

A Cross Layer Model to Support Qos for Multimedia Applications on Wireless Networks

Vijayalakshmi M¹ and Linganagouda Kulkarni²

¹ BVB College of Engineering and Technology

Received: 9 February 2015 Accepted: 28 February 2015 Published: 15 March 2015

6

7 **Abstract**

8 Supporting multimedia application over wireless networks poses multiple challenges. Currently
9 the use of cross layer architectures and Scalable Video Coding () techniques are considered to
10 support multimedia applications. The current architectures fail to address the tradeoff that
11 exists between the end to end delay and the Quality of Service () provisioning of the video
12 data to be delivered. To address this issue this paper introduces the improvement scheme in
13 video transmission model based on a cross layer architecture. A novel encoding of the SVC
14 video is considered in the proposed model. Based on the physical layer conditions and the
15 achievable the model adapts to meet the stringent delay requirements of video delivery.
16 Routing layer optimization is achieved by accounting for the pending packets queues in every
17 neighboring node. The experimental study conducted prove the robustness of the proposed
18 model by comparing with the existing schemes. Comparisons in terms of the transmission
19 error rates, system utility and quality of reconstruction are presented.

20

21 **Index terms**— scalable video coding (SVC), cross layer, H.264, multimedia, quality of service (QoS), MAC,
22 routing, encoding.

23 **1 Introduction**

24 he increasing demand by of users to access infotainment solutions on wireless networks aid development of novel
25 models to support applications [1] [2]. To support such multimedia application delivery on wireless networks high
26 bandwidth [3], quality of service (??????) [4], stringent delay requirements have to be accounted for. Wireless
27 networks are characterized by limited bandwidth, hop based routing and error prone nature. This nature tends
28 to induce transmission loss, delayed delivery and high jitter in supporting video streaming applications [5] [6].
29 The ??????/?????? ??????? [7] group and the ?????? ? ?? ??????? ??8] groups have standardized the Scalable
30 Video Coding (??????) extension to the existing ?? 264video compression standard which can be adopted
31 to support multimedia applications on wireless networks [9]. The ?????? compression technique enables video
32 encoding taking into account the varied quality, spatial and temporal parameters, thus providing adaptability.
33 Considering wireless networks based on the network conditions, network configuration, application demands and
34 ?????? parameters the ?????? video encoding can be adopted to support multimedia transmissions.

35 Adoption of the ?????? for multimedia data delivery on wireless networks cannot be considered as a holistic
36 solution. . Video transmissions are delay bound and delivery of the data packets within the delay deadlines is
37 of most importance [1] [5] [11] [14]. The multimedia data delivery is achieved through hop based mechanisms in
38 wireless networks. The distortion and the available channel capacity vary during data delivery which needs to be
39 accounted for. The end to end delay varies based on the physical layer condition and the buffering mechanism
40 at the medium access. The transmission errors induced cause packet retransmission overheads. Based on the
41 physical layer conditions the next hop routing mechanism also requires constant updation. In short it can be
42 stated that, delivery of delay sensitive data on wireless networks put forth variations in the physical layer, medium
43 access control layer (??????) and the routing layer. Apart from these variations observed it is also critical

5 ?????? IMPROVEMENT SCHEME IN VIDEO

44 to establish a balance between the data delivery and the ?????? provided. Providing ?????? at the cost of
45 delayed data delivery is ineffective in the case of multimedia data [1] [14]. To address these issues researchers
46 have proposed a cross layer architectures to account for the dynamics observed at the physical, ?????? and
47 routing layer for multimedia data [3] [12] [13] [14]. Combining cross layer optimization and ?????? encoding for
48 multimedia data delivery has been considered in [11], [15] and the results obtained prove the efficiency and assure
49 ?????? provisioning.

