data with several formats can be time
13 consuming. Using of application such as Hadoop can be beneficial but using of scheduling
14 algorithm can be the best way to for data set analysis to make the process time efficient and
15 analysis the requirement of different scheduling algorithm for the specific data set. In this
16 paper we analysis different data set to explain the most effective scheduling algorithm for that
17 specific data set and then store and execute data set after processing.

19 **Index terms**— big data, hadoop, scheduling algorithm, data analysis, HDFS, FCFS.

20 **1 Introduction**

21 n the data analysis the efficiency plays the most important factor and the development in the data storage,
22 analysis efficiency in the stipulated time and the endeavor for the output of data analysis in the executional
23 environment and storage of that data is defined as Hadoop distributed file system (HDFS) ??1]. The application
24 comprises of certain sub system application which reshape data in terms of times which are analyzed using
25 scheduling algorithm MinMin [2], minimum completion time (MCT) [3]. In HDFS huge amount of data can
26 be stored which provides cost effective and also reliability. In first come first serve (FCPS) [4] the big data
27 changes dynamically for the application access which consists of different speed and size. In order to execute
28 in an executional environment HDFS is implemented. HDFS allow large storage and data analysis but the
29 problem is to process a large amount of data. In the computing environment HDFS gives efficient data analyzing,
30 storage, execution. Scheduling algorithm administer data work flow within time constraints. Scheduling algorithm
31 FCFS, Distributed heterogeneous earliest finish time(DHEFT) works unsurpassable for given set of data in cloud
32 environment. Performance and data analysis is done by scheduling algorithm. For checking the performance of
33 the specific data set the algorithm must be known to priori for ease in implementation and time effective manner.
34 The task scheduling is executed single task at a time so that performance of the entire scheduling algorithm
35 executed can be manifest. VM can execute single task at single time.

36 **2 II.**

37 **3 System Architecture a) System Workflow**

38 The data set is given as input for execution. Each data set is converted in smaller subtask and the entire
39 subtasks are dependent on each other. The subtask is executed in sequential manner as every subtask execution
40 is completed only after the execution of the previous subtask. The new subtask waits until the execution of the
41 previous sub task gets completed. Below in fig 1 data execution work flow is given.

42 **4 Fig.1: Data execution work flow b) Cloud Server Model**

43 Cloud server [4] is the primary module which is the resource provider for performing the processing activity.
44 Virtual machine (VM) constructed can be accessed only by the registered user. Once the file is received in the
45 VM it is divided into the subtasks. VM executes single task and the remaining task is shared between VM
46 through round [5] robin algorithm.

47 **5 c) Scheduling Algorithm**

48 Scheduling algorithm is implemented to VM to utilize the resources effectively so that no VM is ideal mode of
49 operation. Initially during task assigning we have to assign proper VM for the specific task and also the resource
50 mapping for execution. There are various scheduling algorithm which can be implemented for large data set
51 to be examined their performance. The scheduling algorithms are MinMin algorithm, Data aware scheduling
52 algorithm, MaxMin scheduling algorithm, first come first serve (FCFS) scheduling algorithm, MCT algorithm,
53 and heterogeneous earliest finish time (HEFT) algorithm.

54 **6 ? MinMin Algorithm**

55 In MinMin algorithm [2] task is arranged in ascending order with least or minimum time of completion and the
56 resources or VM are allocated to the fastest job and this process is looped until all the jobs are scheduled to the
57 VM. ? Data Aware Scheduling Algorithm

58 In data aware scheduling algorithm [6] the data is stored in the VM which is vacant to the resources which
59 are closest to be executed by the VM. It eliminate over utilization of time in scheduling the task one by one.