50 The existing models fail to address the tradeoff relation that exist between the ?????? of the ?????? encoded
51 data transmission and end to delay i.e. if the ?????? to be provisioned is high the end to end delays are high
52 proved in [14]. To address this issue this paper introduces the ?????? improvement scheme in video transmission
53 (??????????) model adopting a cross layer optimization approach. The ?????????? model considers the ??????
54 encoded video streams for transmissions. Based on the physical layer conditions of the wireless network, the
55 quality adaptation specifier (?? ??1) and the physical layer knowledge specifier(?? ??2) are identified. A novel
56 encoding scheme of the ?????? video utilizing the ?? ??1 and ?? ??2 is considered at the ?????? layer. The
57 packets constructed at the ?????? layer are routed through the next hop node based on the ?? ??1 , ?? ??2 and
58 pending packets in that node. A similar approach is adopted at every intermediate hop node. The ??????????
59 model proposed is designed to address the tradeoff between ?????? provisioning and delivery of the delay bound
60 multimedia data. The cross layer optimization adopted in the ?????????? model provides adaptability to achieve
61 better ?????? in wireless networks and ensures the essential delay bound multimedia data delivery.

62 The remaining manuscript is organized as follows. A brief of the literature review discussing the state of the
63 art mechanisms that currently exist is discussed in section 2. The proposed ?????????? model is presented in
64 Section 3 of this paper. The simulation study with performance comparisons is discussed in the penultimate
65 section of this paper. The conclusions and future work is discussed in the Section 5.

66 2 II.

67 3 Literature Review

68 Numerous work considering multimedia data delivery on wireless networks has been proposed by researchers. A
69 brief of the literature studied during the course of the research presented here is discussed in this section.

70 An ant colony optimization algorithm to support video streaming services on wireless mobile networks is
71 proposed in [3]. A dual layer architecture constituting of the mini-community network layer and the community
72 member layer is considered in [3]. The mini-community layer enables robust video data delivery and access
73 methodologies.

74 The resource and member management is achieved by the community member layer. The results presented
75 prove the efficiency of the biologically inspired ant colony optimization.

76 A cross layer optimization technique to support video transmissions on wireless networks has been proposed by
77 Yuanzhang Xiao et al [12]. The importance of resource allocation to support video transmissions is discussed. The
78 cross layer architecture proposed by Yuanzhang Xiao et al enables dynamic scheduling and resource allocations
79 among the wireless user nodes based on the physical channel conditions and the dynamics of video transmissions.

80 The cross layer fairness driven stream control transmission protocol based concurrent multipath transfer
81 solution (????? ? ?????/?????) is proposed in [13]. The efficiency of utilizing multipaths for video content
82 delivery is highlighted. Optimizations were adopted at the physical, data link and transport layer in the ??????
83 ? ?????/????? to support video applications on heterogeneous wireless networks. In ?????? ? ?????/????? the cross
84 layer optimization is adopted only at the transmitter.

85 Hypertext Transfer Protocol (????????) based Dynamic Adaptive Streaming (????????) of ?????? video in
86 wireless networks is discussed in [11]. A cross layer optimization based on the Lagrangian method is adopted in
87 ?????????? to support streaming of ?????? video. A novel resource allocation and packet scheduling exists between
88 data delivery and ?????? of video transmissions is discussed. The tradeoff issue is addressed by Mincheng Zhao
89 et al through a proxy based bitrate stabilization algorithm introduced in ?????????.

90 Transmission of ?????? video data in multi input multi output (????????) wireless systems is proposed by
91 Xiang Chen et al [15]. A cross layer approach adopting optimizations based on the physical and application
92 layer is proposed by Xiang Chen et al. To reduce transmission errors and reduce the number of retransmissions
93 ?????? mechanisms are also employed by the authors in [15]. An adaptive channel power allocation scheme is
94 used in [15] to improve the ?????? of video transmissions. The work proposed by Xiang Chen et al bears the
95 closest similarity to the work proposed here and is further used for performance comparisons with our proposed
96 ?????????? model. The major drawback of the cross layer approach proposed in [15] is that the tradeoff that
97 exists between ?????? provisioning and video data delivery is not addressed.

98 4 III.

99 5 ?????? Improvement Scheme in Video

100 Transmission ?????????? a) Wireless Network Modelling Let us consider a wireless network??deployed over an
101 area of ?? sq.meters. The network ?? consists of a set of ?? nodes sharing the multimedia content ?? with ??
102 receiver nodes. The channel matrix of the ?? ??? node is represented as?? ??[?] where ?? ? ?? ? ?? . The

103 wireless channel Bandwidth considered is ?? ?? and the channel error rate is represented by ?? ?? . The channel
104 noise is represented as ?? . The ?????? video data [1] is considered as the multimedia content.

105 Video transmissions are bulky and require efficient transmission mechanisms to meet the desired ??????. In
106 the ?????????? model introduced in this paper the video content is initially encoded using the MPEG video
107 coder. The ?????? video coder considered adopts the Group of Pictures (?????) structure described in [2]
108 [14]. The ?????? structure is shown in Fig. 1. of this paper. In the existing mechanisms discussed earlier a loss
109 of the ??? and ??? frame results in a retransmission enhancing end to end delays and reducing the wireless
110 transmission QoS. To improve the QoS in multimedia content delivery over the network ?? the ?????????? model
111 introduces a novel cross layer adaption technique [3]. By acquiring the prevailing physical layer properties of the
112 node, the MAC layer packetization techniques and the routing to the neighboring nodes are accordingly adapted
113 to achieve a cross layer design discussed in the proceeding sub-section of the paper.

114 6 b) Cross-Layer Design Of The ??????????model

115 A discrete time based model to describe the cross layer architecture of the ?????????? model is considered. Let
116 us consider a node ?? ? ?? transmitting content ?? to its neighbor ?? ? ?? . At time ?? ? 2 the ?? frame
117 is transmitted. The ?? δ ?? δ ?? ??1 frame consisting of ?? δ ?? δ ?? ??1 ?? ? and ?? δ ?? δ ?? ??1 ?? ? is
118 transmitted at the (?? ? 1) ??? time instance. In the ?????????? model the ??? frame is assumed to consist
119 of two sub-frames namely ??1 and ??2 i.e. ?? = ??1 + ??2 . The sub frame construction is considered to
120 encode the previous ??? frame into the ??1 and transmit it wirelessly to the node ?? at time ?? . The adoption
121 of the sub-framing technique enables reconstruction of the ??? in case of transmission errors. The encoded frame
122 ?? 1 δ ?? δ ?? ?? ,?? is defined as ?? 1 δ ?? δ ?? ?? ,?? = (1 ? ?? ??1) ?? δ ?? δ ?? ??1 ?? ? + ??
123 ??1 \times ?? δ ?? δ ?? ??1 ?? ? ? (1)

124 Where ?? ??1 is the Quality layer adaptation specifier introduced in the ?????????? model. Based on the
125 physical layer parameters, the node bandwidth supported, the pending packets in the ?????? queue and channel
126 noise thevalue of ?? ??1 is established on runtime. The quality adaptation specifier is constrained by the set ??
127 ??1 ? {0,0.1,0.2 ? 1} . The ?? ??1 specifier enables in controlling the quality of the video transmission between
128 the nodes ?? and ?? . Considering ?? ??1 = 1 the best ?????? can be achieved. When ?? ??1 = 0 only the ???
129 is transmitted resulting in lower quality.

130 To account for the physical layer conditions in the MAC encoder the Physical Layer Knowledge Specifier ??
131 ??2 parameter is introduced and is defined as ?? ??2 = ?????? ? ?????? = {0, ? 1}(2)

132 By introducing the ?? ??2 parameter the composition of the ??1 and ??2 sub frames is achieved accounting
133 for the physical layer parameters. If ?? ??2 = 0 then ??1 = ??? and ??2 = ? i.e. the physical layer exhibits
134 high distortion and the transmission of the ??? layer is only considered. If ?? ??2 = 1 then ??1 = ??? and ??2
135 = ? is considered as an ideal condition when the physical channel exhibits no signal distortion hence the entire
136 ??? layer is considered for transmission.

137 The ?? ??2 and ?? ??1 parameters are derived based on the physical layer measurements carried out at ???
138 intervals. The channel noise, packet delay and the error rate observed in transmitting the frame ? enables in
139 initialization. The proposed MAC layer encoding can be now defined as() E Year 2015

140 Where ?? 1 δ ?? δ ?? ?? ,?? ,?? ,?? ??2 represents the ?????? encoded data derived from the previous ??
141 δ ?? δ ?? ??1 ?? ? and ?? δ ?? δ ?? ??1 . ?? ,?? ,?? ??2 frame to be transmitted.