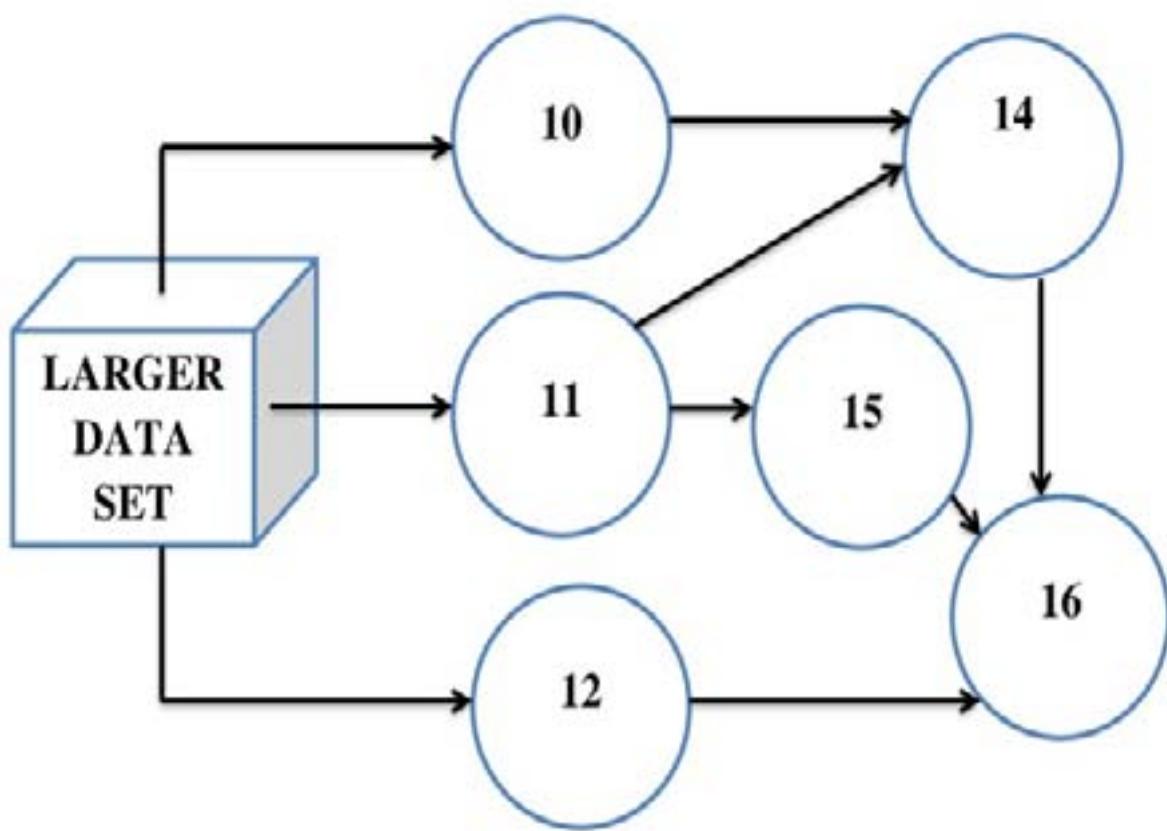
60 **7 ? MaxMin Scheduling Algorithm**

61 In the MaxMin [2] algorithm task is arranged in descending order with maximum time of completion for task
62 allocation. It is in actually the opposite of the MinMin algorithm.

63 **8 ? First Come First Serve (FCFS) Algorithm**

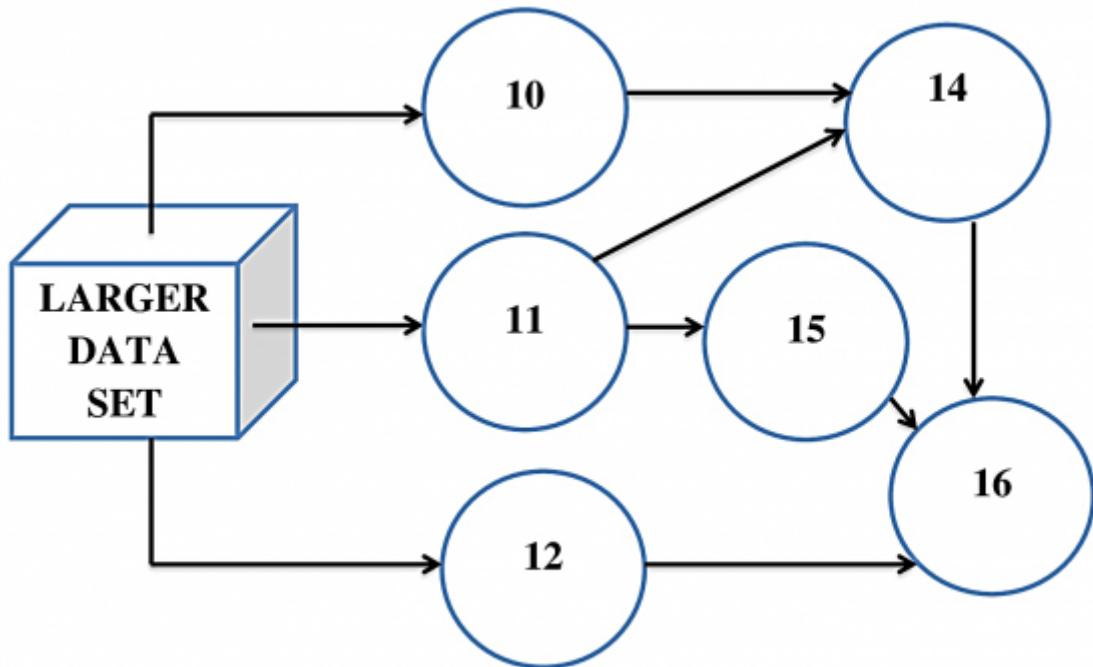
64 In the first come first serve [7] algorithm the task scheduled in a queue and allocated according to first come first
65 serve basis not according to the VM efficiency or maximum or minimum time completion. The only disadvantage
66 of these is if the task which is longer executed in the VM then the smaller task has to wait for the longer task to
67 be executed.

68 **9 ? MCT Algorithm**


69 In MCT algorithm [3] the task assigned to the resources or the available VM get executed with minimum time.

70 **10 III. Experimental Analysis**

71 In this paper the performance of various scheduling algorithm is analyzed on big data. Cloudera [8] has been
72 used as a platform for analyzing in eclipse [9] environment. Three VM has been created for user registration. The
73 task available is allocated to VM by the server and all tasks which are in queue are allocated simultaneously to
74 all available VM at same for the execution purpose. Dynamic data set has been used to performance evaluation
75 analysis which composed of data of different size and set using various scheduling algorithm. In the evaluation of
76 data set two parameters has been considered firstly the delay and secondly the task span. Delay may occur due
77 to two major causes firstly system failure secondly due to low system memory in comparison to the task allotted
78 because every time there is input in the data set there is change in size due to big data which can be sometimes
79 non compatible. We have considered three cases 12Kb, 22Kb and 55Kb of data set. In the first case 12Kb data
80 set we implemented all the scheduling algorithm where x-axis defines the scheduling algorithm and y-axis defines
81 the time. The entire scheduling algorithm differs with each other. Make span comprises of addition of data
82 processing time, time taken for data transfer from storage to execution, waiting time and time of computation.


83 **11 IV. Conclusion**

84 The scheduling algorithm on data set of big data comprising FCFS algorithm, MCT algorithm, MinMin algorithm,
85 DAS algorithm, HEFT algorithm is performed for analyzing. The result of performance analysis varies differently
86 with dynamic dataset. After the data analysis the data is stored in the form of HDFS in encrypted. For the
87 future work various data set of different data size can be used for performance analyzing and assessment. ¹

2

Figure 1: Fig. 2 :

3

Figure 2: Fig. 3 :