142 The MAC encoding is presented in Fig. 2. of this paper. Step 4: Based on the measurements initialize ?? ??2
143 and ?? ??1

144 Step 5: Based on ?? the ??? and ??? frame Data is derived.

145 Step 6: Based on ?? ??2 and ?? ??1 derive ??1 and ??2 and perform MAC encoding using Equation 3.

146 Step 7: Based on the MAC packet Queues Pending, ?? ??2 and ?? ??1 perform routing optimization to select
147 hop node.

148 i. Video Distortion in the ?????????? model Transmission over wireless channels induces errors in transmission.
149 The transmission errors result in a huge number of video packet errors and losses. On packet error or loss
150 occurrences, packet retransmission request and response messages are propagated. This phenomena induces huge
151 amounts of overheads and the video packet delivery time increases effecting ??????.

152 To improve ?????? the cross layer ?????????? model to reduce packet delivery delays is introduced in this
153 paper. The distortion observed at the receiver is proportional to the channel noise. When the channel noise
154 observed is large, the ?????????? adapts to enable successful transmissions compromising ?????? as video data
155 delivery is delay bound. Packets delivered beyond the delay bound possess no significance and are generally
156 dropped. The ?????????? model proposed provides a delicate tradeoff between timely delivery of data packets
157 and ?????? .The encoding at the MAC layer ?? 1 δ ?? δ ?? ?? ,?? ,?? ??2 enables recovery of the ??? from
158 the encoded enhancement layer packet in case the base layer packet is lost. The encoding enables to achieve
159 optimal ?????? in noisy environments. In this section the modelling of the packet error probabilities, video frame
160 transmissions, frame reconstruction, frame decoding, frame errors and the distortions observed is discussed.

161 Let the data ?? to be transmitted using the ?????????? model form ? ?????????? encoded packets. Each
162 packet consists of ?? symbols. The symbols?? need to be transmitted on the wireless Radio Layer Switching mode
163 of ?? (??) through a channel which has an allocated bandwidth based channel rate of?? ??(??) .The additive

6 B) CROSS-LAYER DESIGN OF THE ?????????? MODEL

164 white gaussian noise present in the wireless channels induces transmission errors. The error rate experienced by
 165 the symbol ?? is given by ?? ??(??) ??(??) , ?? (??) ?.

166 Let us assume that there are n number of video packets formed from the video to be transmitted. In
 167 error free environments the complete n packets when transmitted will be received, decoding which would
 168 form the data. In practical environments or actual conditions transmission errors occur due to the noise present
 169 in the wireless transmission medium. If out of n packets only k packets are transmitted successfully
 170 and remaining $(n - k)$ packets are lost during transmission such that error occurs at the $(k + 1)$ th
 171 packet, the probability of such an occurrence if $n = 0$ is $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$,
 172 where p is the probability of a packet being received correctly.

173 The probability of occurrence during the transmission being active i.e. $0 < ? < ?$?????????? is given by
 174 ??????(?)? ??????????) = ? 1? ? ? ?(?) ? ?(?) , ?? (??) ?? ? ?(??+1) ?? ?(??+1) , ?? (??+1)
 175 ?? ? ??=1 (5) Considering ? = ? ?????????? the error probablity occurance is defined as?????(?)? ??????????
 176) = ? 1? ? ? ?(?) ? ?(?) , ?? (??) ?? ? ?????????? ??=1 (6)

177 Let us consider at the ?? ?? time the receiver node receives video packets successfully out of the ? ??????????
 178 packets. If ?? ?? represents the number of symbols in the ?? ?? packet, then the cumulative video data available
 179 at the receiver i.e. ?? ?? can be computed using ?? ?? = ?? ?? ??(??) \times ?? ?? ?? ?? = 1(7)

180 The ?????????? mod el priorities the delivery of the ??? ensuring the delay constraints are attained. If the
 181 ??? encoded packet at the?? ??? time instance i.e. ?? δ ???" δ ???" ?? ? is lost then its recovery is possible from
 182 the?? 1 δ ???" δ ???"+1 ?? ? ,??,?? ??2 encoded packet.

192 Where ?? δ ?? δ ?? is the original frame considered at the ?? ??? time instance.

193 To achieve optimum ?????? the ??? layer is transmitted and the ???1 is encoded at the ?????? layer and
 194 transmitted. Let ?? δ ??? δ ??? ?? ? 1 represent the ?????? encoded data of ???1 and ?? δ ??? δ ??? ?? ? 2
 195 denote the decoded ???1 data at the receiver. In the ?????????? model the packet loss probability of the ??? is
 196 assumed to be 0. The frame reconstructed at the decoder at the ?? ??? time instance is defined as ?? δ ??? δ ??? ??
 197 = ?? δ ??? δ ??? ?? ? 2 + ??? δ ??? δ ??? ?? ? 2 δ ??? δ ??? ?? ? 1 ?? ? ? + ?? δ ??? δ ??? ?? ? ,??,?? ??2(10)

200 The decoded version of ?? 1 δ ??δ ?? ?? ?? ?? ?? ?? ?? ?? at the receiver on the basis of the partially decoded
 201 data of the ??? data i.e. ?? 2 δ ??δ ?? ??1. ?? ?? ?? ?? is defined as ?? 2 δ ??δ ?? ?? ?? ?? ?? = ?(1 ?? ??
 202 ??1)?? δ ??δ ?? ??1 ?? ?? + ??? ??1 × ?? 2 δ ??δ ?? ??1. ?? ?? ?? ?? ?? ? (11)

Utilizing the above definition in Equation 10 we obtain?? $2 \delta?"\delta?" = ?? \delta?"\delta?"$?? ? $2 + ???$?? $1 \times$ $???$ $2 \delta?"\delta?"$?? 1 . ?? ? ,?? ?? 2 ?? $\delta?"\delta?"$?? 1 ?? ? ?? + ?? $\delta?"\delta?"$?? 1 (12)

205 where \mathbf{z}_2 is the partially decoded data of the \mathbf{z}_1 layer at the (k_1, k_2) time
 206 instance and is defined as The parameter \mathbf{z}_2 controls the composition of the \mathbf{z}_1 data. In the case when
 207 channel noise is present and the channel bandwidth cannot support the transmission of the entire \mathbf{z}_1 layer i.e.
 208 $0 < k_1 < 1$ and $0 < k_2 < 1$, a part of the \mathbf{z}_1 is not considered for encoding and transmission and is
 209 defined as $\mathbf{z}_2 = \mathbf{z}_1 \otimes \mathbf{z}_2 + \mathbf{z}_1 \otimes \mathbf{z}_2$ (13)
 210

211 The partially encoded data of the ??? layer i.e. ???1 at the (?? ? 1) ??? time instance is defined as??
 212 δ ?? δ ???1. ?? ? , ?? ??2 = ?? δ ?? δ ???1 ?? ? , ?? ??2 + ?? δ ?? δ ???1 ?? ? ? ?? δ ?? δ ???2 ?? ? ? +
 213 ?? 1 δ ?? δ ???1 ?? ? , ?? ??2 ??2(14)

Using Equation 11 and Equation 12 the error can be simplified as: $\text{Error} = \frac{1}{2} \delta^2 (1 + \frac{1}{2} \delta^2)$ (16)

224 The distortion of the $\text{?? } \text{??}$ frame at the receiver post decoding at the $\text{at the } \text{?? } \text{??}$ time instance is computed
 225 using $\text{????? } \text{?? } (\text{?????}, \text{?? } \text{??1}, \text{?? } \text{??2}) = \text{?????} \delta \text{?"} \delta \text{?"} [(\text{?? } \text{?? }) \text{ 2}]$

226 (18) where???? is the throughputs observed as the receiver post decoding considering all the frames from the

reference frame ? to the ?? ??? frame From equation 18 it can be observed that the transmission errors effect the throughput observed and also induce distortion in video reconstruction at the receiver. The ?????????? model adapts based on the physical layer conditions to minimize the transmission errors by adopting adaptive ?????? encoding and route optimization.

231 7 IV.