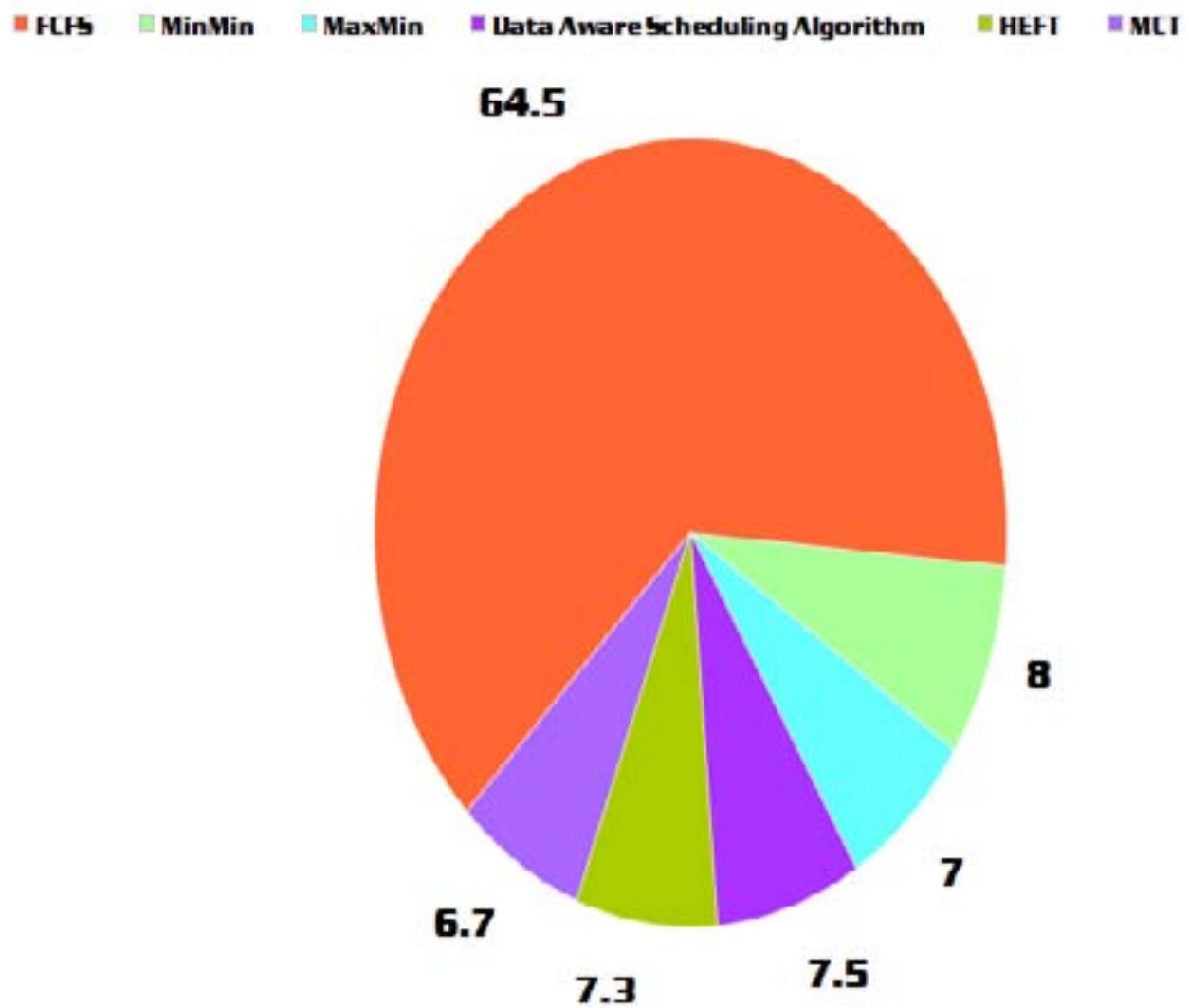


Figure 3: Fig4:

88 [Tabak] , E Tabak .
89 [Guia and Espírito-Santo] , S S Guia , ; A Espírito-Santo .
90 [Jiang] , Jianhua Jiang .
91 [Xu] , Gaochao Xu .
92 [Taylor-Fuller] , David Taylor-Fuller .
93 [Paciello; F. Abate and Pietrosanto ()] *A comparison between FFT and MCT for period measurement with an ARM microcontroller*, V Paciello; F. Abate , ; A Pietrosanto . 2015.
94
95 [Lincke] ‘A QoS comparison of 4G first-come-first-serve load sharing algorithms involving speech & packet data’.
96 Susan J Lincke . 2007 IEEE International Conference on Electro/Information Technology,
97 [Bhowmik et al. (2016)] ‘An Efficient Load Balancing Approach in a Cloud Computing Platform’. Saptarshi
98 Bhowmik , Sudipa Biswas , Karan Vishwakarma , Subhankar Chattoraj . IOSR Journal of Computer
99 Engineering (IOSR-JCE) Ver. VI (ed.) Nov.-Dec. 2016. 18 (6) .
100 [Wei] ‘An Enhanced Data-aware Scheduling Algorithm for Batch-mode Data intensive Jobs on Data Grid’.
101 Xiaohui Wei . 2006 International Conference on Hybrid Information Technology,
102 [Chang] ‘Design and implementation of HDFS data encryption scheme using ARIA algorithm on Hadoop’. Jae-
103 Woo Chang . 2017 IEEE International Conference on Big Data and Smart Computing (BigComp),
104 [Yadav et al.] ‘Efficient & Accurate Scheduling Algorithm for Cloudera Hadoop’. Swati Yadav , ’ Santoshvish-
105 wakarma , Ashok Verma . 2015 International Conference on Computational Intelligence and Communication
106 Networks (CICN),
107 [IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings] IEEE
108 International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings,
109 [Barla Cambazoglu; Cevdet and Aykanat ()] ‘Improving the Performance of Independent Task Assignment
110 Heuristics MinMin, MaxMin and Sufferage’. B Barla Cambazoglu; Cevdet , Aykanat . IEEE Transactions on
111 Parallel and Distributed Systems Year 2014. p. 5.
112 [Laverman et al. ()] ‘Integrating Vehicular Data into Smart Home IoT Systems Using Eclipse Vorto’. Jeroen
113 Laverman , Dennis Grewe , Olaf Weinmann , Marco Wagner , Sebastian Schildt . IEEE 84th Vehicular
114 Technology Conference, 2016.
115 [Tang et al.] ‘On First Fit Bin Packing for Online Cloud Server Allocation’. Xueyan Tang , Yusen Li , Runtian
116 Ren , Wentong Cai . 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
117 [References Références Referencias 1. Youngho Song; Young-Sung Shin] References Références Referencias 1.
118 Youngho Song; Young-Sung Shin, (Miyoung Jang)
119 [Monte and Pattipati ()] ‘Scheduling parallelizable tasks to minimize make-span and weighted response time’. J
120 D Monte , K R Pattipati . IEEE Transactions on Systems, Man, and Cybernetics -Part A: Systems and
121 Humans Year, 2002. p. 3.