232 8 Experimental Study

240 A wireless network consisting of 15 nodes is considered. The simulation study considers 4 transmitter nodes
 241 and 4 receiver nodes. Experiments considering the 'City' and 'Stefan' video were independently conducted. The
 242 M-QAM modulation and demodulation schemes were considered in the experimental study. An additive white
 243 Gaussian wireless noise channel is considered and the signal to noise ratio 0, 10, 20 and 30 dB is considered. The
 244 video transmissions carried out are monitored and the video is reconstructed at the receiver. An average of the
 245 monitored values considering 4 transmitters and 4 receivers is presented.

262 9 Global

In [15] the authors have introduced the "System utility" parameter for performance evaluation. Considering the ?????? of video "Stefan" the system utility computed using the ?????????? model and the ?????????????????????????? -??1. The results obtained are graphically shown in Figure ?? of this paper. The system utility increases as the channel noise increases due to transmission errors. The increase in transmission errors induce an additional network overhead by introducing retransmission messages. From the figure it is evident that the proposed ?????????? model exhibits a higher system utility when compared to the the ?????????????????? -??1 . The adaptive encoding and the cross layer architecture of the QIVST model also contribute to the increased system utility observations. From the reconstruction results considering the "Stefan" video shown in this paper it is clear that the ?????????? model provides better quality in video delivery over wireless networks when compared to the the????????????????????? -??1. The experimental study presented in this paper prove that the cross layer design based ?????????? model proposed is robust and adaptable proved in terms of lower ??????? observed. The ?????????? model induces an additional overhead due to the novel encoding scheme (proved by higher system utility observations) and improves the quality of video transmissions in wireless networks. The results also prove the proposed model superiority when compared to the state of art video delivery algorithm the ?????????????????????? -??1.

High bandwidth requirements, delay sensitive nature and QoS measures of multimedia data delivery on wireless networks put forth numerous challenges. The use of SVC encoded streams on cross layer architectures have been proposed by researchers. The existing mechanisms fail to address the tradeoff between QoS and data delivery delays that exists. In this paper the QIVST model is introduced that adopts a cross layer design. The SVC video data considered in the QIVST model is further encoded at the MAC layer based on the physical layer conditions and the QoS achievable, to address the tradeoff issue highlighted. The distortion observed based on the QIVST model is presented. Based on the pending packet queues observed optimization of the routing layer is considered in the QIVST to minimize the end to end delay. The extensive results presented in the experimental study

287 considering SVC video traces prove the robustness and efficiency of the proposed QIVST model when compared
288 to the state of art existing system. efficient power allocation for H.264/SVC video transmission over a realistic
MIMO channel using ^{1 2}

1

Figure 1: Figure 1 :

2

Figure 2: Figure 2 :

Figure 3: ©

289

¹© 2015 Global Journals Inc. (US) 1
²© 2015 Global Journals Inc. (US)

3 ~~WAG~~

Figure 4: Figure 3 :

45 ~~Ques~~

Figure 5: Figure 4 :Figure 5 :

6178

Figure 6: Figure 6 1 28Figure 7 :AFigure 8 :

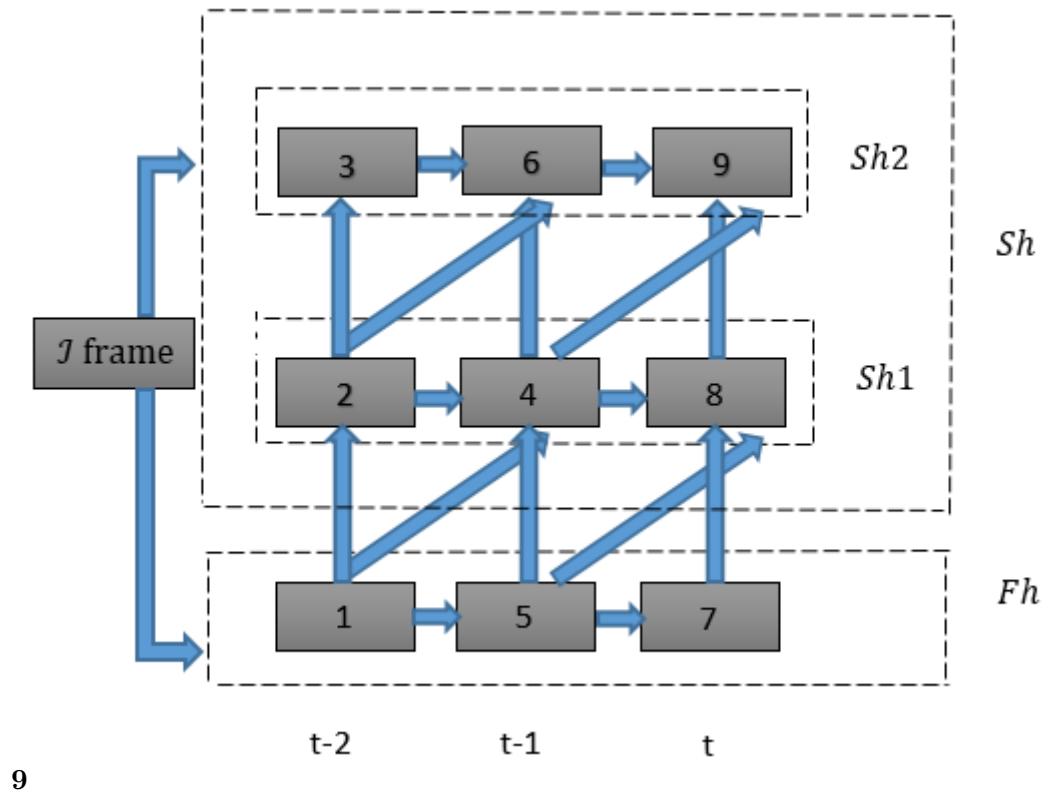
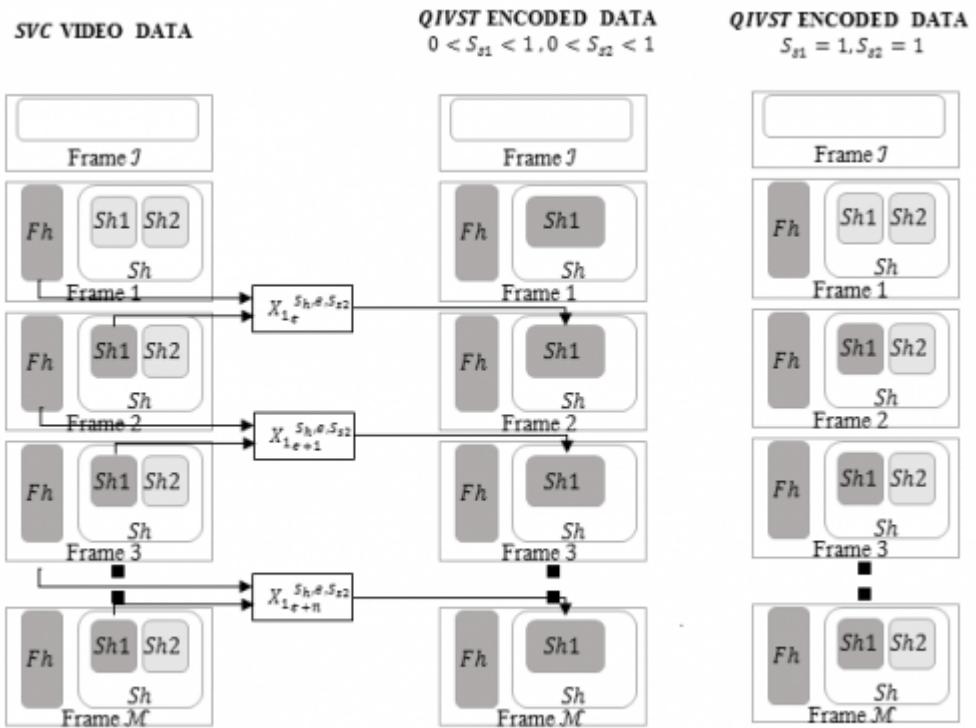



Figure 7: Figure 9 :

101112

Figure 8: Figure 10 :Figure 11 :Figure 12 :PSNR

290 [Chen and Lee] , Xiang Chen , ; Jenq-Neng Hwang; Chung-Nan Lee .

291 [Shih and Chen (2015)] ‘A Near Optimal QoE-Driven Power Allocation Scheme for Scalable Video Transmissions
292 Over MIMO Systems’. -I Shih , Chen . *IEEE Journal* Feb. 2015. 9 (1) . (Selected Topics in Signal Processing)

293 [Wassimhamidouche et al. (2011)] ‘A solution to precoder designs’. Clency Wassimhamidouche , Perrine ,
294 Christian Yannispousset , Olivier . *Journal of Visual Communication and Image Representation* August
295 2011. 22 (6) p. .

296 [Xu and Shijiebia; Lujiezhong; Hongke Zhang; Muntean (2014)] ‘Ant-Inspired Mini-Community-Based Solution
297 for Video-On-Demand Services in Wireless Mobile Networks’. Changqiao Xu , ; Shijiebia; Lujiezhong; Hongke
298 Zhang; Muntean , G.-M . *Broadcasting, IEEE Transactions on*, June 2014. 60 p. 335.

299 [Coding of audio-visual objects-Part 2: Visual, 8] *Coding of audio-visual objects-Part 2: Visual*, 8, 14496-10
300 (MPEG-4 AVC). (ITU-T Rec. H.264 and ISO/IEC. Advanced Video Coding for Generic Audiovisual Services)

301 [Xu et al.] ‘Crosslayer Fairness-driven Concurrent Multipath Video Delivery over Heterogenous Wireless Net-
302 works’. C Xu , Z Li , J Li , H Zhang , G Muntean . *IEEE Transactions on* 1 (99) p. 1. (Circuits and Systems
303 for Video Technology)

304 [Hwang ()] Jenq-Neng Hwang . *Multimedia Networking: from Theory to Practice*, 2009. Cambridge University
305 Press.

306 [Baiocchi and Cuomo (2013)] ‘Infotainment services based on push-mode dissemination in an integrated VANET
307 and 3G architecture’. Andrea ; Baiocchi , Francesca Cuomo . *Communications and Networks, Journal* 190.
308 April 2013. 15 (2) p. 179.

309 [Song and Chen (2008)] ‘Maximum-throughput delivery of SVC-based video over MIMO systems with time-
310 varying channel capacity’. Daewon Song , Chang Wen Chen . *J. Vis. Comun. Image Represent* 2008. December
311 2008. 19 p. .

312 [Xiao and Van Der Schaar (2015)] ‘Optimal Foresighted Multi-User Wireless Video’. Yuanzhang Xiao , ; Van
313 Der Schaar , M . *IEEE Journal* Feb. 2015. 9 (1) p. 89. (Selected Topics in Signal Processing)

314 [Lee; Sungjin Lee; Sanghoon Lee (2014)] ‘Optimization of Delay-Constrained Video Transmission for Ad Hoc
315 Surveillance’. Kwanghyun Lee; Sungjin Lee; Sanghoon Lee . *Vehicular Technology*, May 2014. 63 p. 1869.

316 [Schwarz et al. (1120)] ‘Overview of the Scalable Video Coding Extension of the H.264/AVC Standard’. H
317 Schwarz , D Marpe , T Wiegand . *IEEE Transactions on* 1120. Sept. 2007. 17 (9) p. 1103. (Circuits and
318 Systems for Video Technology)

319 [Zhao et al. (2015)] ‘QoE-Driven Cross-Layer Optimization for Wireless Dynamic Adaptive Streaming of Scalable
320 Videos Over HTTP’. M Zhao , X Gong , J Liang , W Wang , X Que , S Cheng . *IEEE Transactions on* March
321 2015. 25 (3) p. 465. (Circuits and Systems for Video Technology)

322 [Wang et al.] ‘Scalable Video Multicasting: A Stochastic Game Approach with Optimal Pricing’. C.-Y Wang ,
323 Y Chen , H.-Y Wei , K J R Liu . *Wireless Communications* 1 (99) p. 1. (IEEE Transactions on)

324 [Gk Srinivasa Gowda et al. (2013)] ‘Wireless Measurement Scheme for Bandwidth Estimation in Multihop
325 Wireless AdhocNetwork’. Gk Srinivasa Gowda , D Cv Srikrishna& Kashyap , Dhruve . *Global Journal of
326 Computer Science and Technology* April 2013. 13 (5) p. .